1

Recent results on large N gauge theories on the lattice

A. González-Arroyo

Instituto de Física Teórica UAM/CSIC Departamento de Física Teórica, UAM

July 4, 2016

¹Talk given in Edinburgh June 2016

A. González-Arroyo

Recent results on large N gauge theories on the lattice

Introduction:Presenting the ingredients

- **Gauge theories** are essential parts of the Standard Model and many of its candidate extensions (QCD-like theories)
- Short-distance properties and quantities can be studied by perturbation theory
- Understanding its properties in the non-perturbative domain remains a challenge

Introduction:Presenting the ingredients

- **Gauge theories** are essential parts of the Standard Model and many of its candidate extensions (QCD-like theories)
- Short-distance properties and quantities can be studied by perturbation theory
- Understanding its properties in the non-perturbative domain remains a challenge
- Lattice gauge theories is the only first principles approach to study this domain

Introduction:Presenting the ingredients

- **Gauge theories** are essential parts of the Standard Model and many of its candidate extensions (QCD-like theories)
- Short-distance properties and quantities can be studied by perturbation theory
- Understanding its properties in the non-perturbative domain remains a challenge
- Lattice gauge theories is the only first principles approach to study this domain
- ♣ 1/N expansion : Physical Quantities admit expansion in inv. powers of # of colors N, with re-scaled coupling $g^2 \longrightarrow \frac{\lambda}{N}$ ('t Hooft 1974)
- In P.T. (1/N²)^g contributions come from diagrams drawn in genus g surfaces. String Theory?

 \clubsuit Qualitatively reproduces the features seen in QCD (N=3)

Properties	
Asymptotic freedom	
Dimensional transmutation	
Confinement	
Chiral Symmetry breaking	
Chiral P.T.	
Topological charge	
U(1) problem	
Glueball spectrum (Mass gap)	
Meson spectrum	
AdS/CFT correspondance?	
Difficult To solve	

Properties	
Asymptotic freedom $$	
Dimensional transmutation $$	
Confinement $$	
Chiral Symmetry breaking $$	
Chiral P.T. $$	
Topological charge $$	
U(1) problem $$	
Glueball spectrum (Mass gap) $$	
Meson spectrum $$	
AdS/CFT correspondance? $$	
Difficult To solve $$	

Properties	Simplification
Asymptotic freedom $$	Only planar diagrams
Dimensional transmutation $$	No scale theory
Confinement $$	Factorization
Chiral Symmetry breaking $$	No dynamical quarks (Quenched)
Chiral P.T. $$	No chiral logs
Topological charge $$	No instantons
U(1) problem $$	$m_{\eta'} \longrightarrow 0$
Glueball spectrum (Mass gap) $$	Stable-No mixing
Meson spectrum $$	Stable + No mixing
AdS/CFT correspondance? $$	Free strings/Classical gravity
Difficult To solve $$	

Properties	Simplification
Asymptotic freedom $$	Only planar diagrams
Dimensional transmutation $$	No scale theory
Confinement $$	Factorization
Chiral Symmetry breaking $$	No dynamical quarks (Quenched)
Chiral P.T. $$	No chiral logs
Topological charge $$	No instantons
U(1) problem $$	$m_{\eta'} \longrightarrow 0$
Glueball spectrum (Mass gap) $$	Stable-No mixing
Meson spectrum $$	Stable + No mixing
AdS/CFT correspondance? $$	Free strings/Classical gravity
Difficult To solve $$	OOPS!

Large N limit on the lattice

★ It is possible to combine these two non-perturbative approaches

One can use different methodologies:

- Study the theory on the lattice for different values of N and extrapolate results to N = ∞.
 Some possible problems: Those associated with extrapolation. Other related to quenching vs non-quenching (order of limits m_q → 0 and N → ∞).
- Use volume independence: Drastic reduction of degrees of freedom.

Possible problems: Validity of the concept. Survival at continuum limit. Size and type of finite N corrections.

Short Review of Volume independence

Volume independence

Expectation values of Wilson loops become volume independent in the large N limit (*Eguchi-Kawai 1982*)

♣ Proof based on SD Eqs. asumming
 ④ Factorization (Tr(U)Tr(U')) = (Tr(U))(Tr(U'))
 ④ Z⁴_N symmetry W(C) = 0 if winding(C) ≠ 0
 ♣ Volume independence ⇒ Eguchi-Kawai model: LGT in one point

$$S = -\frac{1}{\lambda_0} N \sum_{\mu,\nu} \operatorname{Tr}(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger})$$

♣ Z⁴_N symmetry is broken spontaneously for small λ₀ (cont. limit): Tr(U(I)) ≠ 0 (eigenvalues attract) (Bhanot, Heller, Neuberger)

Volume independence

Original Reduction proof breaks down at weak coupling for pure gauge theories.

