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Tantalizing hints at new physics

We might be at the brink of discovering beyond-SM physics:
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December 2015: both ATLAS and CMS

found excess at 750 GeV suggesting a
scalar resonance

* What are the possible (consistent) BSM models?
* \What other predictions do those models have?
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Composite Higgs - strong dynamics

The solution could be a set of new, strongly interacting systems:
Nf fermions, SU(N¢) gauge fields, chirally broken, coupled to the SM

 EW symmetry breaking by massless pions v

» Higgs sector
What keeps the Higgs light ?
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Composite Higgs - strong dynamics

The solution could be a set of new, strongly interacting systems:
Nr fermions, SU(N¢) gauge fields, chirally broken, coupled to the SM

 EW symmetry breaking by massless pions v

» Higgs sector
What keeps the Higgs light ?

Dilaton-like Higgs: Pseudo Nambu-Goldstone Higgs:
The system is below but close to Higgs is a pNGB; its mass
the conformal window: broken emerges from interactions
conformal symmetry
—s possibly light 0++ scalar non-trivial vacuum alignment

F-. = SM vev ~ 246GeV Fr = (SM vev) / sin(x) > 246GeV
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* Fermion/Yukawa sector
How to generate SM fermion masses “?

- 4-fermion interaction
- partial compositeness



Composite Higgs - strong dynamics

The solution could be a set of new, strongly interacting systems:

Nf fermions, SU(N¢) gauge fields, chirally broken, coupled to the SM

 EW symmetry breaking by massless pions v

» Higgs sector
What keeps the Higgs light ?

* Fermion/Yukawa sector
How to generate SM fermion masses “?

- 4-fermion interaction
- partial compositeness

There are many phenomenological models. In this workshop:

G. Ferrett T. Appelquist
L. Vecchi D. Marzocca

C.Englert  .......



Composite Higgs - role of lattice simulations

A UV complete model might need more than one gauge sector
and is strongly coupled. Some might

* have a light 0++ scalar and/or

* be walking and/or

* have large anomalous mass dimension and/or

* have large baryon anomalous dimension, etc
How do the various parts fit together?
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Composite Higgs - role of lattice simulations

A UV complete model might need more than one gauge sector
and is strongly coupled. Some might

* have a light 0++ scalar and/or

* be walking and/or

* have large anomalous mass dimension and/or

* have large baryon anomalous dimension, etc
How do the various parts fit together?

Non-perturbative questions that * Where is the conformal window?

lattice simulations can * What are the (tunable ?)
parameters that control near-

| tigate:
nvestigate conformal behavior?

| | - What is the spectrum of near-
While lattice models are UV conformal models?
complete, they are still effective - What are the anomalous

models dimensions at a conformal FP?



A “prototype” model

Gabriele Ferretti and Luca Vecchi said it all this morning:

uv
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» |[R

Here the theory 1s conformal, e.g.
Sp(4) with large enough Ny, N, .
The CFT operator O ~ ¥y ac-
quires a (large?) anomalous dimen-
sion Ap.

From G. Ferretti’s talk

At A some fermions
decouple: Ny, — 4,
Ny — 6 and the
theory confines and
breaks xS.

O creates a (light?)
composite fermion
of mass M.
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A “prototype” model

Gabriele Ferretti and Luca Vecchi said it all this morning:

Ayv CONFORMAL A CONFINING
uv » [R

N=4 light/massless
Nr=12 fundamental flavors fundamental flavors
— conformal IRFP (Luca Vecchi
Cacciapaglia, Ma)




Why 4 light flavors?

Proposed pNGB scenario : (Ma, Cacciapaglia, JHEP 1603 (2016) 211)

4 massless/ light flavors — 15 Goldstone bosons
Quantum numbers are determined by their SM couplings
Transformation under SU(2)L x SU(2)r custodial symmetry
158U(4) =(2,2)+(2,2)+(3,1)+(1,3)+(1,1)
2 Higgs doublets, 3 Goldstone pions, DM candidate

Additional fermions are needed to generate SM fermion masses
either through 4-fermion terms or partial compositeness



Why 12 total flavors?

