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Introduction

• Admittedly, the title is much broader than the talk.

• This is on purpose: to force us to think a bid wider than the specific

problems we are typically focus on.

• I would like to offer some thoughts and some recent progress on issues

in quantum field theory that are important for understanding extensions of

the SM.

• One potential issue is conformal invariance and associated non-trivial

CFTs

• It is important as a non-trivial UV completion of the SM and it is one

of the possible solutions of the hierarchy problem. Unfortunately no good

realization exists so far.

• Most of the physics we study experimentally and theoretically is NOT

conformal invariant.
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• A key step towards incorporating CFTs to the description of real physics

involves the understanding of the breaking of conformal invariance by rele-

vant operators both infinitesimally (Scaling region) and finitely.

• There are many tools to address CFTs.

(a) Perturbation theory of free or near free CFTs has been the tools of

choice for 50 years. It is powerful when applicable, but its range of appli-

cability is probably of measure zero in the space of CFTs.

(b) The bootstrap. Proposed long ago, it has been successfully applied

until 3-4 years ago to 2d CFTs with success. Recently it generated quite a

few breakthroughs in 3, 4 and 6 dimensions, and it is not yet obvious how

far it can go.

(c) Integrability. This until 5 years ago was considered useless for 4d

CFTs/QFTs. We know now that it will provide soon the full solution of a

4d CFT at large N. How far it can go it is not obvious.
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(d) Computational (Lattice) techniques. They have the advantage of a di-
rect attack on the solution. Despite the brute-force power, scale invariance
is hard to track or reach on the lattice for reasons obvious to all.

(e) Holography. Its reach is limited (large N, strong coupling), but it is wide
enough to give effective theories for infinite numbers of scale invariant of
scale-covariant QFTs. Much of the recent progress in understanding CFTs
stems or was motivated from investigations in holography.

It is interesting to compare (d) and (e) that are as complementary as they
can be:

• Lattice starts with a hard breaking of scale invariance and struggles to
find it as a needle in the haystack of numerical data.

• Holography is by construction tuned to describe (near) scale invariant
theories but its regime of validity can be seriously restrictive.

• I have argued for several years that a judicious collaboration between the
two techniques can bring results that go much further that any of the two
techniques alone.

V-QCD, Elias Kiritsis
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Quantum Phase transitions

• Another issue that may be important for physics beyond the standard
model relates to quantum phase transitions.

• They are phase transitions that happens at T = 0 while changing some
parameter of the theory.

• They are extremely difficult to discern.

• They are rare, as most phase transitions happen at T ̸= 0.

• In the context of 4d QFT they have been very little understood as most
happen at strong coupling.

• A known and studied case is the conformal transition in QCD. Its rele-
vance had been advocated long time ago for BSM physics.

• But there can be many others.

V-QCD, Elias Kiritsis
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The plan

• My contribution to these question will be modest:

• I will study them in the context of the closest to us theory where they
are realized: QCD with Nc colors and Nf flavors.

• I will use holographic techniques to study the theory at strong coupling
using a class of holographic theories known as V-QCD.

For the rest:

• The Veneziano limit

• The conformal window and the conformal phase transition

• The holographic realization: V-QCD

• The dynamics and properties of the conformal transition.

• Outlook

V-QCD, Elias Kiritsis
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The Veneziano limit

• The proper limit in order to study the previous phenomena in the large

Nc approximation is the limit introduced by Veneziano in (1974)

Nc →∞ , Nf →∞ ,
Nf

Nc
= x→ fixed , λ = g2YMNc → fixed

• In terms of the dual string theory, the boundaries of string diagrams are

not suppressed anymore:
Nf
Nc
∼ O(1) and surfaces with an arbitrary number

of boundaries contribute at the same order in 1/Nc.

• The 4d theory provides a formidable (and so far unsolved) problem, much

harder than in the ’t Hooft limit.

V-QCD, Elias Kiritsis
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The expected phase diagram

♠ QCD regime (x ≃ 1, x < xc) not close to xc.

♠ Walking regime: x→ x−c

♠ Conformal window: 11
2 > x > xc.

♠ Banks-Zaks regime: x→ 11
2
−
.

V-QCD, Elias Kiritsis
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Ending the conformal window

How can a conformal window end?
Kaplan+Son+Stephanov (2008)

1) A fixed point moves off to zero coupling. (BZ)

2) A fixed point moves off to infinite coupling (Dual BZ, happens in N=1

super QCD)

3) Two fixed points collide and move off in the complex plane. The only

known realization is in the BKT transition in 2d.

• In large-N theories there is a GENERIC mechanism for this to happen:

when the BF bound is about to be violated by a scalar operator!

∆± =
d

2
±

√
d2

4
+m2ℓ2

• For relevant operators, m2 < 0. For real ∆, m2ℓ2 > −d
2

4 (BF bound).
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∆± =
d

2
±

√
d2

4
+m2ℓ2

• Case I: When d−2
2 <∆ < d

2 the correct branch is ∆−.

• Case II: When d
2 <∆ < d

2 +1 the correct branch is ∆+.

• In the regime I∪II, for each bulk m there are two possible values of ∆.

• In a large N theory where O(x) is in case I: d−22 <∆ < d
2, then O(x)2 is a

relevant operator.
• Perturbing the CFT by O2, we flow to a new CFT that is isomorphic to
the previous one with one difference: O now has dimension d −∆ (and is
in Case II)

Witten

• As m2ℓ2 → −d
2

4 , then ∆± → d
2 and then they become complex:

∆± =
d

2
± iν , ν =

√
−m2ℓ2 −

d2

4

• Exactly at the BF bound, the operator O2 is marginal classically (and
really marginally relevant).

V-QCD, Elias Kiritsis
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Below the BF bound: BKT scaling

• There is a correlation of the violation of BF bound and the conformal

phase transition

• For ∆IR(4−∆IR) < 4

ϕ(r) ∼ mq r
4−∆IR + σ r∆IR + · · ·

• For ∆IR(4−∆IR) > 4

ϕ(r) ∼ C r2 sin [(ν) log r+ χ] + · · · , ν = Im∆IR

Two possibilities:

• x > xc: BF bound satisfied at the fixed point ⇒ only trivial massless

solution (ϕ ≡ 0, fixed point hit)

• x < xc: BF bound violated at the fixed point ⇒ a nontrivial solution exists

where the bulk field ϕ dual to the operator O, drives the system away from

the fixed point.
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• The parameter ν ≥ 0 above controls the violation of the BF-bound.

• When ν=0, there is no BF-bound violation and everything is ”normal”.

• When ν > 0, there is BF-bound violation and therefore the structure of

the solution radically changes: the scalar, even without a source, starts

”running” (the dual operator acquires a vev) and the IR changes.

• When ν ≪ 1 we are in the walking region for the coupling dual to ϕ.

Conclusion: There is a quantum phase transition at the point where the

BF bound is violated
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• Above the BF bound, if the source of ϕ is zero, the vev is also usually

zero.

ϕ ≃ ϕ0 r∆−+ σ r∆+ + · · · , r → 0

• Below the BF bound, even if ϕ0 = 0, σ ̸= 0. There are three regimes:

a) UV regime: 0 < r ≪ Λ−1UV

ϕ ≃ σ r∆+ + · · ·

b) Intermediate quasi-conformal regime : Λ−1UV ≪ r ≪ Λ−1IR

ϕ ≃ C r2 sin (ν log (r) + χ)

but still ϕ≪ 1.

c) Ultra IR regime: r ≫ Λ−1IR and ϕ & 1

• When ν → 0 we can estimate the end points by asking:

• Continuity at r = Λ−1UV

cot
[
ν log(Λ−1UV ) + χ

]
=

∆+ − 2

ν
→ ν log(Λ−1UV ) + χ ≃ π
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C ≃
(∆+ − 2)

ν
σΛ

(∆+−2)
UV

• ϕ ≃ 1 at r = Λ−1IR

We obtain from these conditions:

σ

Λ
∆+
UV

∼
Λ2
IR

Λ2
UV

∼ e−
2π
ν

• This is BKT scaling

• This is generic to any violation of the BF bound.

• Even if the scalar operator is irrelevant in the UV, it will still acquire a
non-zero vev and will drive the system far away from the fixed point:

This is a concrete and generic example of a UV irrelevant operator becoming
relevant due to non-perturbative effects.

• In QCD, the operator that drives the conformal transition is the quark-
mass operator. Its dimension in the IR CFT starts at 3 in the BZ limit and
ends with 2 at the conformal transition.

V-QCD, Elias Kiritsis
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The Efimov Spiral

• Consider now in the walking region (ν ≪ 1), the two linearly independent
solutions associated with source and vev (ϕm ≃ mqr and ϕσ ≃ σr3 as r → 0).
They solve the linearized equations as ϕ≪ 1.

ϕm ≃
mq

ΛUV
Km(rΛUV )

2 sin [ν log(rΛUV ) + ϕm]

ϕσ ≃
σ

Λ3
UV

Kσ(rΛUV )
2 sin [ν log(rΛUV ) + ϕσ]

• In order to reach in the IR the regular solution only a fixed behavior is
allowed

ϕIR ≃ KIR(rΛIR)2 sin [ν log(rΛIR) + ϕIR] , Λ−1UV ≪ r ≪ Λ−1IR
• In the intermediate region we must have τm + τσ ≃ τIR from which we
obtain

mq

ΛUV
=
KIR
Km

sin (ϕIR − ϕσ − νw)
sin (ϕm − ϕσ)

e−2w , ew ≡
ΛUV
ΛIR

σ

Λ3
UV

=
KIR
Kσ

sin (ϕIR − ϕm − νw)
sin (ϕσ − ϕm)

e−2w
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• The only thing that varies in the left hand side is w. If we plot mq, σ we obtain the
Efimov spiral.