Several Possible solutions have been proposed:

- Quenched EK model (Bhanot, Heller, Neuberger) The eigenvalues of the link variables are quenched.
- **Twisted EK model (***A.G-A, Okawa***)** Use twisted boundary conditions (discrete chromo-magnetic flux).
- **Double trace deformations** added to the action (*Unsal-Yaffe*)
- Adding fermions in the adjoint rep. with cut-off scale masses (*Kovtun-Unsal-Yaffe*)
- Partial reduction (*Narayanan-Neuberger*) Reduction only applies beyond a certain length scale $l > l_c$

Reduction could still work for other large N theories. Most notably in the presence of fermions in the adjoint rep.

The twisted Eguchi-Kawai model

• E-K proof valid for **PBC** and **TBC**

 \blacklozenge For small λ_0 (Weak coupling), behaviour is very different

$$U(\mathcal{C} + \hat{l}_{\nu}) = e^{i2\pi\omega_{\mu}(\mathcal{C})n_{\mu\nu}/N}U(\mathcal{C})$$

Frustrates constant Polyakov lines ($\omega_{\mu}(\mathcal{C}) \neq 0$).

TEK model (GA, Okawa 1983) Put TBC for $\Omega_{\mu}(n) = \Gamma_{\mu}$, change variables to $V_{\mu} = U_{\mu}\Gamma_{\mu}$ and shrink the lattice to one point:

$$\mathcal{S} = -rac{1}{\lambda_0} \mathcal{N} \sum_{\mu,
u} z_{\mu
u} ext{Tr} (\mathcal{V}_\mu \mathcal{V}_
u \mathcal{V}_\mu^\dagger \mathcal{V}_
u^\dagger)$$

with $z_{\mu\nu} = e^{2\pi i n_{\mu\nu}/N}$. A nice compatible choice (symmetric twist): $N = \hat{L}^2$ $z_{\mu\nu} = \exp\{i2\pi k\epsilon_{\mu\nu}/\hat{L}\}$ k, \hat{L} coprime Is the TEK matrix model equivalent to Yang-Mills theory?

Validity and Size of corrections

EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.

Validity and Size of corrections

- EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.
- Tests at weak coupling: One can study this regime in perturbation theory.

Weak coupling behaviour of the TEK model

At large $b = 1/\lambda_0$ the Path integral is dominated by the minima of the action: $V_\mu = \Gamma_\mu$ with

$$\Gamma_{\mu}\Gamma_{\nu} = z_{\nu\mu}\Gamma_{\nu}\Gamma_{\mu}$$

The set of solutions: $\Gamma_{\mu} \longrightarrow z_{\mu}\Omega\Gamma_{\mu}\Omega^{\dagger}$. A choice of classical vacuum breaks the Z_N^4 symmetry down to $Z_{\hat{L}}^4$: **Enough to preserve volume independence at large N** Wilson loops W(C) are given by

$$W(\mathcal{C}) = \frac{1}{N} \operatorname{Tr}(U(\mathcal{C})) = Z(\mathcal{C}) \frac{1}{N} \operatorname{Tr}(V(\mathcal{C}))$$

Plugging the minimum action sol. $\Rightarrow W(C) = 1$ ($\operatorname{Tr}(V(C)) = Z^*(C)$)

Weak coupling behaviour of the TEK model

Beyond lowest order: $V_{\mu} = e^{-i\lambda_0 A_{\mu}}\Gamma_{\mu}$ A nice basis of the Lie algebra

$$\lambda^{a} \longrightarrow \lambda(\vec{p}) \quad / \qquad \delta_{\mu}\lambda(\vec{p}) = e^{ip_{\mu}}\lambda(\vec{p})$$

where δ_{μ} is translation by 1 period $(\vec{p} = 2\pi n/\hat{L})$

Propagator is the same as in an \hat{L}^4 lattice

Finite N corrections look like finite volume corrections. Vertices are like in ordinary theory with

$$f_{abc} \longrightarrow f(\vec{p}, \vec{q}, \vec{l}) = \delta(\vec{p} + \vec{q} + \vec{l}) \exp\{i\hat{L}\bar{k}\theta_{\mu
u}p_{\mu}q_{
u}/(2\pi)\}$$

★ Phases cancel for planar diagrams:

PT same as ordinary theory on \hat{L}^4 box

★ An overall phase remains for non-planar diagrams: at large N oscillatory cancelations kill contributions