There is strong evidence that Ni=12 is conformal (mass degenerate chiral lim.)
UV physics of 4+8 is governed by IRFP

— g2 is irrelevant , mn controls dynamics

— walking

— anomalous dimension determined by IRFP



Why 12 total flavors?

There is strong evidence that Ni=12 is conformal (mass degenerate chiral lim.)
UV physics of 4+8 is governed by IRFP

— g2 is irrelevant , mn controls dynamics

— walking

— anomalous dimension determined by IRFP

OA T T T
Improved step scaling function
(c=0.3, 10=0.1, volumes 164 to 36%)
0.2 ﬂﬂmmm_ A.H, D. Schaich, in preparation
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111111 I SN Nr=12 is too deep in conformal phase;
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N=10 would be a better choice



A “prototype” lattice model

Both dilaton-like and pNGB models require additional fermions
— Effective model:
4 (or 2) light plus N heavy flavors :
- Does N matter? What should it be to satisfy EWP tests?
- How do the extra fermions influence the light spectum?

- Does the heavy spectrum show up?
- What is the predictive power of this model?



A “prototype” lattice model

Both dilaton-like and pNGB models require additional fermions

— Effective model:

4 (or 2) light plus N heavy flavors :
Does N matter? What should it be to satisfy EWP tests?
How do the extra fermions influence the light spectum?

Does the heavy spectrum show up?

- What is the predictive power of this model?

Lattice study:

Nf= 4+8 flavor system with 4 light/massless and 8 heavy flavors
(R. Brower, A.H, C. Rebbi, E. Weinberg, O. Witzel, PRD93, 114514 (2016))

Follow up : N~=4+6 , 2+8, (4+4, 2+6) ( LSD collaboration, in preparation)

Why 4+8 ? We use staggered fermions:
4 and 8 flavors do not require rooting



Chiral symmetry breaking at a conformal IRFP

Recap:
 Take Nt above the conformal window

* Split the masses: Nfr = Ny + Ny,
N, flavors are massive, msvaries — decouple in the IR
Ne (=2 -4) flavors are massless, my,= 0 — chirally broken

N, flavors

Va\

m, =am,

N, + Nn flavors
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Chiral symmetry breaking at a conformal IRFP

Recap:
 Take Nt above the conformal window

* Split the masses: Nfr = Ny + Ny,
N, flavors are massive, msvaries — decouple in the IR
Ne (=2 -4) flavors are massless, my,= 0 — chirally broken

N, flavors
A How predictive
m, = am, is this model?
& om, m,— 0
N, + Nn flavors l

sets the scale



Running coupling

RG flows predict the running coupling:

‘ 3 regions:
| « UV:
‘ \ from cut-off to g ~ g*
\ - walking: m; small, g~g*
\ | * IR:
) heavy flavors decouple,

N light flavors are
chirally broken

@ . walking can be tuned by
AR Au Na M
mr - O




Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling
Luescher arXiv:1006.4518

2 _ 1 _1 9)
gGF('u_W)_Wt (E@) t: flow time;
E(t):energy density
gé. is used for scale setting as

gép(t=to)=oﬁ3
It is appropriate to determine the renormalized running coupling
— on large enough volumes
— at large enough flow time
— In the continuum limit



Running coupling on the lattice

Gradient flow transformation defines a renormalized coupling
Luescher arXiv:1006.4518

2 _ 1 _1 9)
gGF('u_W)_Wt (E@) t: flow time;
E(t):energy density
gé. is used for scale setting as

gép(t=to)=0ﬁ3

It is appropriate to determine the renormalized running coupling
— on large enough volumes
— at large enough flow time

_ in the continuum limit } use t-shift improved coupling



Running coupling : 4+8 flavors

g2 (u; my)
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Nf=4 : running fast

g2..-(1) develops a “shoulder” as m; — 0 : this is walking !

