

Christoph Englert

Higgs Coupling Measurements and UV completions

Holography, conformal field theories, and lattice 28.06.2016

Does the EW scale result from confinement?

Does the EW scale result from confinement?

in this talk:

Higgs boson coupling measurements

LHC EFT fits of Higgs couplings

inform model building and lattice investigations

some words about UV implications

LHC Phenomenology

Yang-Mills+Higgs is true

genuine Higgs properties:

[Higgs `64] [Brout, Englert `64] [Guralnik, Hagen, Kibble `64]

CP even bias

Status of LHC measurements

everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

no evidence for the SM is flawed exotics coupling/scale separated BSM physics **Effective Field Theory** concrete models (N)MSSM $\mathcal{L} = \mathcal{L}_{\rm SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i$ Higgs portals [Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] 2HDMs [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

6

Fingerprinting the lack of new physics

Fingerprinting the lack of new physics

linear Higgs effective field theory

Higgs decays

Higgs production

<u>consistent</u> differential distributions

linear Higgs effective field theory

<u>consistent</u> differential distributions

 $\mathrm{d}\sigma = \mathrm{d}\sigma^{\mathrm{SM}} + \mathrm{d}\sigma^{\{O_i\}}/\Lambda^2$ 1 $2\operatorname{Re}\left\{\mathcal{M}_{\mathrm{SM}}\mathcal{M}_{d=6}^*\right\}$

A word of caution

not necessarily positive definite (cf. fixed order NⁿLO)

conservative probe of validity of d=6 extension

[Isidori, Trott `13] [Biekötter, Knochel, Krämer, Liu, Riva `14]

- evolution from renormalization group equations, choice of scales [Grojean, Jenkins, Manohar, Trott `13] [Jenkins, Manohar, Trott `13] [Elias-Miro, Espinosa, Masso, Pomarol `13]
- consistent interpretation requires communication of resolved scales

[Isidori, Trott `13] [CE, Spannowsky `14]