Continuum version (A.G-A-Korthals Altes) \Rightarrow QFT on non-commutative space

Perturbation theory with Periodic or Twisted BC

Rectangular $(R \times T)$ Wilson loops W can be computed in P.T.

$$\mathcal{W}(b,\mathsf{N},\mathsf{L},\mathsf{k})=\hat{\mathcal{W}}_0-\sum_{j=1}\hat{\mathcal{W}}_j(\mathsf{N},\mathsf{L})rac{1}{b^j}$$

We have studied \hat{W}_i , with i = 0, 1, 2 (*Garcia Perez, AGA, Okawa 2016*)

- Leading order dominated by flat connections: $\hat{W}_0 = 1$ (For P.B.C. :**TORONS**)
- First order:

$$\begin{split} \hat{W}_1^{\text{TBC}}(N,L) &= \hat{W}_1^{\text{PBC}}(\infty,L\hat{L}) - \frac{1}{N^2} \hat{W}_1^{\text{PBC}}(\infty,L) \sim \\ \hat{W}_1(N,\infty) + \mathcal{O}(\frac{1}{L^6 N^2}) \end{split}$$

Second order:

The general expression for TBC is:

$$\hat{W}_{2}^{\text{TBC}}(N,L) = \hat{W}_{2}^{\text{PBC}}(\infty,L\hat{L}) + \frac{1}{N^{2}}\delta\hat{W}_{P} + \delta\hat{W}_{NP}$$

where $\delta \hat{W}_P / \delta \hat{W}_{NP}$ comes from planar/non-planar diags.

A. González-Arroyo

Recent results on large N gauge theories on the lattice

Non Planar contribution

The non-planar contribution $\delta \hat{W}_{NP}$ goes to zero as $1/(L\hat{L})^4$ with a coefficient depending on \bar{k}/\hat{L} :

Validity and Size of corrections

EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.

Tests at weak coupling: One can study this regime in perturbation theory.

Validity and Size of corrections

- EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.
- Tests at weak coupling: One can study this regime in perturbation theory.
- Tests in the deep non-perturbative region: Test volume independence of observables by comparing with values obtained by extrapolation. Gives an idea of corrections.

The most ubiquous and well measured lattice quantity is the **expectation value of the plaquette**

$$E = rac{1}{N} \langle \mathrm{Tr}(U(P))
angle$$

We measured this quantity at large N by extrapolation (with a second degree polynomial in $1/N^2$) of results in a $L^4 = 16^4$ lattice and N = 8 - 16 at various couplings (AGA, Okawa).

b=0.36 extrapolated	# dofs=1.7 10^{7}
TEK $N = 289$	$\# \text{ dofs} = 0.8 \ 10^5$

The most ubiquous and well measured lattice quantity is the **expectation value of the plaquette**

$$E = rac{1}{N} \langle \mathrm{Tr}(U(P))
angle$$

We measured this quantity at large N by extrapolation (with a second degree polynomial in $1/N^2$) of results in a $L^4 = 16^4$ lattice and N = 8 - 16 at various couplings (*AGA*, *Okawa*).

b=0.36 extrapolated	0.55801(1)	# dofs=1.7 10^{7}
TEK $N = 289$		$\# \text{ dofs} = 0.8 \ 10^5$

The most ubiquous and well measured lattice quantity is the **expectation value of the plaquette**

$$E = rac{1}{N} \langle \mathrm{Tr}(U(P))
angle$$

We measured this quantity at large N by extrapolation (with a second degree polynomial in $1/N^2$) of results in a $L^4 = 16^4$ lattice and N = 8 - 16 at various couplings (*AGA*, *Okawa*).

b=0.36 extrapolated	0.55801(1)	# dofs=1.7 10^{7}
TEK $N = 289$	0.55800(1)	$\# \text{ dofs} = 0.8 \ 10^5$
	-	

Results consistent to 2 parts in 10^5 .

The most ubiquous and well measured lattice quantity is the **expectation value of the plaquette**

$$E = rac{1}{N} \langle \mathrm{Tr}(U(P))
angle$$

We measured this quantity at large N by extrapolation (with a second degree polynomial in $1/N^2$) of results in a $L^4 = 16^4$ lattice and N = 8 - 16 at various couplings (*AGA*, *Okawa*).

	//
5800(1)	$\# \text{ dofs} = 0.8 \ 10^5$
5	i800(1)

Results consistent to 2 parts in 10^5 .

Do we need to extrapolate?

