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Outline
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Two independent topics:

1. implementation for the mic architecture
2. solver algorithm
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Towards using the GRID as a low
level library

— implementation for the mic architecture —



Introduction
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We need a fast, flexible and easy-to-maintain code for

• (in 4 years) the next generation of the K-Computer (Post K
computer) in Japan

• (before that) something new, KNL based mic architecture



Options
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• Designing from the scratch ? — not enough (human)
resources

• Just using existing ones s.t. CHROMA or GRID? — an easy
solution, but hacking/tuning to specific machines would
require a lot. It would be better to have our own code and
code developers.

• Partial use of the existing ones.

some of the codes developed in Japanese lattice community:

• Bridge++ (active; flexible but not very optimal)
• Iroiro++ (main developers left, would be unmaintaind)
• Old Fortran codes (running on K-computer)



Our strategy for the KNL mic architecture
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• 1st stage: use an existing general code (e.g., Bridge++)
and accelerate it by using tuned codes in solver

• 2nd stage: if the above is not enough (or too nice),
accelerate it more

Simd related data structure:
  GRID

Communication,I/O:
  GRID (?)

Field, Dirac op. (Actions): own impelementation
Lattice: GRID

Solver and other algorithms: own impelementation/
                             Bridge++?

simd vector elements are
distributed to different
sub-domains (GRID)



Details of Using GRID
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field as an array of LatticeComplex (=Lattice<vComplex>,
vComplex is a simd vector)

• a large flexibility — easy to use for non-QCD simulation s.t.
different gauge rep. of fermion and super Yang-Mills

• less complicated in template

1 // gauge field
2 class Field_Gauge : public Field_ptr {
3 public:
4 const static int dof=Nc*Nc*Nd;
5 GridBase *grid;
6 LatticeComplex data[dof];
7 ....
8 LatticeComplex& operator()(const int mu, const int a, const int b){
9 return data[mu*Nc*Nc+a*Nc+b];

10 }
11 ....
12 };

(planned)

• separate the degrees of freedom into dof_inner (s.t. color) and dof_outer (s.t. spinor,
vector etc.)

• field as Lattice<vComplex[dof_inner]> data[dof_outer]
• ...may need to hack GRID more.



Performance?
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... will appear in Lattice 2017
on KNL machine “Oakforest-PACS”*
at JCAHPC, U. of Tsukuba and U. of Tokyo

* will start full operation in Dec., 2016
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Some tips on BiCGstab

— solver algorithm —



Some tips on BiCGstab: Is it commonly known?
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• Almost no cost but very efficient
• I found it in a recent textbook of solvers.
• It might be well-known for the experts in QCD as well.

Comments are very very welcome!

Seiji Fujino, Kuniyoshi Abe, Masaaki Sugihara
and Norimasa Nakashima (2013, Maruzen)
“線形方程式の反復解法”( =“iterative method for
linear equations”)

the original paper:
Gerard L. G. Sleijpen and Herk A. van der Vorst
Numerical Algorithms 10 (1995) 203-223



A standard BiCGstab
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A naive residual vector in BiCGstab: |s〉 = |b〉 − A |〉
The stabilized residual vector : |r〉 = (1−ωA) |s〉
ω is determined to minimize the norm or |r〉:

∂

∂ω∗
〈r|r〉 = 0 ω =

〈As|s〉
〈As|As〉

≡ ω(0)



Another strategy: avoid poor accuracy of α, β
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strategy: modify ω to keep the accuracy of coefficients α and β
for updating
(naive BiCG part: |〉 ← |〉+ α |p〉, |p〉 ← |s〉+ β |p〉 )

( |r∗〉: shadow vector)
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Making a compromise: “vanilla strategy”
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ω(0) and ω̃ are rewritten:

ω(0) = c
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.

|c| = 1 gives ω(0) = ω̃, and a smaller |c| gives a larger
discrepancy (i.e., looses precision). In order to keep the
precision, we introduce a cutoff Ω:

|c| ≥ Ω : ω = c
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Ω = 0.7 ≃ 1/
p
2 is a good choice.



Test: seems promising
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with (almost) no extra cost, the stability is drastically
improved.
.... and faster than inexact deflation (due to the additional cost
for the projection )



solve A |〉 = |b〉 for |〉 with BiCGstab + vanilla
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1 // initialization
2 |0〉 ← |b〉, |r0〉 ← |b〉 − A |〉
3

�

�

�r∗0

¶

← |r〉 (in fact it is arbitrary)

4 |p0〉 ← |r0〉, ρ0 ←
¬

r∗
�

�r0
¶

, j← 0

5 while
�

�

�
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¶�

� is NOT small enough do
6 // BiCG part

7 αj ← ρj /
¬

r∗0

�

�
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�pj
¶
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�
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¶

= A
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9 if
�
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10 break
11 end if
12 // Stab part

13 ωj ←
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�
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14 // vanilla correction of ωj
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/
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16 if |c| < Ω then

17 ωj ← Ω
|c| ωj Ω = 0.7 is a good choice

18 end if

19
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, βj ← ρj+1 /ρj

21
�
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←
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�

�pj
¶
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�

�pj
¶

)

22 j← j+ 1

23 end while
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