Higgs EFT current status

				Search channel	energy \sqrt{s}	μ	SM signal composition [in %]				
Search channel	energy \sqrt{s}	μ	SN			14.92	ggH	VBF	WH	ZH	ttH
			ggH	CMS $pp \to H \to \gamma\gamma$ (ttH multijet) [83]	8 TeV	$1.24^{+4.23}_{-2.70}$	0.0	0.1	0.1	0.2	99.5
ATLAS $pp \to H \to \gamma\gamma$ (central high p_T) [82]	8 TeV	$1.62^{+1.00}_{-0.82}$	7.1	CMS $pp \to H \to \gamma\gamma$ (ttH lepton) [83]	8 TeV	$3.52^{+0.00}_{-2.45}$	0.0	0.0	0.3	0.5	99.2 00.2
ATLAS $pp \to H \to \gamma\gamma$ (central low p_T) [82]	8 TeV	$0.62^{+0.42}$	31.8	CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (ttH tags) [83] CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (untagged 0) [83]	7 TeV	$0.71_{-3.56}$ $1.97^{+1.51}$	12.1	18.7	0.4 23.8	0.4 24.0	21.3
ATLAS $pp \rightarrow H \rightarrow \gamma\gamma$ (forward high p_T) [82]	8 TeV	$1.73^{\pm 1.34}$	71	CMS $pp \to H \to \gamma\gamma$ (untagged 0) [83]	8 TeV	$0.13^{+1.09}_{-0.74}$	6.7	16.7	20.5	18.4	37.7
$ATI AS m \rightarrow H \rightarrow co (forward low n) [92]$	e Tev	1.10 - 1.18 2.02 + 0.57	20.0	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	$7 { m TeV}$	$1.23^{+0.98}_{-0.88}$	30.6	17.4	20.9	19.5	11.7
AT LAS $pp \to H \to \gamma\gamma$ (forward low p_T) [82]	8 1ev	$2.03_{-0.53}$	29.0	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	8 TeV	$0.92^{+0.57}_{-0.49}$	13.7	20.3	21.7	22.4	21.8
ATLAS $pp \to H \to \gamma\gamma$ (<i>tt</i> H hadronic) [82]	8 TeV	$-0.84^{+3.25}_{-1.25}$	0.1	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 2) [83]	$7 { m TeV}$	$1.60^{+1.25}_{-1.17}$	30.3	16.8	20.6	20.8	11.5
ATLAS $pp \to H \to \gamma\gamma \ (t\bar{t}H \ leptonic) \ [82]$	8 TeV	$2.42^{+3.21}_{-2.07}$	0.0	CMS $pp \to H \to \gamma\gamma$ (untagged 2) [83]	8 TeV	$1.10^{+0.48}_{-0.44}$	22.9	18.8	21.1	20.3	16.9
ATLAS $pp \to H \to \gamma \gamma$ (VBF loose) [82]	8 TeV	$1.33^{+0.92}_{-0.77}$	3.7	CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (untagged 3) [83] CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (untagged 3) [83]	7 TeV 8 TeV	2.61 - 1.65 0.65 ^{+0.65}	30.9	16.7	21.0 20.6	19.7 20.7	11.7
ATLAS $pp \to H \to \gamma\gamma$ (VBF tight) [82]	8 TeV	$0.68^{+0.67}_{-0.51}$	1.4	CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (untagged 4) [83]	8 TeV	$1.46^{+1.29}_{-1.24}$	28.5	17.6	20.6	19.5	13.8
ATLAS $pp \to H \to \gamma \gamma \ (VH \text{ dijet}) \ [82]$	8 TeV	$0.23^{+1.67}_{-1.20}$	1.9	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 0) [83]	7 TeV	$4.85^{+2.17}_{-1.76}$	1.8	94.9	0.7	0.9	1.7
$\Delta TL \Delta S \ m \rightarrow H \rightarrow \gamma \gamma \ (VH \ E^{\text{miss}}) \ [82]$	8 TeV	351+3.30	0.2	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 0) [83]	8 TeV	$0.82^{+0.75}_{-0.58}$	1.3	96.1	0.5	0.4	1.7
ATLAS $pp \rightarrow H \rightarrow \gamma \gamma (V H L_T)$ [62]	orry	5.51 - 2.42	0.2	CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 1) [83]	$7 { m TeV}$	$2.60^{+2.16}_{-1.76}$	4.2	81.2	3.4	3.5	7.7