• The straight line is the limit of the spiral as we approach the transition, ν → 0.

• The susceptibility is discontinuous across the transition.
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V-QCD, Elias Kiritsis
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The strategy

• Construct (toy) holographic models resembling QCD in the Veneziano
limit. The goal is to investigate the phase diagrams and get input about
the (exotic) phenomena that could appear.

• Put together two ingredients: the holographic model for glue developed
earlier: IHQCD

Gursoy+E.K+Nitti, Gursoy+E.K.+Mazzanti+Nitti

• and the model for flavor based in Sen’s tachyon action in string theory
(brane-antibrane pairs).

Casero+E.K.+Paredes, Iatrakis+E.K.+Paredes

Drawbacks:

a) No controlled stringy construction of the background.

b) Quantum effects from light states are unsuppressed (and need to be
taken eventually into account).

V-QCD, Elias Kiritsis
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The holographic models: glue

For YM, ihQCD is a well-tested holographic, string-inspired bottom-up
model with action

Gursoy+Kiritsis+Nitti, Gubser+Nelore

Sg =M3N2
c

∫
d5x
√
g

[
R−

4

3
(∂ϕ)2 + Vg(ϕ)

]
and “vacuum” described by a Poincaré-invariant metric and running dilaton
(gauge coupling)

ds2 = e2A(r)(dr2 + ηµνdx
µdxν)

• The potential Vg ↔ QCD β-function

• the ”scale factor” A ↔ logµ energy scale.

• eϕ ↔ λ ’t Hooft coupling

• The UV and IT asymptotics of Vg can be fixed from first principles and
the rest of the potential parameterized in terms of two phenomenological
parameters that are fit to lattice data.
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Panero

V-QCD, Elias Kiritsis
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The holographic models: flavor

• There are three important operators in the flavor sector,

JL,Rµ = q̄L,R γµ q
L,R , q̄LqR

and their dual fields: AL,Rµ , T that realize the global U(Nf)L × U(Nf)R symmetry.

• An action for the tachyon was given by Sen and has been advocated as the proper
dynamics of the chiral condensate giving in general all the expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM
3

∫
d5x Vf(T ) e

−ϕ
√
−det(gab + ∂aT∂bT + Fab)

V (T ) = V0e
−aT 2

Kutasov+Marino+Moore
Kraus+Larsen

Takayanagi+Terashima+Uesugi

V-QCD, Elias Kiritsis
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Fusion

The idea is to put together the two ingredients in order to study the chiral

dynamics and its backreaction to glue.

S = N2
c M3

∫
d5x
√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)

]
−

−NfNc M3
∫
d5xVf(λ, T )

√
−det(gab+ h(λ)∂aT∂bT )

with the “adiabatic ansatz”

Vf(λ, T ) = V0(λ) exp(−a(λ)T2)

• We must choose V0(λ), a(λ), h(λ). How to determine them?

• In the UV (λ→ 0), they can be adapted to the QCD β function and mass

anomalous dimension (two loops).

• Overall the theory has a metric, two SU(Nf) gauge fields a real scalar ϕ

and a complex matrix scalar T .
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• In the IR, we need to scan all possibilities: We impose

(a) Existence of a fixed point in the potential in the theory without chiral

symmetry breaking.

(b) Asymptotically linear trajectories for mesons.

• The surprise: V0(λ), a(λ), h(λ) have as λ → ∞ the values they have in

naive flat space string theory corrected by logs.

V0(λ) ∼ λ
7
3 , a(λ) ∼ λ0 , h(λ) ∼ λ−

4
3 , Vg(λ) ∼ λ

4
3

• Most of the qualitative physics depends very little on the intermediate

regime in λ.

• For every x there are two extrema of the potentials:

♠ T∗ = 0, we have an IR fixed point at λ = λ∗(xf).

♠ T∗ =∞, Veff = Vg(λ) with no fixed points.

V-QCD, Elias Kiritsis
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Parameters

• A theory with a single relevant (or marginally relevant) coupling like YM

has no parameters.

• The same applies to QCD with massless quarks.

• QCD with all quarks having mass m has a single (dimensionless) param-

eter : m
ΛQCD

.

• After various rescalings this single parameter can be mapped to the

parameter T0 (integration constant) that controls the diverging tachyon

in the IR.

• There is also x =
Nf
Nc

that has become continuous in the large Nc

Veneziano limit.

V-QCD, Elias Kiritsis
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The lower end of the conformal window

• By expanding the DBI action we obtain the IR tachyon mass at the IR

fixed point λ = λ∗ which gives the chiral condensate dimension:

−m2
IRℓ

2
IR = ∆IR(4−∆IR)

• Must reach the Breitenlohner-

Freedman (BF) bound (horizontal

line) at some xc.

• xc marks the conformal phase tran-

sition

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2

{IR
2

We obtain: 3.7 . xc . 4.2

V-QCD, Elias Kiritsis
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Walking
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The tachyon logT (left) and the coupling λ (right) as functions of log r for

an extreme walking background with x = 3.992. The thin lines on the left

hand plot are the approximations used to derive the BKT scaling.

V-QCD, Elias Kiritsis
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BKT/Miransky scaling

We obtain BKT-Miransky scaling:

σ ∼ Λ3
UV exp

(
−

2K̂
√
xc − x

)
.
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Left: log(σ/Λ3) as a function of x (dots), compared to a BKT scaling fit (solid line). The vertical dotted

line lies at x = xc. Right: the same curve on log-log scale, using ∆x = xc − x.

V-QCD, Elias Kiritsis
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Recap

• For x = 0, the theory has a mass gap, and confines.

• 0 < x < xc ≃ 4 the theory has chiral symmetry breaking, massless pions,

and gapped spectrum otherwise.

• xc < x < 11
2 the theory is chirally symmetric, and flows to a non-trivial

fixed point in the IR.

V-QCD, Elias Kiritsis
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Spectra

• The main difference from all previous calculations is that here flavor back

reacts on color.

• In the singlet sector the glueballs and mesons mix to leading order and

the spectral problem becomes complicated.

• The conclusions are:

♠ All masses follow Miransky scaling in the walking region.

♠ There is no dilaton.Instead all (bound-state) masses go to zero exponen-

tially fast.

♠ There are several level crossings as x varies but they seem accidental

♠ There is a subtle (and unexpected) discontinuity associated with the

S-parameter.
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V-QCD, Elias Kiritsis
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The S parameter: definitions

For non-zero quark mass we have

i⟨Ja (V )
µ (q)Jb (V )

ν (p)⟩ = −(2π)4δ4(p+ q)
2δab

Nf

(
q2ηµν − qµqν

)
ΠV (q

2)

i⟨Ja (A)µ (q)Jb (A)ν (p)⟩ = −(2π)4δ4(p+ q)
2δab

Nf

[(
q2ηµν − qµqν

)
ΠA(q

2) + qµqνΠL(q
2)
]
,

D(q2) = q2(ΠA(q
2)−ΠV (q

2)) ≃ C −
S

4π
q2 +

S′

4π
q4 + · · ·

• The parameter S controls the renormalization of W-bosons if the SM is

coupled to this large-N theory.

V-QCD, Elias Kiritsis
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The S parameter at mq = 0
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Left: The S-parameter as a function of x for potential class I with W0 = 3
11
. Right: The

S-parameter as a function of x for potential class II with SB normalization for W0. In both

cases S asymptotes to a finite value as x→ xc.

V-QCD, Elias Kiritsis
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The S parameter at mq ̸= 0

• We turn on a small quark mass
mq
ΛUV

= 10−6 and we calculate C, S, S′

The normalized S-parameter as a function of x for mq/ΛUV = 10−6. Left: potentials I with

W0 = 3/11. Right: potentials II with SB normalized W0.

V-QCD, Elias Kiritsis
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Mass scales in V-QCD: non-zero quark masses

• There are related interesting scaling laws at finite but small mass, that M. Jarvinen will

discuss in his presentation. They might be very useful in find a conformal window on the

lattice. The analysis of four-fermi couplings is also important.

V-QCD, Elias Kiritsis

23



The phase diagram

V-QCD, Elias Kiritsis
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Finite density

• In the presence of quarks there is no order parameter for deconfinement.

• In the presence of massless quarks there is an order parameter for chiral

symmetry breaking (chiral condensate).

• At large Nc, there is a criterion for deconfinement: Whether the free

energy is O(1) or O(Nc)2. In a black hole phase the theory is “deconfined”.

Conclusion: In the Veneziano limit (a) there could be two phase transi-

tions (deconfinement+chiral restoration) (b) the phase diagram may be

qualitatively different from finite Nf case.
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• For example, for a V-QCD model with x = 1 we have found

Hadron

   gas
ΧSB  plasma

Chirally symmetric plasma

0.0 0.1 0.2 0.3 0.4 0.5
Μ

0.05

0.10

0.15

0.20
T

Alho+Jarvinen+Kajantie+Kiritsis+Rosen+Tuominen
• No baryon backreaction is included

• No gravity loop-corrections are included

• No tuning of parameters to lattice data.

V-QCD, Elias Kiritsis
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A new quantum critical regime

• The most remarkable new feature is a new quantum critical regime at

T = 0 and finite µ.

• This is clear in the (cold) quark gluon plasma phase at µ/Λ > 0.5.

• It seems also to be present in the chirally-broken plasma phase.

• This is a phase with a AdS2 × R3 geometry as in the RN black hole.

Spacial points cannot communicate, it is like the speed of light is equal to

0.

• Such critical points are highly unstable, and are expected to give rise to

superconducting states.

• Is this an artifact of the large-Nc expansion?

