Composite Higgs models based on a conformal fixed point

Anna Hasenfratz University of Colorado Boulder

Holography, conformal field theory, and lattice June 26 2016, Edinburgh

> R.Brower, A.H, C.Rebbi, E.Weinberg, O.Witzel, PRD93, 114514 (2016) & in prep

Higgs era of particle physics

Even with the 125GeV Higgs the Standard Model is not stand-alone:

- not UV complete
- naturalness /hierarchy problem
- DM, neutrinos,
- ➡ Implies new physics

Tantalizing hints at new physics

We might be at the brink of discovering beyond-SM physics:

June 2015: ATLAS reported 3.5 σ excess at 2TeV suggesting a vector resonance (1506.00962)

December 2015: both ATLAS and CMS found excess at 750 GeV suggesting a scalar resonance

- What are the possible (consistent) BSM models?
- What other predictions do those models have?

Tantalizing hints at new physics

We might be at the brink of discovering beyond-SM physics:

June 2015: ATLAS reported 3.5σ excess at 2TeV suggesting a vector resonance (1506.00962)

December 2015: both ATLAS and CMS found excess at 750 GeV suggesting a scalar resonance

- What are the possible (consistent) BSM models?
- What other predictions do those models have?

"Bump hunting", talk by C. Leonidopoulos, 6/30 @ 16:00

The solution could be a set of new, strongly interacting systems:

 N_f fermions, $SU(N_c)$ gauge fields, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light ?

The solution could be a set of new, strongly interacting systems:

 N_f fermions, $SU(N_c)$ gauge fields, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector
 What keeps the Higgs light ?

Dilaton-like Higgs:

The system is below but close to the conformal window: broken conformal symmetry

 \rightarrow possibly light 0++ scalar

 F_{π} = SM vev ~ 246GeV

The solution could be a set of new, strongly interacting systems:

 N_f fermions, $SU(N_c)$ gauge fields, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector
 What keeps the Higgs light ?

Dilaton-like Higgs:

The system is below but close to the conformal window: broken conformal symmetry

 \rightarrow possibly light 0++ scalar F_{π} = SM vev ~ 246GeV Pseudo Nambu-Goldstone Higgs: Higgs is a pNGB; its mass emerges from interactions

non-trivial vacuum alignment $F_{\pi} = (SM vev) / sin(\chi) > 246GeV$

The solution could be a set of new, strongly interacting systems:

 N_f fermions, $SU(N_c)$ gauge fields, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light ?

Fermion/Yukawa sector

How to generate SM fermion masses ?

- 4-fermion interaction
- partial compositeness

The solution could be a set of new, strongly interacting systems:

 N_f fermions, $SU(N_c)$ gauge fields, chirally broken, coupled to the SM

- EW symmetry breaking by massless pions \checkmark
- Higgs sector

What keeps the Higgs light ?

• Fermion/Yukawa sector

How to generate SM fermion masses ?

- 4-fermion interaction
- partial compositeness

There are many phenomenological models. In this workshop:

- G. Ferretti T. Appelquist
- L. Vecchi D. Marzocca

C. Englert ...

A UV complete model might need more than one gauge sector and is strongly coupled. Some might

- have a light 0++ scalar and/or
- be walking and/or
- have large anomalous mass dimension and/or
- have large baryon anomalous dimension, etc

How do the various parts fit together?

A UV complete model might need more than one gauge sector and is strongly coupled. Some might

- have a light 0++ scalar and/or
- be walking and/or
- have large anomalous mass dimension and/or
- have large baryon anomalous dimension, etc

How do the various parts fit together?

Non-perturbative questions that lattice simulations can investigate:

A UV complete model might need more than one gauge sector and is strongly coupled. Some might

- have a light 0++ scalar and/or
- be walking and/or
- have large anomalous mass dimension and/or
- have large baryon anomalous dimension, etc

How do the various parts fit together?

Non-perturbative questions that lattice simulations can investigate:

- Where is the conformal window?
- What are the (tunable ?) parameters that control nearconformal behavior?
- What is the spectrum of nearconformal models?
- What are the anomalous dimensions at a conformal FP?

A UV complete model might need more than one gauge sector and is strongly coupled. Some might

- have a light 0++ scalar and/or
- be walking and/or
- have large anomalous mass dimension and/or
- have large baryon anomalous dimension, etc

How do the various parts fit together?

Non-perturbative questions that lattice simulations can investigate:

While lattice models are UV complete, they are still effective models

- Where is the conformal window?
- What are the (tunable ?) parameters that control nearconformal behavior?
- What is the spectrum of nearconformal models?
- What are the anomalous dimensions at a conformal FP?

A "prototype" model

Gabriele Ferretti and Luca Vecchi said it all this morning:

CONFORMAL

UV

 $\Lambda_{\rm UV}$

Here the theory is conformal, e.g. Sp(4) with large enough N_{ψ} , N_{χ} . The CFT operator $\mathcal{O} \approx \psi \chi \psi$ acquires a (large?) anomalous dimension $\Delta_{\mathcal{O}}$.

