
Towards using the GRID as a low level

library/ Some tips on BiCGstab

Issaku Kanamori (Hiroshima Univ.)

Aug. 1, 2016 @ QCDNA (Edinburgh)

Priority Issue 9, to be Tackled by Using Post K Computer

“Elucidation of the Fundamental Laws and Evolution of the

Universe”

Outline

1/14

Two independent topics:

1. implementation for the mic architecture
2. solver algorithm

2/14

Towards using the GRID as a low
level library

— implementation for the mic architecture —

Introduction

3/14

We need a fast, flexible and easy-to-maintain code for

• (in 4 years) the next generation of the K-Computer (Post K
computer) in Japan

• (before that) something new, KNL based mic architecture

Options

4/14

• Designing from the scratch ? — not enough (human)
resources

• Just using existing ones s.t. CHROMA or GRID? — an easy
solution, but hacking/tuning to specific machines would
require a lot. It would be better to have our own code and
code developers.

• Partial use of the existing ones.

some of the codes developed in Japanese lattice community:

• Bridge++ (active; flexible but not very optimal)
• Iroiro++ (main developers left, would be unmaintaind)
• Old Fortran codes (running on K-computer)

Our strategy for the KNL mic architecture

5/14

• 1st stage: use an existing general code (e.g., Bridge++)
and accelerate it by using tuned codes in solver

• 2nd stage: if the above is not enough (or too nice),
accelerate it more

Simd related data structure:
 GRID

Communication,I/O:
 GRID (?)

Field, Dirac op. (Actions): own impelementation
Lattice: GRID

Solver and other algorithms: own impelementation/
 Bridge++?

simd vector elements are
distributed to different
sub-domains (GRID)

Details of Using GRID

6/14

field as an array of LatticeComplex (=Lattice<vComplex>,
vComplex is a simd vector)

• a large flexibility — easy to use for non-QCD simulation s.t.
different gauge rep. of fermion and super Yang-Mills

• less complicated in template

1 // gauge field
2 class Field_Gauge : public Field_ptr {
3 public:
4 const static int dof=Nc*Nc*Nd;
5 GridBase *grid;
6 LatticeComplex data[dof];
7
8 LatticeComplex& operator()(const int mu, const int a, const int b){
9 return data[mu*Nc*Nc+a*Nc+b];

10 }
11
12 };

(planned)

• separate the degrees of freedom into dof_inner (s.t. color) and dof_outer (s.t. spinor,
vector etc.)

• field as Lattice<vComplex[dof_inner]> data[dof_outer]
• ...may need to hack GRID more.

Performance?

7/14

... will appear in Lattice 2017
on KNL machine “Oakforest-PACS”*
at JCAHPC, U. of Tsukuba and U. of Tokyo

* will start full operation in Dec., 2016

8/14

Some tips on BiCGstab

— solver algorithm —

Some tips on BiCGstab: Is it commonly known?

9/14

• Almost no cost but very efficient
• I found it in a recent textbook of solvers.
• It might be well-known for the experts in QCD as well.

Comments are very very welcome!

Seiji Fujino, Kuniyoshi Abe, Masaaki Sugihara
and Norimasa Nakashima (2013, Maruzen)
“線形方程式の反復解法”(=“iterative method for
linear equations”)

the original paper:
Gerard L. G. Sleijpen and Herk A. van der Vorst
Numerical Algorithms 10 (1995) 203-223

A standard BiCGstab

10/14

A naive residual vector in BiCGstab: |s〉 = |b〉 − A |〉
The stabilized residual vector : |r〉 = (1−ωA) |s〉
ω is determined to minimize the norm or |r〉:

∂

∂ω∗
〈r|r〉 = 0 ω =

〈As|s〉
〈As|As〉

≡ ω(0)

Another strategy: avoid poor accuracy of α, β

11/14

strategy: modify ω to keep the accuracy of coefficients α and β
for updating
(naive BiCG part: |〉 ← |〉+ α |p〉, |p〉 ← |s〉+ β |p〉)

(|r∗〉: shadow vector)

bad :
�

�

¬

r∗
�

�r
¶�

�≪
�

�

�

�r∗
�

�

�

�

� |r〉
�

� bad :|ω| ≪
�

� |r〉
�

�

〈r∗|r〉∝ω

Desirable: maximize
|ω|
�

�|r〉
�

�

, which requires

∂

∂ω∗

〈r|r〉
ωω∗

= 0 ω =
〈s|s〉
〈s|As〉

≡ ω̃

Making a compromise: “vanilla strategy”