V-QCD, Elias Kiritsis
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Outlook

• QCD in the Veneziano limit seems to host an interesting collection of

exotic phenomena.

• Holographic approaches have given and can give further clues on such

phenomena.

• They involve a new frontier in holography: back-reacting branes.

• They also face new and nontrivial problems

(a) Estimating/calculating unsuppressed loop corrections.
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(b) Handling explicit (point-like) baryon presence in the vacuum at finite

density.

(c) There are many other dynamical problems that need to be addressed

(CP-odd physics, chiral magnetic effect, “quantum gravity” effects in the

walking region etc)

• There are many other theories with similar or more exotic phenomena

awaiting to be discovered

• There is hard work ahead of us.

V-QCD, Elias Kiritsis
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.

Thank you

V-QCD, Elias Kiritsis
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The ’t Hooft Large Nc limit

• The large Nc limit offers a non-perturbative tool into strong coupling
physics.

• The ’t Hooft large Nc limit is defined as

Nc →∞, λ = g2YMNc → fixed , Nf fixed

• As Nf is kept fixed while Nc →∞, Nf ≪ Nc, x→ 0 and it always samples
the “quenched” approximation.

• The planar (sphere) diagrams give the dominant contribution, O(N2
c ).

• Fermion loops (boundaries of the Riemann surface in the string theory
picture) give subleading contributions in 1/Nc (each loop costs a factor of

x =
Nf
Nc
≪ 1).

• Because x ≡ Nf
Nc
→ 0 in the ’t Hooft limit, it is difficult to capture any of

the effects for which the presence of flavor is important.

V-QCD, Elias Kiritsis
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Topics

• Conformal transitions, the BF bound and BKT scaling

• QCD∗

• Comparison to N=1 sQCD

• Massive QCD

• On anomaly matching (?)

V-QCD, Elias Kiritsis
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Review

♠ QCD regime (x ≃ 1, x < xc) not close to xc.

♠ Walking regime: x→ x−c

♠ Conformal window: 11
2 > x > xc.

♠ Banks-Zaks regime: x→ 11
2
−
.

V-QCD, Elias Kiritsis

33



The Banks-Zaks region

• The (massless) QCD β function in the Veneziano limit is

λ̇ = β(λ) = −b0λ2 + b1λ
3 +O(λ4) , b0 =

2

3

(11− 2x)

(4π)2
, b1 = −

2

3

(34− 13x)

(4π)4

• For x > 11
2 the theory is IR free. This means it makes only sense as a

low energy effective theory (non-abelian weakly coupled phase).

• Notice that at x = 11
2 , b0 = 0, b1 > 0.

• The Banks-Zaks region is

x =
11

2
− ϵ with 0 < ϵ≪ 1

• We obtain a fixed point of the β-function at

λ∗ ≃
(8π)2

75
ϵ+O(ϵ2)

which is trustworthy in perturbation theory, as λ∗ can be made arbitrarily

small.
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• The mass operator, ψ̄LψR has now dimension smaller than three, from
the perturbative anomalous dimension (in the V-limit)

−
d logm

d logµ
≡ γ =

3

(4π)2
λ+

(203− 10x)

12 (4π)4
λ2 +O(λ3, N−2c )

• It is the only relevant operator of the theory. If it is turned-on the theory
misses the non-trivial fixed point and flows to (massive) pure YM in the IR.

• There are two extreme limits:

(a) mq ≫ ΛUV . In this case the theory never goes close to the IR fixed point,
but for energy scales E ≪ mq is pure YM as the fermions have decoupled.

The IR YM scale is

ΛIR ≃ mq ≫ ΛUV

(b) mq ≪ ΛUV . In this case the theory first flows near the nontrivial fixed
point and then flows to YM in the IR.

34-



The IR YM scale is

mq ≪ ΛUV , β = −ϵλ2 + b1λ
3 + · · · , λ∗ =

ϵ

b1

ΛIR ≃ mq e
− 1
b0λ∗ ,

and we have the large hierarchy of scales

ΛUV ≫ mq ≫ ΛIR

which is controlled by ϵ. For this to happen the large Nc limit is crucial.

• This is a good example of walking theory, albeit a weakly coupled one.

• It demonstrates a general feature of the conformal window: A “small”

perturbation from conformality gives a “walking” theory.
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• Extrapolating to lower x we expect

(a) the fixed point to move towards strong coupling.

(b) The quark mass operator to become more relevant.

• The naive extrapolation of these two observations gives the phase dia-
gram:

Interesting question: What marks the transition from Conformality to QCD
IR physics?

V-QCD, Elias Kiritsis
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Ending the conformal window

How can a conformal window end?
Kaplan+Son+Stephanov (2008)

1) A fixed point moves off to zero coupling. (BZ)

2) A fixed point moves off to infinite coupling (Dual BZ, happens in N=1

super QCD)

3) Two fixed points collide and move off in the complex plane. The only

known realization is in the BKT transition in 2d.

• At large N theories this happens when the BF bound is about to be

violated!

∆± =
d

2
±

√
d2

4
+m2ℓ2

• For relevant operators, m2 < 0. For real ∆, m2 > −d
2

4 (BF bound).
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∆± =
d

2
±

√
d2

4
+m2ℓ2

• Case I: When d−2
2 <∆ < d

2 the correct branch is ∆−.

• Case II: When d
2 <∆ < d

2 +1 the correct branch is ∆+.

• In the regime I+II, for each bulk m there are two possible values of ∆.

• In a large N theory where O(x) is in case I: d−22 <∆ < d
2, then O(x)2 is a

relevant operator. Perturbing the CFT by O2, we flow to a new CFT that
is isomorphic to the previous one with one difference: O now has dimension
d−∆ (and is in Case II)

Witten
• As m2 → −d

2

4 , then ∆± → d
2 and then they become complex:

∆± =
d

2
± iν , ν =

√
−m2ℓ2 −

d2

4

• Exactly at the BF bound, the operator O2 is marginal classically (and
really marginally relevant).

V-QCD, Elias Kiritsis
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Below the BF bound

• Correlation of the violation of BF bound and the conformal phase tran-
sition

• For ∆IR(4−∆IR) < 4

T (r) ∼ mqr
4−∆IR + σr∆IR

• For ∆IR(4−∆IR) > 4

T (r) ∼ Cr2 sin [(ν) log r+ ϕ] , ν = Im∆IR

Two possibilities:

• x > xc: BF bound satisfied at the fixed point ⇒ only trivial massless
solution (T ≡ 0, ChS intact, fixed point hit)

• x < xc: BF bound violated at the fixed point ⇒ a nontrivial solution exists
where the bulk field ϕ dual to the operator O, drives the system away from
the fixed point.

Conclusion: There is a phase transition at the point where the BF bound
is violated
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• Above the BF bound, if the source of ϕ is zero, the vev is also usually

zero.

ϕ ≃ ϕ0 r∆−+ σ r∆+ + · · · , r → 0

• Below the BF bound, even if ϕ0 = 0, σ ̸= 0. There are three regimes:

a) UV regime: 0 < r ≪ Λ−1UV

ϕ ≃ σ r∆+ + · · ·

b) Intermediate quasi-conformal regime Λ−1UV ≪ r ≪ Λ−1IR

ϕ ≃ C r2 sin (ν log (r) + ϕ)

c) Ultra IR regime r ≫ Λ−1IR

• When ν → 0 we can estimate the end points by asking:

• Continuity at r = Λ−1UV

cot
[
ν log(Λ−1UV ) + ϕ

]
=

∆+ − 2

ν
→ ν log(Λ−1UV ) + ϕ ≃ π

C ≃
(∆+ − 2)

ν
σΛ

(∆+−2)
UV
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• ϕ ≃ 1 at r = Λ−1IR

We obtain from these conditions:

σ

Λ
∆+
UV

∼
Λ2
IR

Λ2
UV

∼ e−
2π
ν

• This is BKT scaling

V-QCD, Elias Kiritsis
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The Efimov Spiral

• Consider now in the walking region the two linearly independent solutions
associated with source and vev (τm ≃ mqr and τσ ≃ σr3 as r → 0). They
solve the lineraized equations as t≪ 1.

τm ≃
mq

ΛUV
Km(rΛUV )

2 sin [ν log(rΛUV ) + ϕm]

τσ ≃
σ

Λ3
UV

Kσ(rΛUV )
2 sin [ν log(rΛUV ) + ϕσ]

• In order to reach in the IR the regular solution only a fixed behavior is
allowed

τIR ≃ KIR(rΛIR)2 sin [ν log(rΛIR) + ϕIR] , Λ−1UV ≪ r ≪ Λ−1IR
• In the intermediate region we must have τm + τσ ≃ τIR from which we
obtain

mq

ΛUV
=
KIR
Km

sin (ϕIR − ϕσ − νw)
sin (ϕm − ϕσ)

e−2w , ew ≡
ΛUV
ΛIR

σ

Λ3
UV

=
KIR
Kσ

sin (ϕIR − ϕm − νw)
sin (ϕσ − ϕm)

e−2w
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• The only thing that varies in the left hand side is w. If we plot mq, σ we
obtain the Efimov spiral.

V-QCD, Elias Kiritsis
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QCD∗

• The same bulk (holographic) theory with a scalar ϕ of mass m, is dual to

two distinct CFTs:

a) With one quantization, (CFTa) ϕ is dual to an operator O of dimension

∆−.

b) With the other quantization (CFTb) ϕ is dual to an operator O of

dimension ∆+.

• CFTa and CFTb differ very little and are very closely connected. A O2

perturbation of CFTa produces CFTb in the IR.

• As m2 approaches the BF bound, the two theories, CFTa and CFTb

“collide” exactly at the BF bound, and then they move off the real axis

into the complex plane.