ATLAS $pp \to H \to \gamma\gamma \ (VH \ 1\ell) \ [82]$	8 1eV	0.41 - 1.06	0.0	CMS $pp \to H \to \gamma\gamma$ (VBF dijet 1) [83]	8 TeV	$-0.21^{+0.75}_{-0.69}$	2.3	91.4	1.6	0.9	3.7
ATLAS $pp \to H \to \tau \tau$ (boosted, $\tau_{had} \tau_{had}$) [90]	7/8 TeV	$3.60^{+2.00}_{-1.60}$	6.9	CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (VBF dijet 2) [83]	8 TeV	$2.60^{+1.33}_{-0.99}$	3.8	72.8	4.0	4.0	15.4
ATLAS $pp \to H \to \tau \tau$ (VBF, $\tau_{had} \tau_{had}$) [90]	7/8 TeV	$1.40^{+0.90}_{-0.70}$	2.6	$CMS \ pp \to H \to \gamma\gamma \ (VH \ dijet) \ [83]$	7 TeV	$7.86^{+3.80}_{-6.40}$	1.0	1.3	42.8	41.1	13.8
ATLAS $pp \to H \to \tau \tau$ (boosted, $\tau_{lep} \tau_{had}$) [90]	7/8 TeV	$0.90^{+1.00}$	8.5	CMS $pp \to H \to \gamma\gamma \ (VH \text{ dijet}) \ [83]$	8 TeV	$0.39^{+2.10}_{-1.48}$	0.9	1.5	40.3	40.1	31.6
ATLAS $pp \to H \to \tau \tau$ (VBF $\tau_{per} \tau_{bed}$) [90]	7/8 TeV	$1.00^{+0.60}$	1.3	CMS $pp \rightarrow H \rightarrow \gamma\gamma (VH E_T)$ [83] CMS $pp \rightarrow H \rightarrow \gamma\gamma (VH E_T)$ [83]	8 TeV	$4.32_{-4.15}$ $0.08^{+1.86}$	0.1	0.3	25.8 20.1	44.2 35.6	43.3
$\Delta T I \Delta S m \rightarrow H \rightarrow \pi \pi \text{ (boosted } \pi \pi \text{) } [00]$	7/8 TeV	$2.00^{+1.90}$	0.8	CMS $pp \to H \to \gamma\gamma$ (VH loose) [83]	7 TeV	$3.10^{+8.29}_{-5.34}$	0.1	0.5	70.2	23.3	5.9
ATLAS $pp \rightarrow H \rightarrow 11$ (boosted, $\eta_{lep}\eta_{lep}$) [90]	7/8 TeV	3.00 - 1.70	9.0	CMS $pp \to H \to \gamma\gamma \ (VH \text{ loose}) \ [83]$	$8 { m TeV}$	$1.24^{+3.69}_{-2.62}$	0.1	0.4	66.3	24.7	8.5
ATLAS $pp \to H \to \tau \tau \; (\text{VBF}, \tau_{\text{lep}} \tau_{\text{lep}}) \; [90]$	7/8 TeV	$1.80^{+1.10}_{-0.90}$	1.1	CMS $pp \rightarrow H \rightarrow \gamma \gamma \ (VH \text{ tight}) \ [83]$	8 TeV	$-0.34^{+1.30}_{-0.63}$	0.0	0.1	57.2	24.4	18.4
ATLAS $pp \to H \to WW \to \ell \nu \ell \nu$ (ggH enhanced) [86, 87]	$7/8 { m TeV}$	$1.01^{+0.27}_{-0.25}$	55.6	CMS $pp \to H \to \mu\mu$ [94]	$7/8 { m TeV}$	$2.90^{+2.80}_{-2.70}$	20.0	20.0	20.0	20.0	20.0
ATLAS $pp \rightarrow H \rightarrow WW \rightarrow \ell \nu \ell \nu$ (VBF enhanced) [86, 87]	$7/8 { m TeV}$	$1.27^{+0.53}_{-0.45}$	2.0	CMS $pp \to H \to \tau \tau$ (0 jet) [91]	7/8 TeV	$0.40^{+0.73}_{-1.13}$	70.2	8.8	10.5	10.5	0.0
ATLAS $pp \to H \to ZZ \to 4\ell \text{ (ggH-like)} [84]$	7/8 TeV	$1.66^{+0.51}_{-0.44}$	22.7	CMS $pp \rightarrow H \rightarrow \tau \tau$ (1 jet) [91] CMS $pr \rightarrow H \rightarrow WW \rightarrow 2/2\pi (0/1 \text{ ist})$ [88]	7/8 TeV	$1.06^{+0.47}_{-0.47}$ 0.74 ^{+0.22}	12.8	31.0	28.1	28.1	0.0
ATLAS $pp \to H \to ZZ \to 4\ell \text{ (VBF/VH-like) [84]}$	7/8 TeV	$0.26^{+1.64}$	2.2	$CMS \ pp \to H \to WW \to 2\ell 2\nu \ (0/1 \ \text{Jet}) \ [88]$ $CMS \ pp \to H \to WW \to 2\ell 2\nu \ (VBF) \ [88]$	7/8 TeV	$0.74_{-0.20}$ $0.60^{+0.57}$	2.0	98.0	0.0	24.9 0.0	0.0
ATLAS $pp \to t\bar{t}H \to \text{leptons}(1/2\tau_{\text{red}})$ [97]	8 TeV	$-9.60^{+9.60}$	0.0	CMS $pp \rightarrow H \rightarrow ZZ \rightarrow 4\ell \ (0/1 \text{ jet}) \ [85, 131]$	7/8 TeV	$0.88^{+0.34}_{-0.27}$	41.7	58.3	0.0	0.0	0.0