From G. Ferretti's talk

At Λ some fermions decouple: $N_{\psi} \rightarrow 4$, $N_{\chi} \rightarrow 6$ and the theory confines and breaks χ S. \mathcal{O} creates a (light?) composite fermion of mass $M_{\mathcal{O}}$.

CONFINING

IR

Λ

A "prototype" model

Gabriele Ferretti and Luca Vecchi said it all this morning:

From G. Ferretti's talk

A "prototype" model

Gabriele Ferretti and Luca Vecchi said it all this morning:

Proposed pNGB scenario : (Ma, Cacciapaglia, JHEP 1603 (2016) 211)

4 massless/ light flavors → 15 Goldstone bosons
Quantum numbers are determined by their SM couplings
Transformation under SU(2)_L x SU(2)_R custodial symmetry
15_{SU(4)} =(2,2)+(2,2)+(3,1)+(1,3)+(1,1)
2 Higgs doublets, 3 Goldstone pions, DM candidate

Additional fermions are needed to generate SM fermion masses either through 4-fermion terms or partial compositeness

Why 12 total flavors?

There is strong evidence that N_f =12 is **conformal** (mass degenerate chiral lim.) UV physics of 4+8 is governed by IRFP

- $\rightarrow g^2$ is irrelevant , m_h controls dynamics
- \rightarrow walking
- \rightarrow anomalous dimension determined by IRFP

Why 12 total flavors?

There is strong evidence that N_f =12 is **conformal** (mass degenerate chiral lim.) UV physics of 4+8 is governed by IRFP

- $\rightarrow g^2$ is irrelevant , m_h controls dynamics
- \rightarrow walking
- \rightarrow anomalous dimension determined by IRFP

Improved step scaling function (c=0.3, τ_0 =0.1, volumes 16⁴ to 36⁴) A.H, D. Schaich, in preparation

> N_f =12 is too deep in conformal phase; N_f =10 would be a better choice

A "prototype" lattice model

Both dilaton-like and pNGB models require additional fermions \rightarrow Effective model:

4 (or 2) light plus N heavy flavors :

- Does N matter? What should it be to satisfy EWP tests?
- How do the extra fermions influence the light spectum?
- Does the heavy spectrum show up?
- What is the predictive power of this model?

A "prototype" lattice model

Both dilaton-like and pNGB models require additional fermions \rightarrow Effective model:

4 (or 2) light plus N heavy flavors :

- Does N matter? What should it be to satisfy EWP tests?
- How do the extra fermions influence the light spectum?
- Does the heavy spectrum show up?
- What is the predictive power of this model?

Lattice study:

N_f = 4+8 flavor system with 4 light/massless and 8 heavy flavors

(R. Brower, A.H, C. Rebbi, E. Weinberg, O. Witzel, PRD93, 114514 (2016)) Follow up : N_f =4+6 , 2+8, (4+4, 2+6) (LSD collaboration, in preparation)

Why 4+8? We use staggered fermions: 4 and 8 flavors do not require rooting

Recap:

- $\ensuremath{\cdot}$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Recap:

- $\ensuremath{\cdot}$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Recap:

- $\ensuremath{\cdot}$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Recap:

- $\ensuremath{\cdot}$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Recap:

- $\ensuremath{\cdot}$ Take N_f above the conformal window
- Split the masses: $N_f = N_\ell + N_h$

 N_h flavors are massive, m_h varies \rightarrow decouple in the IR

Running coupling

RG flows predict the running coupling:

3 regions:

• UV :

from cut-off to $g \sim g^*$

- walking: m_h small, g~g*
- IR : heavy flavors decouple, N_ℓ light flavors are chirally broken

walking can be tuned by $m_h \rightarrow 0$

Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling Luescher arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{\mathcal{N}} t^2 \langle E(t) \rangle$$

t: flow time; E(t):energy density

 $g^2_{G\!F}$ is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

It is appropriate to determine the renormalized running coupling

- on large enough volumes
- at large enough flow time
- in the continuum limit

Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling Luescher arXiv:1006.4518

$$g_{GF}^2(\mu = \frac{1}{\sqrt{8t}}) = \frac{1}{\mathcal{N}} t^2 \langle E(t) \rangle$$

t: flow time; E(t):energy density

 g^2_{GF} is used for scale setting as

$$g_{GF}^2(t=t_0) = \frac{0.3}{N}$$

It is appropriate to determine the renormalized running coupling

- on large enough volumes
- at large enough flow time
- in the continuum limit

use t-shift improved coupling

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

Running coupling : 4+8 flavors

 $g_{GF}^2(\mu)$ develops a "shoulder" as $m_h \rightarrow 0$: this is walking ! Walking range can be tuned arbitrarily with m_h