• If QCD(x) in the IR of the conformal window is CFTb, which theory is

CFTa (this theory has been called QCD∗(x)).
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• The special scalar operator is O = ψ̄ψ in QCD(x) with dimension 2 ≤
∆(x) ≤ 3. ∆(xc) = 2, ∆(11/2) = 3.

• The defining properties of QCD∗:

1. At QCD(xc) = QCD∗(xc).

2. The operator Õ in QCD∗ satisfies 2 ≥ ∆̃(x) ≤ 1.

∆̃(xc) = 2, ∆̃(11/2) = 1.

3. A perturbation of QCD∗(x) by Õ2 should drive the theory to QCD(x) in

the IR.

Is there a QCD∗?

• My answer: YES!
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I claim that the following theory is QCD∗(x): The non-trivial IR fixed point

of a gauge theory with

• SU(Nc) gauge fields,

• Nf quarks and antiquarks,

• and an Nf×Nf complex matrix scalar, that is a color singlet but transforms

as a bifundamental under the U(Nf)× U(Nf) chiral symmetry.

The action is

S =
∫
d4x

(
Lg + Lf + LM

)
, Sg = −

1

2g2
Tr[F2]

Sf = (q†)iai /Dabq
i
b+ (q̃†)iai /Dabq̃

i
b

SM = Tr[∂µM∂µM†]− (YMijT
ij + cc)−

λ1
4!
Tr[MM†]2 −

λ2
4!
Tr[MM†MM†]
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• The operator Õ is Mij.

• At x = 11/2, it has ∆ = 1.

• If we add Õ2 this amounts to mass term for M , and the IR theory (at

weak coupling) is the theory with M which is QCD.

• There is a non-trivial BZ-like IR fixed point in that theory! (some two

loop scalar β functions have not been checked yet).

V-QCD, Elias Kiritsis
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N=1 sQCD

The case of N = 1 SU(Nc) superQCD with Nf quark multiplets is known
and provides an interesting (although much more complex) example for the
non-supersymmetric case.

Seiberg

• The theory contains an adjoint SU(Nc) N=1 vector multiplet and Nf
chiral multiplets for quarks and antiquarks.

• x = 0 the theory has confinement, a mass gap and Nc distinct vacua
associated with a spontaneous breaking of the leftover R symmetry ZNc.

• At 0 < x < 1, the theory has a runaway ground state. Most probably it
breaks supersymmetry spontaneously.

• At x = 1, the theory has a quantum moduli space with no singularity.
This reflects confinement with χSB.

• At x = 1 + 1
Nc

, the moduli space is classical (and singular). The theory
confines, but there is no χSB.
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• At 1+ 2
Nc

< x < 3
2 the theory is in the non-abelian magnetic IR-free phase,

with the magnetic gauge group SU(Nf −Nc) IR free.

• At 3
2 < x < 3, the theory flows to a CFT in the IR. (conformal window)

Near x = 3 this is the Banks-Zaks region where the original theory has an

IR fixed point at weak coupling. Moving to lower values, the coupling of

the IR SU(Nc) gauge theory grows.

However near x = 3
2 the dual magnetic SU(Nf − Nc) is in its Banks-Zaks

region, and provides a weakly coupled description of the IR fixed point

theory.

• At x > 3, the theory is IR free.

• The magnetic theory has elementary fields that are the meson composites

of the electric theory. In particular the magnetic gauge bosons are the ρ-

mesons, the magnetic quarks are the mesinos, and the adjoint scalars, are

the scalar mesons.
Komargodski
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• Why there is no conformal transition like it happens in QCD?

• The dimension of the quark mass operator, 2 <∆ψ̄ψ < 3 in the conformal

window. So we might think we are in the same situation.

• However supersymmetry relates this to the quarkino mass operator that

has 1 <∆ψ̄ψ < 2 in the conformal window.

• At the end of the conformal window it is a free boson, reflecting the BZ

property of the magnetic theory.

V-QCD, Elias Kiritsis
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Outlook

There is a long way to go!

THANK YOU!

V-QCD, Elias Kiritsis
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N=1 sQCD

The case of N = 1 SU(Nc) superQCD with Nf quark multiplets is known
and provides an interesting (although much more complex) example for the
non-supersymmetric case.

Seiberg

• The theory contains an adjoint SU(Nc) N=1 vector multiplet and Nf
chiral multiplets for quarks and antiquarks.

• x = 0 the theory has confinement, a mass gap and Nc distinct vacua
associated with a spontaneous breaking of the leftover R symmetry ZNc.

• At 0 < x < 1, the theory has a runaway ground state. Most probably it
breaks supersymmetry spontaneously.

• At x = 1, the theory has a quantum moduli space with no singularity.
This reflects confinement with χSB.

• At x = 1 + 1
Nc

, the moduli space is classical (and singular). The theory
confines, but there is no χSB.
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• At 1+ 2
Nc

< x < 3
2 the theory is in the non-abelian magnetic IR-free phase,

with the magnetic gauge group SU(Nf −Nc) IR free.

• At 3
2 < x < 3, the theory flows to a CFT in the IR. (conformal window)

Near x = 3 this is the Banks-Zaks region where the original theory has an

IR fixed point at weak coupling. Moving to lower values, the coupling of

the IR SU(Nc) gauge theory grows.

However near x = 3
2 the dual magnetic SU(Nf − Nc) is in its Banks-Zaks

region, and provides a weakly coupled description of the IR fixed point

theory.

• At x > 3, the theory is IR free.

• The magnetic theory has elementary fields that are the meson composites

of the electric theory. In particular the magnetic gauge bosons are the ρ-

mesons, the magnetic quarks are the mesinos, and the adjoint scalars, are

the scalar mesons.
Komargodski
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• Why there is no conformal transition like it happens in QCD?

• The dimension of the quark mass operator, 2 <∆ψ̄ψ < 3 in the conformal

window. So we might think we are in the same situation.

• However supersymmetry relates this to the quarkino mass operator that

has 1 <∆ψ̄ψ < 2 in the conformal window.

• At the end of the conformal window it is a free boson, reflecting the BZ

property of the magnetic theory.

V-QCD, Elias Kiritsis
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Varying the model

“prediction” for xc

After fixing UV coefficients from QCD, there is still freedom in choosing the

leading coefficient of V0 at λ→ 0 and the IR asymptotics of the potentials

Thick blue → VI
Thin red → VII
Resulting variation of the

edge of conformal window

3.7 . xc . 4.2

4.0 4.5 5.0 5.5
x

3.5

4.0

4.5

-mIR
2

{IR
2

RETURN

V-QCD, Elias Kiritsis
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Phase diagram as a function of quark masses

V-QCD, Elias Kiritsis
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Matching to QCD

• Vg(λ) is fixed from glue.

• The UV is adjusted to perturbative QCD.

Vg ∼ V0 +O(λ) , V0 ∼W0 +O(λ)

V0 − xW0 =
12

ℓ2UV

• W0 is one of the most important parameters of the models.
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• There are two classes of tachyon potentials:

♠ Type I: T ∼ eCr as r →∞.

♠ Type II T ∼
√
r as r →∞.

• In all cases the ”regular” IR solution depends on a single undetermined

constant (instead on two).

• The phase structure is essentially independent of IR choices.

V-QCD, Elias Kiritsis
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Matching to QCD: UV

• As λ→ 0 we can match:

♠ Vg(λ) with (two-loop) Yang-Mills β-function.

♠ Vg(λ)− xV0(λ) with QCD β-function.

♠ a(λ)/h(λ) with anomalous dimension of the quark mass/chiral condensate

• The matching allows to mark the BZ point, that we normalize at x = 11
2 .

• After the matching above we are left with a single undetermined param-
eter in the UV:

Vg ∼ V0 +O(λ) , V0 ∼W0 +O(λ)

V0 − xW0 =
12

ℓ2UV

V-QCD, Elias Kiritsis
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Matching to QCD: IR

• In the IR, the tachyon has to diverge ⇒ the tachyon action ∝ e−T
2

becomes small

♠ Vg(λ) ≃ λ
4
3
√
λ chosen as for Yang-Mills, so that a “good” IR singularity

exists etc.

♠ V0(λ), a(λ), and h(λ) chosen to produce tachyon divergence: there are

several possibilities.

♠ The phase structure is essentially independent of IR choices.
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Choice I, for which in the IR

T (r) ∼ T0 exp
[
81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]
, r →∞

R is the IR scale of the solution. T0 is the control parameter of the UV

mass.

Choice II: for which in the IR

T (r) ∼
27 23/431/4√

4619

√
r − r1
R

, r →∞

R is the IR scale of the solution. r1 is the control parameter of the UV

mass.

V-QCD, Elias Kiritsis
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The free energy

The free energy difference be-

tween the ChS and ChSB mq = 0

solutions

Chiral symmetry breaking solution

favored whenever it exists (x < xc)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

10-6

10-4

0.01

1
ÈDEÈ�LUV

4

• The Efimov minima have free energies ∆En with

∆E0 >∆E1 >∆E2 > · · ·

V-QCD, Elias Kiritsis
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Walking
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The β-functions for vanishing quark mass for various values of x. The red solid, blue

dashed, and magenta dotted curves are the β-functions corresponding to the full

numerical solution (dλ/dA) along the RG flow, the potential Veff = Vg − xVf0, and the

potential Vg, respectively.
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The tachyon logT (left) and the coupling λ (right) as functions of log r

for an extreme walking background with x = 3.992. The thin lines on the

left hand plot are the approximations used to derive the BKT scaling.

