QCD TO THE EXASCALE

Kate Clark, August 2nd 2016

CONTENTS

Charting our way to the Exascale GPUs
Block solvers - Locality
Multigrid - Parallelism
To the Exascale and Beyond

CHARTING OUR WAY TO THE EXASCALE

HPC's Biggest Challenge: Power

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

THE RISE OF LEAKAGE

LEAKAGE IS KILLING VOLTAGE SCALING

The Good Old Days

Leakage not important, voltage scaled with feature size

$$
\begin{aligned}
& L^{\prime}=L / 2 \\
& V^{\prime}=V / 2 \\
& E^{\prime}=C V^{2}=E / 8 \\
& f^{\prime}=2 f \\
& D^{\prime}=1 / L^{2}=4 D \\
& P^{\prime}=P
\end{aligned}
$$

L/2 => 4x transistors
=> $8 x$ capability
=> same power

The New Reality

Leakage limiting threshold voltage,
voltage scaling dying
$L^{\prime}=\mathrm{L} / 2$
$V^{\prime}=\sim V$
$\mathrm{E}^{\prime}=\mathrm{CV}^{2}=\mathrm{E} / 2$
$f^{\prime}=2 f$
$D^{\prime}=1 / L 2=4 D$
$P^{\prime}=4 P$

L/2 => 4x transistors
=> $8 x$ capability
=> 4x power, or...
2x capability,
same power, $1 / 4$ area

LEAKAGE SOLUTION: GO SLOW

ENERGY EFFICIENCY DRIVES LOCALITY

SOFTWARE IMPLICATIONS

- Need to expose massive concurrence
- Exaflop at $\mathrm{O}(\mathrm{GHz})$ clocks $\Rightarrow \mathrm{O}$ (billion-way) parallelism!
- Need to expose and exploit locality
- Data motion more expensive than computation
- > 100:1 global v. local energy

GPUS

THE RISE OF THE GPU

WHAT IS A GPU?

- Pascal P100 (2016)
- 3584 FP32 processing elements
- 10.6 TFLOPS FP32 / 5.3 TFLOPS FP64 peak
- Deep memory hierarchy
- Programmed using a thread model
- Architecture abstraction is CUDA
- Fine-grained parallelism is required
- Diversity of programming languages
- CUDA C / C++ / Fortran
- C / C++ / Fortran + OpenACC / OpenMP
- Python, Java, etc.

HETEROGENOUS NODE PHILOSOPHY

Optimize for Efficiency

TESLA PASCAL P100

Tesla P100
for NVLink-enabled Servers

Tesla P100
for PCle-Based Servers

5.3 TF DP • 10.6 TF SP • 21 TF HP 720 GB/sec Memory Bandwidth 16 GB HBM2
4.7 TF DP • 9.3 TF SP • 18.7 TF HP Config 1: 16 GB (HBM2), $720 \mathrm{~GB} / \mathrm{sec}$ Config 2: 12 GB (HBM2), 540 GB/sec

DGX-1

- Pascal includes NVLink interconnect technology
- 4x NVLink connections per GPU
- 160 GB/s bi-directional bandwidth per GPU
- NVIDIA DGX-1
- 8x P100 GPUs
- 2^{3} NVLink topology
- 4x EDR IB (via PCle switches)
- 2x Intel Xeon hosts
- 1 DGX-1 equivalent inter-GPU bandwidth to 64 nodes of Titan

US to Build Two Flagship Supercomputers Powered by the Tesla Platform

> 100-300 PFLOPS Peak

10x in Scientific App Performance IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect
40 TFLOPS per Node, >3,400 Nodes 2017

Just 4 nodes in Summit would make the Top500 list of supercomputers today

150 PF = 3M Laptops
One laptop for Every Resident in
State of Mississippi

QUDA

- "QCD on CUDA" - http://lattice.github.com/quda (open source, BSD license)
- Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma, CPS, MILC, TIFR, tmLQCD, etc.
- Latest release 0.8.0 (8th February 2016)
- Provides:

Various solvers for all major fermionic discretizations, with multi-GPU support Additional performance-critical routines needed for gauge-field generation

- Maximize performance
- Exploit physical symmetries to minimize memory traffic
- Mixed-precision methods
- Autotuning for high performance on all CUDA-capable architectures
- Domain-decomposed (Schwarz) preconditioners for strong scaling
- Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
- Multi-source solvers
- Multigrid solvers for optimal convergence
- A research tool for how to reach the exascale

QUDA CONTRIBUTORS

(multigrid collaborators in green)

Ron Babich (NVIDIA)
Michael Baldhauf (Regensburg)
Kip Barros (LANL)
Rich Brower (Boston University)
Nuno Cardoso (NCSA)
Kate Clark (NVIDIA)
Michael Cheng (Boston University)
Carleton DeTar (Utah University)
Justin Foley (Utah -> NIH)
Joel Giedt (Rensselaer Polytechnic Institute)
Arjun Gambhir (William and Mary)