Hyperscaling

In conformal systems Wilson RG considerations predict the mass dependence of all dimensional quantities (hyperscaling)

If the scale changes as $\mu \rightarrow \mu' = \mu / b$, b > 1the couplings run as

$$\hat{m}(\mu) \rightarrow \hat{m}(\mu') = b^{y_m} \hat{m}(\mu)$$
 (increases)
 $g \rightarrow g^*$

Any 2-point correlation function at large b scales as

$$C_{H}(t;g_{i},\hat{m}_{i},\mu) = b^{-2y_{H}}C_{H}(t/b;g^{*},b^{y_{m}}\hat{m}_{i},\mu)$$

since

$$aM_{H} \propto (\hat{m})^{1/y_{m}}$$

 $C_H(t) \propto e^{-M_H t}$

Amplitudes (F_{π}) also show hyperscaling

DeGrand, AH, PRD80, 034506 (2009) DelDebbio, Zwicky, PRD82, 014502 (2010) Nothing changes in the Wilson RG arguments if some of the masses remain massless:

$$C_{H}(t;g_{i},\hat{m}_{i},\mu) = b^{-2y_{H}}C_{H}(t/b;g^{\star},b^{y_{m}}\hat{m}_{h},\hat{m}_{\ell}=0,\mu)$$

mass split systems show the hyperscaling in the m_{ℓ} = 0 limit

$$aM_H \propto (\hat{m}_h)^{1/y_m}$$

M_H can be all light, all heavy or mixed heavy-light hadron

Ratios like M_H / F_{π} are independent of m_h even for heavy states! Models built on a conformal FP are very different from QCD

Parameter space

- $-\beta$ =4.0 (close to the 12-flavor IRFP)
- $m_h = 0.100, 0.080, 0.060, 0.050$
- $m_{\ell} = 0.003, 0.005, 0.010, 0.015, 0.025, 0.035$

25, 0.035 Volumes : 24³x48, (dots) 32³x64 (circle), 36³x64 48³x96 (square)

Color: volume OK / marginal/ squeezed

20-40,000 MDTU

Is the system chirally broken?

We know it is ... M_{ρ}/M_{π} shows that we approach the chiral regime

N_f=12 predicts an almost constant ratio (as should be in a conformal system)

Is the system chirally broken?

We know it is ...

 F_{π} shows hyperscaling even at finite m_{ℓ}

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

0⁺⁺ is just above, closely following the pion chiral limit is difficult

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

0⁺⁺ is just above, closely following the pion chiral limit is difficult

pion, rho, a0, a1, nucleon and 0⁺⁺ scalar

0⁺⁺ is just above, closely following the pion chiral limit ?

The ratios are very similar to QCD and N_f=12 but not identical

Light spectrum - hyperscaling in m

We expect hyperscaling of M_H / F_{π} in m_h only in the m_l $\rightarrow 0$ limit 0⁺⁺ is the lightest non-Goldstone state, $M_{0++} / M_{\rho} \lesssim 0.5$

 M_h / M_n shows even less dependence on m_h even at finite m_l

Heavy spectrum - hyperscaling in m

We expect hyperscaling of $M_{H}^{hh} / F_{\pi}^{\ell\ell}$ only in the $m_{\ell} \rightarrow 0$ limit M_{H}^{hh} is ~3 times heavier than $M_{H}^{\ell\ell}$ but independent of m_{h} Heavy-light spectrum should be in between light-light and heavy-heavy

Heavy spectrum - hyperscaling in m

 $M_{H}^{hh} / M_{n}^{\ell\ell}$ shows even less dependence on m_h even at finite m_{\ell} but these ratios could be strongly dependent on the conformal IRFP

Mass-split models that are conformal in the UV, chirally broken in the IR Best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

How does the spectrum change if we change N_f or cascade the mass?

Mass-split models that are conformal in the UV, chirally broken in the IR Best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

How does the spectrum change if we change N_f or cascade the mass?

Mass-split models that are conformal in the UV, chirally broken in the IR Best of both worlds:

- controlled walking
- anomalous dimension
- hyperscaling for all masses: predictive power!
- Higgs sector is based on the light/massless fermions
- \bullet tower of states few times heavier than F_{π}
- the heavy-light and heavy-heavy hadrons are also accessible h-h, h-l spectrum are very different from QCD

How does the spectrum change if we change N_f or cascade the mass?

Many interesting possibilities

Lattice studies can investigate strongly coupled systems - both individual and generic properties

Models with split fermion masses, built on a conformal IRFP, has new and unusual properties

The 4+8 system is not ideal:

- N_f =12 is far above the conformal window with small anomalous dimension $\gamma_m \approx 0.25$
- $N_f = 10$, perhaps even 8 might be better

Questions for the future:

How does the spectrum change if we change N_f or cascade the mass? What is general, what is model specific?