12/14

ω(0) and ω̃ are rewritten:

ω(0) = c

�

� |s〉
�

�

�

� |As〉
�

�

, ω̃ =
1

c∗

�

� |s〉
�

�

�

� |As〉
�

�

, c ≡
〈As|s〉
�

� |s〉
�

�

�

� |As〉
�

�

.

|c| = 1 gives ω(0) = ω̃, and a smaller |c| gives a larger
discrepancy (i.e., looses precision). In order to keep the
precision, we introduce a cutoff Ω:

|c| ≥ Ω : ω = c

�

� |s〉
�

�

�

� |As〉
�

�

=
〈As|s〉
〈As|As〉

= ω(0)

|c| < Ω : ω = Ω

�

� |s〉
�

�

�

� |As〉
�

�

=
Ω

|c|
ω(0)

Ω = 0.7 ≃ 1/
p
2 is a good choice.

Test: seems promising

13/14

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 1000 2000 3000 4000 5000

re
la

tiv
e

|r
es

|

iter.

32^3 x 64, kappa=0.1655: conf=000100

BiCGstab
BiCGstab + vanilla

BiCGstab + idfl: eigenvec(tol=1e-2)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 100 200 300 400 500 600 700 800

re
la

tiv
e

|r
es

|

iter.

32^3 x 64, kappa=0.1655: conf=000400

BiCGstab
BiCGstab + vanilla

BiCGstab + idfl: eigenvec(tol=1e-2)

with (almost) no extra cost, the stability is drastically
improved.
.... and faster than inexact deflation (due to the additional cost
for the projection)

solve A |〉 = |b〉 for |〉 with BiCGstab + vanilla

14/14

1 // initialization
2 |0〉 ← |b〉, |r0〉 ← |b〉 − A |〉
3

�

�

�r∗0

¶

← |r〉 (in fact it is arbitrary)

4 |p0〉 ← |r0〉, ρ0 ←
¬

r∗
�

�r0
¶

, j← 0

5 while
�

�

�

�rj
¶�

� is NOT small enough do
6 // BiCG part

7 αj ← ρj /
¬

r∗0

�

�

�A
�

�pj
¶

needs A for
�

�Apj
¶

= A
�

�pj
¶

8
�

�sj
¶

←
�

�rj
¶

− αjA
�

�pj
¶

,
�

�j
¶

←
�

�j
¶

+ αj |p〉
9 if
�

�

�

�sj
¶�

� is small enough then
10 break
11 end if
12 // Stab part

13 ωj ←
¬

Asj
�

�sj
¶

/
¬

Asj
�

�Asj
¶

needs A for
�

�Asj
¶

= A
�

�sj
¶

14 // vanilla correction of ωj

15 c←
¬

Asj
�

�sj
¶

/
Æ

¬

sj
�

�sj
¶¬

Asj
�

�Asj
¶

16 if |c| < Ω then

17 ωj ← Ω
|c| ωj Ω = 0.7 is a good choice

18 end if

19
�

�j+1
¶

←
�

�j
¶

+ωj

�

�sj
¶

,
�

�rj+1
¶

←
�

�sj
¶

−ωjA
�

�sj
¶

20 ρj+1 ←
D

r∗
0

�

�

�rj+1

E

, βj ← ρj+1 /ρj

21
�

�pj+1
¶

←
�

�rj
¶

+ βj(
�

�pj
¶

−ωjA
�

�pj
¶

)

22 j← j+ 1

23 end while

appendx-i

Towards using the GRID as a low level

Issaku Kanamori (Hiroshima Univ.)
Aug. 1, 2016 QCDNA (Edinburgh)

appendx-ii

library / Some tips on BiCGstab

Priority Issue 9, to be Tackled by Using Post K Computer

“Elucidation of the Fundamental Laws and Evolution of the Universe”

	Outline
	
	Introduction
	Options
	Our strategy for the KNL mic architecture
	Details of Using GRID
	Performance?
	
	Some tips on BiCGstab: Is it commonly known?
	A standard BiCGstab
	 Another strategy: avoid poor accuracy of ,
	Making a compromise: ``vanilla strategy''
	Test: seems promising
	solve A| x"526930B = | b"526930B for | x"526930B with BiCGstab + bluevanilla
	
	