The most ubiquous and well measured lattice quantity is the **expectation value of the plaquette**

$$E = rac{1}{N} \langle \mathrm{Tr}(U(P))
angle$$

We measured this quantity at large N by extrapolation (with a second degree polynomial in $1/N^2$) of results in a $L^4 = 16^4$ lattice and N = 8 - 16 at various couplings (*AGA*, *Okawa*).

b=0.36 extrapolated	0.55801(1)	# dofs=1.7 10^{7}
TEK $N = 289$	0.55800(1)	$\# \text{ dofs} = 0.8 \ 10^5$

Results consistent to 2 parts in 10^5 .

Do we need to extrapolate? For $L = 16 \ N = 8$: **2.5 %**; For $L = 16 \ N = 16$: **0.2 %** $L = 8 \ N = 16$: **0.7 %** (volume matters for PBC)

Below we show the results for the plaquette expectation value at b = 0.36 and various L and N.

Below we show the results for the plaquette expectation value at b = 0.36 and various L and N. And twisted boundary conditions $k \neq 0$ (TEK L = 1)

Precision comparison

Who needs such a small error?

Precision comparison

Who needs such a small error? For other square loops one has:

. González-Arroyo Recent results on large N gauge theories on the lattice

Validity and Size of corrections

- EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.
- Tests at weak coupling: One can study this regime in perturbation theory.
- Tests in the deep non-perturbative region: Test volume independence of observables by comparing with values obtained by extrapolation. Gives an idea of corrections.

Validity and Size of corrections

- EK Non-perturbative proof valid for all boundary conditions. Hence, the question is whether the conditions are satisfied.
- Tests at weak coupling: One can study this regime in perturbation theory.
- Tests in the deep non-perturbative region: Test volume independence of observables by comparing with values obtained by extrapolation. Gives an idea of corrections.
- ♣ Intermediate coupling region: We did not find any problems provided one scales the fluxes k and k̄ as N goes to ∞. Tests show k/N > 0.1, k̄/N > ε (AGA-Okawa 2010). No symmetry breaking up to N = 1369 = 37²

Volume independence in the continuum limit

Does reduction survive the continuum limit?

How do errors compare?

Volume independence in the continuum limit

Does reduction survive the continuum limit? How do errors compare? Wilson loops of size $R \times T$ at different *b* values: **Scaling** \Rightarrow they depend on r = a(b)R and t = a(b)TTo be precise we use the *Force*:

$$F(r,t) = -\frac{\partial \log W(r/a(b), t/a(b))}{\partial r \partial t}$$

We fix the scale r_0 (a la Sommer) as

$$r_0^2 F(r_0, r_0) = 1.65$$

Scaling Plot

Good Scaling behaviour:

Beta function

The scale parameter follows the two loop formula with λ_I

$$\log(a/r_0) = \mathcal{K} - \frac{1}{2\beta_0\lambda_0} - \frac{\beta_1}{2\beta_0^2}\log(\lambda_0) - \frac{(\beta_2\beta_0 - \beta_1^2)}{2\beta_0^3}\lambda_0 + \dots$$

A. González-Arroyo

Recent results on large N gauge theories on the lattice

Large N physical quantities: The string tension

Determination using extrapolation and volume independence.

- Extract String tension from Wilson loops for N = 3, 4, 5, 6 and 8 with $L^4 = 32^4$ and the TEK Model N = 841.
- Scale results towards the continuum limit.
- Sompare the results (AGA, Okawa 2013)

Large N physical quantities: The string tension

Determination using extrapolation and volume independence.

- Extract String tension from Wilson loops for N = 3, 4, 5, 6 and 8 with $L^4 = 32^4$ and the TEK Model N = 841.
- Scale results towards the continuum limit.
- Compare the results (AGA, Okawa 2013) Linear fit in 1/N²

 $\Lambda_{\overline{\mathrm{MS}}}/\sqrt{\sigma} = 0.525(2)$ for TEK 0.523(5)

Meson spectrum

What observables can be computed with the reduced model? Can one compute the meson spectrum using TEK?

Meson spectrum

What observables can be computed with the reduced model? Can one compute the meson spectrum using TEK?

- TEK is a pure gauge theory: In the large N limit: The meson spectrum ≡ pure gauge observable (no dynamical fermions)
- Masses are computed from correlators at different points; How can you think of space-time correlators in a 1-point box?
- Twist is topological property of the pure gauge theory (gauge group SU(N)/Z(N)). How can you introduce quarks in the fundamental representation?

Meson spectrum

What observables can be computed with the reduced model? Can one compute the meson spectrum using TEK?

- TEK is a pure gauge theory: In the large N limit: The meson spectrum ≡ pure gauge observable (no dynamical fermions)
- Masses are computed from correlators at different points; How can you think of space-time correlators in a 1-point box?
- Twist is topological property of the pure gauge theory (gauge group SU(N)/Z(N)). How can you introduce quarks in the fundamental representation?