V-QCD, Elias Kiritsis
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Holographic β-functions

The second order equations for the system of two scalars plus metric can

be written as first order equations for the β-functions
Gursoy+Kiritsis+Nitti

dλ

dA
= β(λ, T ) ,

dT

dA
= γ(λ, T )

The equations of motion boil down to two partial non-linear differential

equations for β, γ.

Such equations have also branches as for DBI and non-linear scalar actions

the relation of e−AA′ with the potentials is a polynomial equation of degree

higher than two.
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The red lines are added on the top row at β = 0 in order to show the location of the

fixed point.
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The β-functions for vanishing quark mass for various values of x. The red

solid, blue dashed, and magenta dotted curves are the β-functions

corresponding to the full numerical solution (dλ/dA) along the RG flow,

the potential Veff = Vg − xVf0, and the potential Vg, respectively.

V-QCD, Elias Kiritsis

49-



UV mass vs T0 and r1

The UV behavior of the background solutions with good IR singularity for the scenario I
(left) and parameter T0 and scenario II (right) and parameter r1.

The thick blue curve represents a change in the UV behavior, the red dashed curve has zero

quark mass, and the contours give the quark mass. The black dot where the zero mass

curve terminates lies at the critical value x = xc. For scenario I (II) we have xc ≃ 3.9959

(xc ≃ 4.0797).

V-QCD, Elias Kiritsis
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Numerical solutions: T = 0

T ≡ 0 backgrounds (color codes λ, A)
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Numerical solutions: Massless with x < xc

Massless backgrounds with x < xc ≃ 3.9959 (λ, A, T )
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Massless backgrounds: beta functions β = dλ
dA , ( xc ≃ 3.9959)
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.

Massless backgrounds: gamma functions γ
T = d logT

dA
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Matching to QCD: IR

• In the IR, the tachyon has to diverge ⇒ the tachyon action ∝ e−T
2

becomes small

♠ Vg(λ) ≃ λ
4
3
√
λ chosen as for Yang-Mills, so that a “good” IR singularity

exists etc.

♠ V0(λ), a(λ), and h(λ) chosen to produce tachyon divergence: there are

several possibilities.

♠ The phase structure is essentially independent of IR choices.
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Choice I:

Vg(λ) = 12+
44

9π2
λ+

4619

3888π4
λ2

(1 + λ/(8π2))2/3

√
1+ log(1 + λ/(8π2))

Vf(λ, T ) = V0(λ)e
−a(λ)T2

V0(λ) =
12

11
+

4(33− 2x)

99π2
λ+

23473− 2726x+92x2

42768π4
λ2

a(λ) =
3

22
(11− x)

h(λ) =
1(

1+ 115−16x
288π2

λ
)4/3

For which in the IR

T (r) ∼ T0 exp
[
81 35/6(115− 16x)4/3(11− x)

812944 21/6
r

R

]
, r →∞

R is the IR scale of the solution. T0 is the control parameter of the UV
mass.
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Choice II:

a(λ) =
3

22
(11− x)

1 + 115−16x
216π2

λ+ λ2

λ20

(1 + λ/λ0)4/3

h(λ) =
1

(1+ λ/λ0)4/3

for which in the IR

T (r) ∼
27 23/431/4√

4619

√
r − r1
R

, r →∞

R is the IR scale of the solution. r1 is the control parameter of the UV

mass.

V-QCD, Elias Kiritsis
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Comparison to previous “guesses”

4.0 4.5 5.0 5.5
x

0.2

0.4

0.6

0.8

1.0

Γ
*

The anomalous dimension of the quark mass at the IR fixed point as a function of x within
the conformal window in various approaches.

The solid blue curve is our result for the potential I.

The dashed blue lines show the maximal change as W0 is varied from 0 (upper curve) to
24/11 (lower curve).

The dotted red curve is the result from a Dyson-Schwinger analysis, the dot-dashed ma-

genta curve is the prediction of two-loop perturbative QCD, and the long-dashed green

curve is based on an all-orders β-function.

V-QCD, Elias Kiritsis
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Miransky scaling for the masses
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The plots depict the scalar and pseudoscalar masses of the first mode close to xc fit to the Miransky

exponential factor.

RETURN

V-QCD, Elias Kiritsis
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The holographic models: flavor

• Fundamental quarks arise from D4-D̄4 branes in 5-dimensions.

D4−D4 strings → ALµ ↔ JLµ = ψ̄LσµψL

D4−D4 strings → ARµ ↔ JRµ = ψ̄Rσ̄µψR

D4−D4 strings → T ↔ ψ̄LψR

• For the vacuum structure only the tachyon is relevant.

• An action for the tachyon motivated by the Sen action has been advocated
as the proper dynamics of the chiral condensate, giving in general all the
expected features of χSB.

Casero+Kiritsis+Paredes

STDBI = −NfNcM3
∫
d5x Vf(T ) e

−ϕ
√
−det(gab+ ∂aT∂bT )

• It has been tested in a 6d asymptotically-AdS confining background (with
constant dilaton) due to Kuperstein+Sonneschein.

Iatrakis+Kiritsis+Paredes
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It was shown to have the following properties:

• Confining asymptotics of the geometry trigger chiral symmetry breaking.

• A Gell-Mann-Oakes-Renner relation is generically satisfied.

• The Sen DBI tachyon action with V ∼ e−T
2
asymptotics induces linear

Regge trajectories for mesons.

• The Wess-Zumino (WZ) terms of the tachyon action, computed in
string theory, produce the appropriate flavor anomalies, include the axial
U(1) anomaly and η′-mixing, and implement a holographic version of the
Coleman-Witten theorem.

• The dynamics determines the chiral condensate uniquely a s function of
the bare quark mass.

• The mass of the ρ-meson grows with increasing quark mass.

• By adjusting the same parameters as in QCD (ΛQCD, mud) a good fit
can be obtained of the light meson masses.

V-QCD, Elias Kiritsis
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The chiral vacuum structure

• We take the potential to be the flat space one

V = V0 e
−T2

with a maximum at T = 0 and a minimum at T =∞.

• Near the boundary z = 0, the solution can be expanded in terms of two

integration constants as:

τ = c1z+
π

6
c31z

3 log z+ c3z
3 +O(z5)

• c1, c3 are related to the quark mass and condensate.

• At the tip of the cigar, the generic behavior of solutions is

τ ∼ constant1 + constant2
√
z − zΛ

• With special tuned condition there is a one-parameter family of diverging

solutions in the IR depending on a single parameter:

τ =
C

(zΛ − z)
3
20

−
13

6πC
(zΛ − z)

3
20 + . . .
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• This is the correct “regularity condition” in the IR as τ is allowed to

diverge only at the tip.

All the graphs are plotted using zΛ = 1, µ2 = π and c1 = 0.05. The tip of the cigar is at z = zΛ = 1. On the

left, the solid black line represents a solution with c3 ≈ 0.3579 for which τ diverges at zΛ. The red dashed

line has a too large c3 (c3 = 1) - such that there is a singularity at z = zs where ∂zτ diverges while τ stays

finite. This is unacceptable since the solution stops at z = zs where the energy density of the flavor branes

diverges. The red dotted line corresponds to c3 = 0.1; this kind of solution is discarded because the tachyon

stays finite everywhere. The plot in the right is done with the same conventions but with negative values of

c3 = −0.1,−0.3893,−1. For c3 ≈ −0.3893 there is a solution of the differential equation such that τ diverges

to −∞. This solution is unstable.
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• Chiral symmetry breaking is manifest.

V-QCD, Elias Kiritsis
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Chiral restauration at deconfinement

• In the deconfined phase, the bulk metric is that of a bh.

• The branes now are allowed to enter the horizon without recombining.

• To avoid intermediate singularities of the solution the boundary conditions

must be tuned so that tachyon is finite at the horizon.

• Near the horizon the correct solution behaves as a one-parameter family

τ = cT −
3cT
5zT

(zT − z)−
9cT

200zT
(8 + µ2cT

2)(zT − z)2 + . . .
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Plots corresponding to the deconfined phase. We have taken c1 = 0.05. The solid line

displays the physical solution c3 = −0.0143 whereas the dashed lines (c3 = −0.5 and

c3 = 0.5) are unphysical and end with a behavior of the type τ = k1 − k2
√
zs − z.
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These plots give the values of c3 determined numerically by demanding the correct IR

behavior of the solution, as a function of c1.

V-QCD, Elias Kiritsis
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Jump of the condensate at the phase transition

• From holographic renormalization we obtain

⟨q̄q⟩ =
1

β
(2πα′KR3λ)

−4c3 +

(
mq

β

)3
µ2(1 + α)

 , mq = β c1

• We calculate the jump at the phase transition that is scheme independent

for a fixed quark mass.

∆⟨q̄q⟩ ≡ ⟨q̄q⟩conf − ⟨q̄q⟩deconf = −4
1

β
(2πα′KR3λ)∆c3

• This is equivalent to ∆c3
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• We plot it as a function of the quark mass.

The finite jump of the quark condensate and its derivative with respect

to c1 when the confinement-deconfinement transition takes place. The

important features appear when mq ∼ ΛQCD

V-QCD, Elias Kiritsis
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Meson spectra

For the vectors

zΛm
(1)
V = 1.45+ 0.718c1 , zΛm

(2)
V = 2.64+ 0.594c1 , zΛm

(3)
V = 3.45+ 0.581c1 ,

zΛm
(4)
V = 4.13+ 0.578c1 , zΛm

(5)
V = 4.72+ 0.577c1 , zΛm

(6)
V = 5.25+ 0.576c1 .

For the axial vectors:

zΛm
(1)
A ≈ 2.05+ 1.46c1 , zΛm

(2)
A ≈ 3.47+ 1.24c1 , zΛm

(3)
A ≈ 4.54+ 1.17c1 ,

zΛm
(4)
A ≈ 5.44+ 1.13c1 , zΛm

(5)
A ≈ 6.23+ 1.11c1 , zΛm

(6)
A ≈ 6.95+ 1.10c1 .