$\Delta T [\Delta S m \rightarrow t \overline{t} H \rightarrow leptons (200-) [07]$	e TeV	2.00 - 9.70	0.0	CMS $pp \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ (2 jet) [85, 131]	$7/8 { m TeV}$	$1.55_{-0.66}^{+0.95}$	16.7	83.3	0.0	0.0	0.0
AT LAS $pp \rightarrow ttH \rightarrow leptons (2t07_{had}) [97]$	o Tev	2.00 - 1.90	0.0	CMS $pp \rightarrow t\bar{t}H \rightarrow 2\ell$ (same sign) [96]	8 TeV	$5.30^{+2.10}_{-1.80}$	0.0	0.0	0.0	0.0	100.0
ATLAS $pp \to ttH \to \text{leptons} (2\ell 1\tau_{\text{had}})$ [97]	8 TeV	$-0.90^{+0.10}_{-2.00}$	0.0	$\text{CMS } pp \to t\bar{t}H \to 3\ell [96]$	8 TeV	$3.10^{+2.40}_{-2.00}$	0.0	0.0	0.0	0.0	100.0
ATLAS $pp \to t\bar{t}H \to \text{leptons} (3\ell) [97]$	8 TeV	$2.80^{+2.20}_{-1.80}$	0.0	$CMS \ pp \to t\bar{t}H \to 4\ell \ [96]$	8 TeV	$-4.70^{+3.00}_{-1.30}$	0.0	0.0	0.0	0.0	100.0
ATLAS $pp \to t\bar{t}H \to \text{leptons } (4\ell) \ [97]$	8 TeV	$1.80^{+6.90}_{-6.90}$	0.0	$CMS \ pp \to ttH \to ttbb \ [96]$ $CMS \ pp \to t\bar{t}H \to t\bar{t}ccc \ [96]$	7/8 TeV	$0.70^{+1.90}_{-1.90}$ $2.70^{+2.60}$	0.0	0.0	0.0	0.0	100.0
ATLAS $pp \to t\bar{t}H \to t\bar{t}b\bar{b}$ [95]	8 TeV	$1.50^{+1.10}_{-1.10}$	0.0	$CMS \ pp \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \ [96]$ $CMS \ pp \rightarrow t\bar{t}H \rightarrow t\bar{t}\tau\tau \ [96]$	7/8 TeV	$-1.30^{+6.30}_{-5.50}$	0.0	0.0	0.0	0.0	100.0
ATLAS $pp \to VH \to Vb\bar{b} \ (0\ell) \ [92]$	7/8 TeV	$-0.35^{+0.55}_{-0.52}$	0.0	CMS $pp \to H \to \tau \tau$ (VBF) [91]	7/8 TeV	$0.93^{+0.41}_{-0.41}$	14.3	85.7	0.0	0.0	0.0
ATLAS $pp \to VH \to Vb\bar{b} \ (1\ell) \ [92]$	7/8 TeV	$1.17^{+0.66}_{-0.02}$	0.0	CMS $pp \to WH \to \ell \nu b\bar{b}$ [93]	$7/8~{ m TeV}$	$1.10^{+0.90}_{-0.90}$	0.0	0.0	100.0	0.0	0.0
$ATLAS \ m \to VH \to Vb\bar{b} \ (2\ell) \ [92]$	7/8 TeV	$0.94^{+0.88}$	0.0	$CMS \ pp \to ZH \to 2\ell b\bar{b} \ [93]$	7/8 TeV	$0.80^{+1.00}_{-1.00}$	0.0	0.0	0.0	100.0	0.0
$\Delta T I \Delta S \ m \rightarrow V H \rightarrow V W W \ (2\ell) \ [87]$	7/8 TeV	$3.70^{+1.90}$	0.0	$CMS \ pp \to ZH \to \nu\nu\nu\delta [93]$ $CMS \ pn \to VH \to \tau\tau [91]$	7/8 TeV	$1.00^{+0.80}_{-0.80}$ 0.98 ^{+1.68}	0.0	0.0	0.0 50.0	50.0	0.0
ATLAS $pp \rightarrow v m \rightarrow v w w (2t) [01]$	7/0 TeV	0.70 - 1.80 0.70 + 1.30	0.0	$CMS \ pp \rightarrow VH \rightarrow HV \ [51]$ $CMS \ pp \rightarrow VH \rightarrow WW \rightarrow 2\ell 2\nu \ [88]$	7/8 TeV	$0.30^{-1.50}_{-1.97}$ $0.39^{+1.97}_{-1.97}$	3.6	3.6	46.4	46.4	0.0
AT LAD $pp \rightarrow V H \rightarrow V W W (3\ell) [8\ell]$	1/8 lev	0.72 - 1.10	0.0	CMS $pp \rightarrow VH \rightarrow VWW$ (hadronic V) [89]	7/8 TeV	$1.00^{+2.00}_{-2.00}$	4.2	3.5	49.1	43.2	0.0
ATLAS $pp \to VH \to VWW$ (4 ℓ) [87]	7/8 TeV	$4.90^{+4.00}_{-3.10}$	0.0	CMS $pp \rightarrow WH \rightarrow WW \rightarrow 3\ell 3\nu$ [88]	$7/8 { m TeV}$	$0.56^{+1.27}_{-0.95}$	0.0	0.0	100.0	0.0	0.0