Steve Gottlieb (Indiana University)
Dean Howarth (Rensselaer Polytechnic Institute) Bálint Joó (Jlab)
Hyung-Jin Kim (BNL -> Samsung)
Claudio Rebbi (Boston University)
Guochun Shi (NCSA -> Google)
Mario Schröck (INFN)
Alexei Strelchenko (FNAL)
Alejandro Vaquero (INFN)
Mathias Wagner (NVIDIA)
Frank Winter (Jlab)

QUDA - LATTICE QCD ON GPUS

http://lattice.github.com/quda

<> Code
(1) Issues 107
? Pull requests 2
国 Wiki
h Pulse
\|lı Graphs
Settings

QUDA is a library for performing calculations in lattice QCD on GPUs. http://lattice.github.com/quda - Edit

CMakeLists.txt

MAPPING THE DIRAC OPERATOR TO CUDA

Assign a single space-time point to each thread $\mathrm{V}=\mathrm{XYZT}$ threads, e.g., $\mathrm{V}=24^{4}=>3.3 \times 10^{6}$ threads Looping over direction each thread must
Load the neighboring spinor (24 numbers $\times 8$)
Load the color matrix connecting the sites (18 numbers $\times 8$)
Do the computation
Save the result (24 numbers)

$$
D_{x, x^{x}}=
$$

Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity QUDA reduces memory traffic

Exact SU(3) matrix compression ($18=>12$ or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

WILSON-DSLASH PERFORMANCE

K20X (2012), ECC on, V = $24^{3} \mathrm{x} \top$

PASCAL

- Newly launched Pascal P100 GPU provides significant performance uplift through stacked HBM memory
- Wilson-clover dslash $3 x$ speedup vs K40
- double ~500 GFLOPS
- single ~1000 GFLOPS
- half 2000 GFLOPS

LQCD WITH GPU GENERATION

Single precision Wilson-dslash performance
2000

- single 12 o. single 12

1500 Same kernel from 2008 runs unchanged

SOLVERS FOR MULTIPLE RIGHT HAND SIDES

CONJUGATE GRADIENT

just as a reminder

procedure CG

$$
\begin{aligned}
& r^{(0)}=b-A x^{(0)} \\
& p^{(0)}=r^{(0)} \\
& \text { for } k=1,2, \ldots \text { until converged do } \\
& \quad z^{(k-1)}=A p^{(k-1)} \\
& \quad \alpha^{(k-1)}=\frac{\left|r^{(k-1)}\right|^{2}}{\left\langle\left(p^{(k-1)}\right), z^{(k-1)}\right\rangle} \\
& \quad x^{(k)}=x(k-1)+\alpha^{(k-1)} p^{(k-1)} \\
& \quad r^{(k)}=r^{(k-1)}-\alpha^{(k-1)} z^{(k-1)} \\
& \quad \beta^{(k-1)}=\frac{\left|r^{(k-1)}\right|^{2}}{\left|r^{(k)}\right|^{2}} \\
& \quad p^{(k)}=r^{(k)}+\beta^{(k-1)} p^{(k-1)}
\end{aligned}
$$

end for
end procedure

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7
exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7
exploit $\operatorname{SU}(3)$ symmetry:
reconstruct gauge field from 8/12 floats

WILSON CLOVER DSLASH

Volume $=32^{4}$

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~0.7
exploit $\operatorname{SU}(3)$ symmetry:
reconstruct gauge field from $8 / 12$ floats

Smearing kills symmetry: stuck with 18 floats

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7
exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

Reuse gauge field for multiple rhs

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound Dslash arithmetic intensity for HISQ ~ 0.7
exploit $\operatorname{SU}(3)$ symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