CLUE: Quark fields propagate in space in a background gauge field periodic modulo twist. Consistent choice for fermion box size $= \hat{L}^4$.

The formula

Meson operators: $\mathbf{O}_{\Gamma}(x) = \overline{\Psi}(x)\Gamma\Psi(x)$ $C_{\Gamma\Gamma'}(t) = \int d^{3}\vec{x} \langle \mathbf{O}_{\Gamma}(0)\mathbf{O}_{\Gamma}(t,\vec{x}) \rangle$

After some derivation

$$C_{\Gamma\Gamma'}(t) = \sum_{p_0} e^{i\rho_0 t} \operatorname{Tr}(\Gamma D^{-1}(p_0)\Gamma' D^{-1}(0))$$

 $D(p_{\mu}) =$ Wilson-Dirac operator of a single-site with $U_{\mu} \longrightarrow U_{\mu} \otimes \Gamma_{\mu}^{*} e^{ip_{\mu}}$. *D* is an $N^{2} \times N^{2}$ matrix. Good Initial results (*AGA*, *Okawa 2015*). Precise measurement currently under study (*Garcia Perez*, *AGA*, *Okawa 2015*)

- Good exponential fall of correlators
- Pion mass square vanishes linearly with quark mass
- Edinburgh plot (scale invariant) compatible with previous results.
- Approximate scaling

Correlators

A. González-Arroyo Recent results on large N gauge theories on the lattice

Pion Mass

Masses: Edinburgh Plot

Pure gauge theory at large N in 1+1 dim

- This model was solved by 't Hooft and the meson spectrum is known analytically. ⇒ Good testing ground
- Currently being studied (Garcia Perez, AGA, Keegan, Okawa) with N=31,43,53 and b=3,4,5,6,8 and Wilson, naive and overlap fermions:

Pure gauge theory at large N in 1+1 dim

- This model was solved by 't Hooft and the meson spectrum is known analytically. ⇒ Good testing ground
- Currently being studied (Garcia Perez, AGA, Keegan, Okawa) with N=31,43,53 and b=3,4,5,6,8 and Wilson, naive and overlap fermions:

First excited state

FIRST EXCITED MASS N=53 b=8 with OVERLAP

Gauge Theory with fermions in the adjoint

One can add N_f flavours of Dirac fermions in the adjoint representation. The corresponding large N gauge theory is very interesting for the following reasons

- The fermions survive the large N limit. But if they are very massive they have little influence in the long-distance dynamics
- The fermion loops help to achieve Z_N symmetry \Rightarrow Volume independence: The k=0 (EK model) theory might respect the symmetry for a range of masses (Kovtun, Unsal, Jaffe).
- Connected through orientifold planar equivalence to a different large N limit of QCD (Armoni-Shifman-Veneziano)
- For $N_f = 1/2$ (Majorana fermion) = SUSY Yang-Mills.
- For $N_f = 2$ This model is very interesting because it is a candidate for being conformal or walking.
- It can be studied with (Rational-)Hybrid Monte Carlo techniques.

Lattice model at $N = \infty$

- Some initial tests done with a reduced model with Wilson fermions with PBC (*Koren-Sharpe*). Window of quark masses where symmetry is not broken.
- If we use twist together with adjoint fermions (AGA-Okawa 2013): center symmetry valid at all quark masses. N dependence of lattice quantities strongly reduced.
- String tension seems to vanish when quark mass goes to zero. Anomalous dimension γ^* has large systematic errors.
- We tried to determine γ^{*} using (Patella) mode number method (*Garcia Perez, AGA, Keegan, Okawa 2015*):

$$ho((a\Omega)^2) \propto ((a\Omega)^2 - (am)^2)^{(1-\gamma^*)/(1+\gamma^*)}$$

We found $\gamma^* = 0.269(2)(50)$

Conclusions and Outlook

- ★ Lattice calculations of large N quantities are feasible using various strategies
- ★ Volume independence seems to work well even for pure gauge theories.
- ★ Use of twisted BC is advantageous even in combination with other strategies and costs nothing: (AGA, Narayanan, Neuberger 2005, Azeyanagi-Hanada-Unsalc 2010, ...)
- ★ Large N theories with dynamical fermions in the adjoint rep are feasible with twisted reduction methods.
 Questions for vol. independence approach
 What other observables can be computed and how? (Condensate, *T_c*, glueball spectrum, etc)
 - Other extensions like Veneziano limit at specific values of (N_f/N)