Implications for new physics

$$\overline{c}_g \sim \frac{m_W^2}{16\pi^2 f^2} \frac{y_t^2}{g_\rho^2}$$

 $\Lambda > 2.8 \, \text{TeV}$

resonances outside Higgs kinematic coverage, can be trusted

MSSM

e.g. [Drozd, Ellis, Quevillon, You `15]

Implications for new physics: Compositeness

- ► deviations from the SM Higgs couplings pattern unavoidable in PC SO(5)/SO(4) + extra states
- ► UV complete picture should lend good UV properties off-resonance

 $\varepsilon_L^\mu = k^\mu / m_W + \mathcal{O}(m_W / E)$

physics: Compositeness

$$\Gamma_n(\xi_1, \dots, \xi_n) = \frac{\delta^n \Gamma[J]}{i^n \, \delta J(\xi_1) \cdots J(\xi_n)}$$

$$T[=\sum_n \frac{i^n}{n!} \int \cdots \int d^4 x_1 \cdots dx_n \, \widetilde{\Gamma}_n(x_1, \dots, x_n)$$

 $\times J(x_1)\cdots J(x_n),$

- unitarity restored in general background geometries
 [Stancato, Terning `12]
 [CE, Spannowsky, Stancato, Terning `13]
- resonances take over the job in scenarios admitting canonical particle interpretations as a limit

Implications for new physics: Compositeness

W

W

Implications for new physics: Compositeness

[[]CE, Harris, Spannowsky, Takeuchi `15]

- ➡ fermiophobic = WBF
- ► fermiophilic = Drell-Yan [Pappadopulo, et al. `14]
- LHC run 2 will zero in on those states
- realistic spectra require lattice input

- ➡ if the Higgs is a PNGB: operators ~ $H^{\dagger}H$ are suppressed by explicit symmetry violation
- ► top partners as predicted by PC conspire

- ➡ if the Higgs is a PNGB: operators ~ $H^{\dagger}H$ are suppressed by explicit symmetry violation
- ► top partners as predicted by PC conspire

Summary

higher statistics (= smaller systematics)! differential cross sections ! high momentum transfer final states ! direct evidence for exotics ?!

Summary

- higher statistics (= smaller systematics)! differential cross sections ! high momentum transfer final states ! direct evidence for exotics ?!
- ► EFT analyses have seen tremendous progress recently
- developments for new fully differential fitting techniques
- repitfalls are known, not relevant at this stage of the LHC programme
- expect a tremendous improvement with more data
- but ultimately a losing game too, if new physics is decoupled
- ► LHC is zeroing in on exotics as predicted in composite Higgs models