For the pseudoscalars:

zΛm
(1)
P ≈

√
3.53c21 +6.33c1 , zΛm

(2)
P ≈ 2.91+ 1.40c1 , zΛm

(3)
P ≈ 4.07+ 1.27c1 ,

zΛm
(4)
P ≈ 5.04+ 1.21c1 , zΛm

(5)
P ≈ 5.87+ 1.17c1 , zΛm

(6)
P ≈ 6.62+ 1.15c1 .

For the scalars:

zΛm
(1)
S = 2.47+ 0.683c1 , zΛm

(2)
S = 3.73+ 0.488c1 , zΛm

(3)
S = 4.41+ 0.507c1 ,

zΛm
(4)
S = 4.99+ 0.519c1 , zΛm

(5)
S = 5.50+ 0.536c1 , zΛm

(6)
S = 5.98+ 0.543c1 .

• Valid up to c1 ∼ 1.

• In qualitative agreement with lattice results
Laerman+Schmidt., Del Debbio+Lucini+Patela+Pica, Bali+Bursa

V-QCD, Elias Kiritsis
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Mass dependence of fπ

The pion decay constant and its derivative as a function of c1 - the quark mass. The

different lines correspond to different values of k. From bottom to top (on the right plot,

from bottom to top in the vertical axis) k = 12
π2 ,

24
π2 ,

36
π2 . The pion decay constant comes in

units of z−1Λ .

V-QCD, Elias Kiritsis
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Linear Regge Trajectories

Results corresponding to the forty lightest vector states with c1 = 0.05 and c1 = 1.5.

V-QCD, Elias Kiritsis
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Spectra

• The main difference from all previous calculations is that here flavor back

reacts on color.

• In the singlet sector the glueballs and mesons mix to leading order and

the spectral problem becomes complicated.

• The conclusions are:

♠ All masses follow Miransky scaling in the walking region.

♠ There is no dilaton.Instead all (bound-state) masses go to zero exponen-

tially fast.

♠ There are several level crossings as x varies but they seem accidental

♠ There is a subtle (and unexpected) discontinuity associated with the

S-parameter.
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Left: The S-parameter as a function of x for potential class I with W0 = 3
11
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S-parameter as a function of x for potential class II with SB normalization for W0. In both
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V-QCD, Elias Kiritsis
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Walking

RETURN

V-QCD, Elias Kiritsis
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The phase diagram

65
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V-QCD, Elias Kiritsis
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The improved Sen tachyon action

• The Sen action is conjectured for unstable branes and DD̄ pairs in flat

space. It passes several constraints on its dynamics.

• There are background independent arguments that Vf → 0 when D-branes

annihilate.
Sen

• The IhQCD background for glue, becomes flat in the string frame in the

IR. The dilaton runs however (quadratically).

• The Sen action is expected to have open string corrections: these are

not expected to change it basic asymptotics: Vf → 0.

• The
√
|DT |2 at large T is subleading and does not affect qualitatively the

dynamics.

RETURN

V-QCD, Elias Kiritsis
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The effective potential

For solutions T = T∗ = constant the relevant non-linear action simplifies

S =M3N2
c

∫
d5x
√
g

[
R−

4

3

(∂λ)2

λ2
+ Vg(λ)− xVf(λ, T )

]

Vf(λ, T ) = V0(λ) e
−a(λ)T2

∗

• Minimizing for T∗ we obtain T∗ = 0 and T∗ =∞. The effective potential
for λ is

♠ T∗ = 0, Veff = Vg(λ)− xV0(λ) with a IR fixed point at λ = λ∗(xf).

♠ T∗ =∞, Veff = Vg(λ) with no fixed points.

• From that point on, according to holography rules, we should find regular
solutions for the metric, T and λ, that start with their sources in the UV
(UV ’t Hooft coupling and quark mass) and compare their free energies.

V-QCD, Elias Kiritsis

67



Characterizing IR asymptotics

-1 1 2
Σp

-1

1

2

Κp

4�3

-1 1 2
Σ{

-2

-1

1

Κ{

Map of the acceptable IR asymptotics of the functions κ(λ) ∼ λ−κp(logλ)−κℓ and a(λ) ∼ λσp(logλ)σℓ. Left:
qualitatively different regions of tachyon asymptotics as a function of the parameters κp and ap characterizing
the power-law asymptotics of the functions. Right: regions of tachyon asymptotics at the critical point
κp = 4/3, ap = 0 as a function of the parameters κℓ and aℓ characterizing the logarithmic corrections to the
functions. In each plot, the shaded regions have acceptable IR behavior, and the thick blue lines denote
changes in the qualitative IR behavior of the tachyon background. On the solid blue lines good asymptotics
can be found, whereas on the dashed lines such asymptotics is absent. The thin dashed green line shows
the critical behavior where the BF bound is saturated as x → 0. Potentials above this line are guaranteed
to have broken chiral symmetry at small x.

Finally, on the red dashed lines the asymptotic meson mass trajectories are linear with subleading logarithmic

corrections. The red circle shows the single choice of parameters where the logarithmic corrections are

absent.

V-QCD, Elias Kiritsis
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Spectra
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Non-singlet meson spectra in the potential II class with Stefan-Boltzmann (SB) normal-

ization for W0, with xc ≃ 3.7001. Left: the lowest non-zero masses of all four towers of

mesons, as a function of x, in units of ΛUV, below the conformal window. Right, the ratios

of masses of up to the fourth massive states in the same theory as a function of x.
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Non-singlet meson spectra in the potential I class (W0 = 3
11
), with xc ≃ 4.0830. Left: the

lowest non-zero masses of all four towers of mesons, as a function of x, in units of ΛUV,

below the conformal window. Right, the ratios of masses of up to the fourth massive

states in the same theory as a function of x.
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Potential II with SB normalization for W0. Left: A fit of the ρ mass to the Miransky

scaling factor, showing that it displays Miransky scaling in the walking region. Right, fπ

as a function of x in units of ΛUV. It vanishes near xc following again Miransky scaling.
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Finite small mass
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UV mass vs IR parameter

T0

m

T0

m

• Left figure: Plot of the UV Mass parameter m, as a function of the IR
T0 scale, for x < xc. Right figure: Similar plot for x ≥ xc.

• At m = 0 there is an ∞ number of saddle point solutions (Efimov-like
minima)
• The Efimov minima have free energies ∆En with

∆E0 >∆E1 >∆E2 > · · ·

V-QCD, Elias Kiritsis
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Parameters

• A theory with a single relevant (or marginally relevant) coupling like YM

has no parameters.

• The same applies to QCD with massless quarks.

• QCD with all quarks having mass m has a single (dimensionless) param-

eter : m
ΛQCD

.

• After various rescalings this single parameter can be mapped to the

parameter T0 (integration constant) that controls the diverging tachyon

in the IR.

• There is also x =
Nf
Nc

that has become continuous in the large Nc

Veneziano limit.

V-QCD, Elias Kiritsis
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The finite T phase diagram
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V-QCD, Elias Kiritsis
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The finite density phase diagram

Dependence of the chiral transition temperature on chemical potential or on quark number density. Along

the 1st order line there is a jump in n. The inset shows a closeup of the T = 0 region with density jump.

The hadronic phase has been “squeezed on the n = 0 axis.

V-QCD, Elias Kiritsis
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C, S’ parameters

The constant term in the difference of the vector-vector and axial-axial correlators as a

function of x for mq/ΛUV = 10−6. Left: potentials I with W0 = 3/11. Right: potentials II

with SB normalized W0.
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The x dependence of the higher order coefficient S′ for mq/ΛUV = 10−6 and for potentials I

with W0 = 3/11. Left: S′ in units of Λτ . Right: The dimensionless product CS′.

V-QCD, Elias Kiritsis
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The chiral condensate

The dependence of σ on the quarks mass for potentials II with SB normalized W0 at x = 4.

The blue dots are numerical data while the red and blue curves are analytic fits.

Small quark mass:
mq
ΛUV

≪ 1.

σ

Λ3
UV

∼
(
mq

ΛUV

)4−∆∗
∆∗
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Large quark mass:
mq
ΛUV

≫ 1.

σ ∼ m3
q

V-QCD, Elias Kiritsis
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Mass scales in V-QCD: non-zero quark masses

• We must recall the tachyon solution in different regimes

♠ UV: τ ≃ mq r+ σ r3 + · · · r ≪ Λ−1UV

♠ Walking regime: τ ≃ Cw r2 + · · · , Λ−1UV ≪ r ≪ Λ−1τ .

♠ IR CFT regime: τ ≃ C1r
∆∗+ C2 r

4−∆∗+ · · · , Λ−1UV ≪ r ≪ Λ−1τ .