Walking range can be tuned arbitrarily with m;
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Running coupling : 4+8 flavors

25 |
m, =0.050|  There are error bars

=0.060| on this plot!
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Nf=4 : running fast

g2..-(1) develops a “shoulder” as m; — 0 : this is walking !
Walking range can be tuned arbitrarily with m;



Hyperscaling

In conformal systems Wilson RG considerations predict the
mass dependence of all dimensional quantities (hyperscaling)

If the scale changesas 4 — U = /b, b>1

the couplings run as
m(u)— m(u )=b"m(u) (increases)

§—g
Any 2-point correlation function at large b scales as

Cy (t;gia’;ﬁiau) = b_zyHCH (¢ /b;g*abymmi 1)

since C,(t)oce ™
oc (1 )/ Vm
aM ;o< (m) DeGrand, AH,
Amplitudes ( £z ) also show hyperscaling PRD80, 034506 (2009)

DelDebbio, Zwicky,
PRD82, 014502 (2010)



Hyperscaling in mass-split systems

Nothing changes in the Wilson RG arguments if some of the
masses remain massless:

Cy (f;gi»”;”liaﬂ) = b_zyHCH (¢ /b;g*abym’;hh’ﬁ% =0,u)
mass split systems show the hyperscaling in the m, = 0 limit
aM ,, o< (m, )"

Mu can be all light, all heavy or mixed heavy-light hadron

Ratios like M, /F_ are independent of m: even for heavy states!
Models built on a conformal FP are very different from QCD



Parameter space

— [=4.0 (close to the 12-flavor IRFP)
— m»=0.100, 0.080, 0.060, 0.050
— m¢ = 0.003, 0.005, 0.010, 0.015, 0.025, 0.035
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Is the system chirally broken ?

We know it is ...
Mo/M~ shows that we approach the chiral regime

3
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dy My

Nr=12 predicts an almost constant ratio
(as should be in a conformal system)



Is the system chirally broken ?

We know it is ...
F+ shows hyperscaling even at finite m,
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Light spectrum

Ratios M, /F,_ are independent of my
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Light spectrum

Ratios M, /F,_ are independent of my
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Light spectrum
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Light spectrum
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Light spectrum - hyperscaling in m

We expect hyperscaling of M, /F, in mnonly inthe m;— 0 limit

0** is the lightest non-Goldstone state, M
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Light spectrum - hyperscaling in m

M, /M, shows even less dependence on mn even at finite my
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Heavy spectrum - hyperscaling in m

We expect hyperscaling of M} /F" onlyinthe m;— 0 limit
M;' is ~3 times heavier than M, but independent of mn

Heavy-light spectrum should be in between light-light and heavy-heavy
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Heavy spectrum - hyperscaling in m

M!'/M' shows even less dependence on mn even at finite m,
but these ratios could be strongly dependent on the conformal IRFP
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Chiral symmetry breaking on a conformal FP

Mass-split models that are conformal in the UV, chirally broken in the IR
Best of both worlds:

» controlled walking

* anomalous dimension

* hyperscaling for all masses: predictive power!

* Higgs sector is based on the light/massless fermions

* tower of states few times heavier than Fr

 the heavy-light and heavy-heavy hadrons are also accessible
h-h, h-l spectrum are very different from QCD

How does the spectrum change if we change Nt or cascade the mass?
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Chiral symmetry breaking on a conformal FP

Mass-split models that are conformal in the UV, chirally broken in the IR

Best of both worlds:
» controlled walking
« anomalous dimension } UV
* hyperscaling for all masses: predictive power!
* Higgs sector is based on the light/massless fermions
* tower of states few times heavier than Fr
 the heavy-light and heavy-heavy hadrons are also accessible } IR

h-h, h-l spectrum are very different from QCD

How does the spectrum change if we change Nt or cascade the mass?



Conclusion & Summary

Many interesting possibillities ....

Lattice studies can investigate strongly coupled systems
- both individual and generic properties

Models with split fermion masses, built on a conformal IRFP,
has new and unusual properties

The 4+8 system is not ideal:

* Ns =12 is far above the conformal window with small anomalous
dimension ym = 0.25

* Nr=10, perhaps even 8 might be better

Questions for the future:
How does the spectrum change if we change Nt or cascade the mass?
What is general, what is model specific?