• QCD regime:

a) mq ≪ ΛUV . We obtain, ΛUV ∼ ΛIR ∼ Λτ and σ ∼ Λ3
UV .

b) mq ≫ ΛUV . Λτ ∼ mq,

ΛUV
ΛIR

∼
(
mq

ΛUV

) b0
bY M0

−1
,

mq

ΛIR
∼
(
mq

ΛUV

) b0
bY M0 , σ ∼ m3

q
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• walking regime:

a) Small quark mass: from continuity Cw ∼ Λ2
IR and σ ∼ Λ2

IRΛUV . Then

when

mq

ΛUV
≪

Λ2
IR

Λ2
UV

∼ e−
2π
ν

Then we have the same situation as mq = 0.

b) Intermediate quark mass: 1 ≫ mq
ΛUV

≫ e−
2π
ν the amount of walking is

controlled by the quark mass. We still have Λτ ∼ ΛIR and Cw ∼ Λ2
IR but

continuity at r = Λ−1UV gives

mq

ΛUV
∼

Λ2
IR

Λ2
UV

∼
σ

Λ3
UV

and there is no Miransky scaling.

c) Large quark mass
mq
ΛUV

≫ 1. In this regime there is no walking and we

get the same results as for heavy quarks in the QCD regime.
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• Conformal window regime.

a) Small quark mass:
mq
ΛUV

≪ 1. We have ΛIR ∼ Λτ and C1 Λ∆∗
IR ∼

C2 Λ4−∆∗
IR ∼ 1. Matching

mq

ΛUV
∼
(
ΛUV
ΛIR

)∆∗
,

σ

Λ3
UV

∼
(
ΛUV
ΛIR

)4−∆∗
∼
(
mq

ΛUV

)4−∆∗
∆∗

b) Large quark mass:
mq
ΛUV

≫ 1. In this regime the theory never gets close

to the IR fixed point and we obtain the same results as for heavy quarks in

the QCD regime.

V-QCD, Elias Kiritsis
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Four fermion couplings

• We may introduce a new set of interactions and associated couplings in

the theory in the Veneziano limit:

δS =
∫
d4xV (ψ̄ψ) ≃ mq ψ̄ψ+

g2
2

(ψ̄ψ)2 +
g3
3

(ψ̄ψ)3 + · · ·

• As Nc →∞ they are renormalizable (and easy to accommodate)

• They are generated by a higher gauge theory (ETC) at finite Nc.

• In the holographic description, they amount to introducing a “boundary

potential” for the “tachyon”

δSboundary =
∫
d4xV (τ) ≃ mq τ +

g2
2
τ2 +

g3
3
τ3 + · · ·

→ Tr[Mq T ] + Tr[g2 T
2] + Tr[g3 T

3] + cc+ · · ·

• The only thing that changes in the holographic system is the identifica-

tion of source and vev in the tachyon solution.
Witten
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source =
dV (x)

dx

∣∣∣∣
x=σ

= mq + g2σ+ g3σ
2 + · · ·

• Therefore we can “solve” also in this case, if we know the σ(mq) curve

in the absence of multitrace couplings.

• We now set gn≥3 = 0. When g2 > 0, there are no qualitative changes:

the dominant vacuum for x < xc is the one with zero nodes, and for x > xc,

τ = 0.

• When g2 < 0 τ = 0 for x > Xc, but for x < xc there are non-trivial changes.

At some critical value, chiral symmetry is restored.

• For higher values, there is chiral symmetry breaking again.

• We believe that there is another critical negative value where the theory

is destabilized completely (the dominant saddle-point has a particle with

negative-mass-square).

V-QCD, Elias Kiritsis

78-



The S parameter at mq ̸= 0

• We turn on a small quark mass
mq
ΛUV

= 10−6 and we calculate C, S, S′

The normalized S-parameter as a function of x for mq/ΛUV = 10−6. Left: potentials I with

W0 = 3/11. Right: potentials II with SB normalized W0.
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The pion decay constant as a function of x for mq/ΛUV = 10−6. (potentials I with W0 =

3/11).
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The mass dependence of the S-parameter for x = 4.5 in log-log scale. The red dots are the data and the

blue line is a power-law fit. (potentials I with W0 = 3/11.)

S(mq)− S(0+)

NcNf
= β1m

β2
q , S(0+) ≡ lim

mq→0+
S(mq)

Thus there is a discontinuity at mq = 0. We find that β2 ≃ 0.08.

λ∗ − λIR = λ∗ − λ(r = Λ−1IR) ∼
(
ΛIR
ΛUV

)δ
∼
(
mq

ΛUV

) δ
∆∗

δ

∆∗
≃ 0.0780 ≃ 0.08 at x = 4.5

V-QCD, Elias Kiritsis
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Mass scales in V-QCD

• There are two UV scales and two IR scales.

• ΛUV is defined in the UV from the running of the ’t Hooft coupling

λ ≃
1

b0 log(rΛUV )
+ · · ·

• mq is determined from the tachyon near the boundary

τ ≃ mq r (− log(rΛUV ))
−ρ [1 + · · · ] , ρ =

γ0
b0

• ΛIR is defined from the IR YM geometry. It is characteristic of the YM

IR Phase.

eA ≃ e−r
2ΛIR

2
, r →∞

• Λτ is defined as the scale at which the tachyon becomes of order one and

affects the running of λ.

τ(r = Λτ
−1) ≃ 1

• These scales are related, but their relation depends on x.
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• At mq = 0, the following four distinct regimes must be considered:

♠ QCD regime (x ≃ 1, x < xc) not close to xc. Here ΛUV ∼ ΛIR ∼ Λτ .

♠ Walking regime: x→ x−c : Here ΛIR ∼ Λτ and ΛUV
ΛIR
∼ e

π
ν , ν ∼

√
xc − x

♠ Conformal window: 11
2 > x > xc. Λτ , ΛIR are not defined. (But we can

define an alternative ΛIR).

♠ Banks-Zaks regime: x→ 11
2
−
. Similarly.

V-QCD, Elias Kiritsis
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Mass scales in V-QCD: non-zero quark masses

81



• QCD regime:

a) mq ≪ ΛUV . We obtain, ΛUV ∼ ΛIR ∼ Λτ and σ ∼ Λ3
UV .

b) mq ≫ ΛUV . We obtain Λτ ∼ mq, σ ∼ m3
q ,

• walking regime:

a) Small quark mass:

mq

ΛUV
≪

Λ2
IR

Λ2
UV

∼ e−
2π
ν

Then we have the same situation as mq = 0.

b) Intermediate quark mass: 1 ≫ mq
ΛUV

≫ e−
2π
ν the amount of walking is

controlled by the quark mass. There is no Miransky scaling.

c) Large quark mass
mq
ΛUV

≫ 1. In this regime there is no walking and we

get the same results as for heavy quarks in the QCD regime.
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• Conformal window regime.

a) Small quark mass:
mq
ΛUV

≪ 1.

σ

Λ3
UV

∼
(
mq

ΛUV

)4−∆∗
∆∗

b) Large quark mass:
mq
ΛUV

≫ 1. In this regime the theory never gets close

to the IR fixed point and we obtain the same results as for heavy quarks in

the QCD regime.

V-QCD, Elias Kiritsis
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Walking region+Technicolor (TC)

• Technicolor: EW symmetry breaking is due to a new strong gauge inter-

action with ΛTC ∼ 1TeV .

• The EW Higgs is a scalar TC meson and the vev is due to a condensate

of TC fermions ⟨H⟩ ∼ ⟨ψ̄TCψTC⟩ from TC chiral symmetry breaking.

• The composite Higgs couplings to the SM fermions χ are now four-fermi

terms,

Hχ̄χ ∼ ψ̄TCψTC χ̄χ

and should be generated by a new (ETC) interaction at a higher scale,

ΛETC.

• There are some important problems with this idea:
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♠ There can be important flavor changing processes (that are suppressed

in the SM)

♠ To get the correct size for all masses, the dimension of operators

ψ̄TCψTC

must be close to two (instead of 3 in perturbation theory).

♠ The dimensionless quantity S controls the low-energy corrections to

EW gauge boson kinetic terms
Peskin+Takeuchi

S =
d

dq2
(ΠV (q

2)−ΠA(q
2))

∣∣∣∣
q2=0

,

(
δµν −

qµqν

q2

)
Πi(q

2) ≡ ⟨J iµ(q)J iν(0)⟩

is O(1) in generic theories from the spectral decomposition+sum rules, but

EW data imply that additional contributions should be O(10−2) .
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♠ It has been argued by many scientists that a way out of the above is a
TC theory that is near conformal (”walking”) and strongly coupled in the
TC regime,

Holdom, Appelquist+Karabali+Wijewardhana

♠ Because S = 0 in the conformal window it was argued by continuity that
S → 0 in the walking region.

Appelquist+Sannino

♠ Because of approximate scale invariance, the theory was expected to have
a light scalar, ”the dilaton”, namely the singlet scalar meson (σ-meson).

Yamawaki+Bando+Matumoto

♠ Despite a lot of work in the last 15 years, whether such a theory exists,
and whether it has the required properties has remained elusive till now.

♠ There has been an important lattice effort to clear this issue but this
problem is hard because this is an almost massless setup and therefore
computationally very “costly”.

see Del Debbio (2011), Miura+Lombardo (2012), deForcrand+Kim+Unger (2012)

• A recent lattice work has been able to to identify at least the chiral
restoration phase in the theory far away from the continuum limit.

de Forcrand+Kim+Unger (2012)

V-QCD, Elias Kiritsis
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The Veneziano limit in string theory

• How to implement quarks in string theory/holography.
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• Implementing the Veneziano limit in string theory is, so far, technically a

very difficult problem, with little progress achieved.

• The main reason is that the backreaction of probe branes (carrying the

flavor degrees of freedom) is very difficult to handle.

• Techniques where the flavor branes were “smeared” in transverse space

have provided some string models for addressing the Veneziano limit.
Bigazzi+Casero+Cotrone+Kiritsis+Paredes, ’05

Casero+Nunez+Paredes, ’06

• Some progress has been achieved in the controlled construction of the

string theory configurations.
Review: Nunez+Paredes+Ramallo

• For QCD, to add Nf quarks qIL and antiquarks qĪR we must add (in 5d)

space-filling Nf D4 and Nf D̄4 branes.

(tadpole cancellation=gauge anomaly cancellation)

• The qIL should be the “zero modes” of the D3 −D4 strings while qĪR are

the “zero modes” of the D3 − D̄4
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• The low-lying fields on the D4 branes (D4−D4 strings) are U(Nf)L gauge

fields ALµ. The low-lying fields on the D̄4 branes (D̄4 − D̄4 strings) are

U(Nf)R gauge fields ARµ . They are dual to the JµL and JRµ

δSA ∼ q̄IL γµ (ALµ)
IJ

qJL+ q̄ĪR γµ (ARµ )
ĪJ̄

qJ̄R = Tr[JµL ALµ + J
µ
R ARµ ]

• There are also the low lying fields of the (D4 − D̄4 strings), essentially

the string-theory “tachyon” TIJ̄ transforming as (Nf , N̄f) under the chiral

symmetry U(Nf)L × U(Nf)R. It is dual to the quark mass terms

δST ∼ q̄IL TIJ̄ q
J̄
R+ complex congugate
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• The interactions on the flavor branes are weak, so that AL,Rµ , T are as
sources for the quarks.

• Integrating out the quarks, generates an effective action Sflavor(A
L,R
µ , T ),

so that AL,Rµ , T can be thought as effective qq̄ composites, that is : mesons

• On the string theory side: integrating out D3 −D4 and D3 − D̄4 strings
gives rise to the DBI action for the D4 − D̄4 branes in the D3 background:

Sflavor(A
L,R
µ , T ) ←→ SDBI(A

L,R
µ , T ) holographically

• In the ”vacuum” only T can have a non-trivial profile: T IJ̄(r). Near the
AdS5 boundary (r → 0)

T IJ̄(r) =MIJ̄ r+ · · ·+ ⟨q̄
I
L qJ̄R⟩r

3 + · · ·

Casero+Kiritsis+Paredes

• For other gauge theories the situation is different, as this depends on the
extra dimensions and the type of branes used.

V-QCD, Elias Kiritsis
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General properties

• A typical solution has (a) T vanishing in the UV and (b ) T → ∞ in the

IR.

• At the point r = r∗ where T = ∞, the D4 and D̄4 branes “fuse”. The

true vacuum is a brane that enters folds on itself and goes back to the

boundary.

• A non-zero T breaks chiral symmetry.
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• When mq = 0, the meson spectrum contains N2
f massless pseudoscalars,

the U(Nf)A Goldstone bosons.

• The WZ part of the flavor brane action gives the U(1)A axial anomaly

and an associated Stuckelberg mechanism gives an O

(
Nf
Nc

)
mass to the

would-be Goldstone boson η′, (agreeing with Veneziano-Witten).

• We can derive formulae for the anomalous divergences of flavor currents,
when they are coupled to an external source.

• T=0 is a solution. In case of confinement, it is excluded from the absence
of IR boundary for the branes: Holographic Coleman-Witten theorem.

• Fluctuations around the T (r) solution for T,AL,Rµ give the spectra (and
interactions) of various meson trajectories.

• A GellMann-Oaks-Renner relation is always satisfied (for an asymptotic
AdS5 space)

m2
π = −2

mq

f2π
⟨q̄q⟩ , mq → 0

V-QCD, Elias Kiritsis
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The CP-odd sector

• An important ingredient in QCD is the U(1)A anomaly.

∂µJ
µ
5 =

Nf

32π2
Tr[F ∧ F ] +mψ̄ψ

• It implies that the θ-angle can be absorbed into the phases of quark

masses. If one quark is massless, then the θ-angle is unobservable.

• Using D4 branes we can describe this starting from the dual three form

of the axion Cµνρ, with field strength, H4 = dC3
Casero+Kiritsis+Paredes

Sa = Sclosed + Sopen , Sclosed = −
M3

2

∫
d5x
√
g
|H4|2

Z(λ)
, H4 = dC3

Sopen = i
∫
C3 ∧ Ω2 = i

∫
C3 ∧ dΩ1 , AM =

ALM −A
R
M

2

Ω1 = iNf [2Va(λ, T )A− θ dVa(λ, T )]
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Here θ is the overall phase of the tachyon, T = τeiθ · INf .

We may dualize the three-form to a pseudo-scalar axion field a

H4

Z(λ)
= ∗ (dã+ iΩ1) .

The dual action takes the form

Sa = −
M3N2

c

2

∫
d5x
√
g Z(λ) [da− x (2Va(λ, T )A− θ dVa(λ, T ))]2

in terms of the QCD axion a = ã/Nc.

• This is normalized so that a is dual to θ/Nc with θ being the standard
θ-angle of QCD.

• The coupling to the axial vector, A, reflects the axial anomaly in QCD

Aµ → Aµ+ ∂µϵ , θ → θ − 2ϵ , a→ a+2xV ϵ

with Va(λ, T = 0) = 1, which gives the correct U(1)A anomaly.

• Out of the three degrees of freedom, two are independent: 0+− and η′

that mix, except as x→ 0. In this limit one of the states (η′) goes to zero
mass as demanded by the anomaly in agreement with Veneziano-Witten.

V-QCD, Elias Kiritsis
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Color Superconductivity

• It is known since BCS, that if you have almost free charges at finite density

(ie a FERMI surface), with a weak attractive interaction, then there is a

superconducting instability.

• At high energy (weak force) and finite baryon density, such an effect will

break color.

• A one-loop attraction+ a phenomenological form factor (to implement

asymptotic freedom) indicate that there might be a color-superconducting

phase for Nf = 2, Nc = 3.
Alford+Rajagopal+Wilczek

• The calculation involves the phenomenological lagrangian and the solution

of a gap equation.

• A similar calculation shows another instability when Nf = Nc = 3: color-

flavor locking.
Alford+Rajagopal+Wilczek
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• Both phenomena involve non-gauge invariant (colored) order parameters:

Φij
αβ ∼ ⟨ q

i
αq
j
β ⟩

• In holography however we must work with gauge-invariant fields. The

way to do this is to consider

Xij,kl =
(
Φij
αβ

)†
Φkl
αβ = ΨikΨjl

where Ψ is a single-trace gauge invariant (chiral condensate) operator

Ψij =
(
qiα
)†
qjα

• The order parameter is a double “trace operator” that should get an

expectation value without Ψij getting an expectation value.

• This issue is subtle and there are two possibilities

(a) There is no color superconductivity in the large N limit

(b) There is, but one needs the one-loop gravitational corrections.

V-QCD, Elias Kiritsis

86-



Detailed plan of the presentation

• Title page 0 minutes

• Bibliography 1 minutes

• Introduction 3 minutes

• Quantum Phase Transitions 4 minutes

• The plan 5 minutes

• The Veneziano Limit 6 minutes

• The expected phase diagram 8 minutes

• Ending the conformal window 11 minutes

• Below the BF bound 19 minutes

• Effimov Spiral 24 minutes

• Strategy 25 minutes

• The holographic models:glue 28 minutes

• The holographic models:flavor 30 minutes

• Fusion 34 minutes

• Parameters 35 minutes

87



• The lower end of the conformal window 36 minutes

• Walking 37 minutes

• BKT scaling 38 minutes

• Recap 39 minutes

• Spectra 41 minutes

• The S-parameter: definitions 42 minutes

• The S-parameter: mq = 0 43 minutes

• The S-parameter: mq ̸= 0 45 minutes

• Finite masses 46 minutes

• The phase diagram 47 minutes

• Finite density 51 minutes

• A new quantum critical regime 52 minutes

• Outlook 55 minutes

87-



• The ’t Hooft Large Nc limit 2 minutes

• Bibliography 2 minutes

• Topics 3 minutes

• Review 4 minutes

• Ending the conformal window 7 minutes

• Below the BF bound 12 minutes

• Effimov Spiral 16 minutes

• QCD∗ 23 minutes

• N=1 sQCD 27 minutes

• Outlook 29 minutes

87-



• The Banks-Zaks region 34 minutes

• N=1 sQCD 38 minutes

• The IR fixed point 39 minutes

• Varying the model 41 minutes

• Phase transitions as a function of quark masses 42 minutes

• Matching to QCD 45 minutes

• Matching to QCD : UV 46 minutes

• Matching to QCD : IR 49 minutes

• The free energy 51 minutes

• Walking 56 minutes

• Holographic β-functions 59 minutes

• UV mass vs T0 and r1 65 minutes

• Numerical solutions :T = 0 67 minutes

• Numerical solutions: Massless with x < xc 72 minutes

• Matching to QCD 73 minutes

87-



• Comparison to previous guesses 74 minutes

• Miransky scaling for the masses 75 minutes

• The holographic models:flavor 77 minutes

• The chiral vacuum structure 80 minutes

• Chiral restauration at deconfinement 82 minutes

• Jump of the condensate at the phase transition 84 minutes

• Meson Spectra 86 minutes

• Mass dependence of fπ 87 minutes

• Spectra 90 minutes

• Linear Regge trajectories 91 minutes

• Walking 92 minutes

• Phase diagram 93 minutes

• The tachyon action 94 minutes

• The effective potential 96 minutes

• Characterizing IR asymptotics 97 minutes

• The different black hole solutions 105 minutes

• Finite small mass 106 minutes

87-



• UV mass vs IR parameter 110 minutes

• Parameters 111 minutes

• The finite T phase diagram 112 minutes

• The finite density phase diagram 113 minutes

• C, S’ parameters 114 minutes

• The chiral condensate 115 minutes

• Mass scales in V-QCD: Non-zero quark masses 121 minutes

• Four-fermi couplings 124 minutes

• The S-parameter: mq ̸= 0 129 minutes

• Walking, Technicolor, S-parameter, Dilatons 134 minutes

• Color Superconductivity 136 minutes

• The Veneziano Limit in string theory 141 minutes

• General Strategy 145 minutes

• The CP-Odd sector 148 minutes

V-QCD, Elias Kiritsis

87-