Reuse gauge field for multiple rhs

MULTI-SRC DSLASH ON PASCAL

Volume 24^{4}, HISQ, tuned gauge reconstruct

- - P100 double - P100 single Titan X single

MULTI-SRC DSLASH ON PASCAL

Volume 24^{4}, HISQ, tuned gauge reconstruct

MULTI-SRC DSLASH ON PASCAL

Volume 24^{4}, HISQ, tuned gauge reconstruct

MULTI-SRC DSLASH ON PASCAL

Volume 24^{4}, HISQ, tuned gauge reconstruct

CONJUGATE GRADIENT

using multi-src Dslash

procedure CG WITH MULTI-SRC DSLASH

$$
\begin{aligned}
& r_{i}=b_{i}-A x_{i}^{(0)} \\
& p_{i}^{(0)}=r_{i}^{(0)} \\
& \text { for } k=1,2, \ldots \text { until converged do } \\
& \quad\left\{z_{i}^{(k-1)}\right\}=A\left\{p^{(k-1)}\right\} \\
& \quad \alpha_{i}^{(k-1)}=\left|r_{i}^{(k-1)}\right|^{2} /\left\langle\left(p_{i}^{(k-1)}\right), z_{i}^{(k-1)}\right\rangle \\
& \quad x_{i}^{(k)}=x_{i}^{(k-1)}+\alpha_{i}^{(k-1)} p_{i}^{(k-1)} \\
& \quad r_{i}^{(k)}=r_{i}^{(k-1)}-\alpha_{i}^{(k-1)} z_{i}^{(k-1)} \\
& \quad \beta_{i}^{(k-1)}=\left|r_{i}^{(k-1)}\right|^{2} /\left|r_{i}^{(k)}\right|^{2} \\
& \quad p_{i}^{(k)}=r_{i}^{(k)}+\beta_{i}^{(k-1)} p_{i}^{(k-1)}
\end{aligned}
$$

end for
end procedure
exploit multi-src Dslash performance
do all the linear algebra for each rhs
same iteration count as CG

MULTI-SRC CG ON PASCAL

Volume 24^{4}, HISQ
ㅁ P100 single

BLOCK KRYLOV SOLVERS

Share the Krylov space

BlockCG solver suggested by O'Leary in early 80's retooled BlockCG by Dubrulle 2001
In exact precision converges in $\mathrm{N} /$ rhs iterations

BLOCK KRYLOV SOLVERS

Share the Krylov space

BlockCG solver suggested by O'Leary in early 80's retooled BlockCG by Dubrulle 2001
In exact precision converges in $\mathrm{N} /$ rhs iterations

Application in QCD:

Nakamura et. (modified block BiCGStab)
Birk and Frommer (block methods, including block methods for multi shift)

BLOCK CG

share Krylov space between multiple rhs

procedure BlockCG

$$
R^{(0)}=B-A X^{(0)}
$$

$P^{(0)}=R^{(0)}$
for $k=1,2, \ldots$ until converged do

$$
\begin{aligned}
& Z^{(k-1)}=A P^{(k-1)} \\
& \alpha^{(k-1)}=\left[\left(P^{(k-1)}\right)^{H} Z^{(k-1)}\right]^{-1}\left(R^{(k-1)}\right)^{H} R^{(k-1)} \\
& X^{(k)}=X^{(k-1)}+P^{(k-1)} \alpha^{(k-1)} \\
& R^{(k)}=R^{(k-1)}-Z^{(k-1)} \alpha^{(k-1)} \\
& \beta^{(k-1)}=\left[\left(R^{(k-1)}\right)^{H} R^{(k-1)}\right]^{-1}\left(R^{(k)}\right)^{H} R^{(k)} \\
& P^{(k)}=R^{(k)}-P^{(k-1)} \beta^{(k-1)}
\end{aligned}
$$

end for end procedure

BLOCK CG

share Krylov space between multiple rhs

procedure BlockCG

$$
R^{(0)}=B-A X^{(0)}
$$

$P^{(0)}=R^{(0)}$
for $k=1,2, \ldots$ until converged do

$$
\begin{aligned}
& Z^{(k-1)}=A P^{(k-1)} \\
& \alpha^{(k-1)}=\left[\left(P^{(k-1)}\right)^{H} Z^{(k-1)}\right]^{-1}\left(R^{(k-1)}\right)^{H} R^{(k-1)} \\
& X^{(k)}=X^{(k-1)}+P^{(k-1)} \alpha^{(k-1)} \\
& R^{(k)}=R^{(k-1)}-Z^{(k-1)} \alpha^{(k-1)} \\
& \beta^{(k-1)}=\left[\left(R^{(k-1)}\right)^{H} R^{(k-1)}\right]^{-1}\left(R^{(k)}\right)^{H} R^{(k)} \\
& P^{(k)}=R^{(k)}-P^{(k-1)} \beta^{(k-1)}
\end{aligned}
$$

end for end procedure

BLOCK CG

share Krylov space between multiple rhs

procedure BlockCG

$$
R^{(0)}=B-A X^{(0)}
$$

$$
P^{(0)}=R^{(0)}
$$

for $k=1,2, \ldots$ until converged do

$$
\begin{aligned}
& Z^{(k-1)}=A P^{(k-1)} \\
& \alpha^{(k-1)}=\left[\left(P^{(k-1)}\right)^{H} Z^{(k-1)}\right]^{-1}\left(R^{(k-1)}\right)^{H} R^{(k-1)} \\
& X^{(k)}=X^{(k-1)}+P^{(k-1)} \alpha^{(k-1)} \\
& R^{(k)}=R^{(k-1)}-Z^{(k-1)} \alpha^{(k-1)} \\
& \beta^{(k-1)}=\left[\left(R^{(k-1)}\right)^{H} R^{(k-1)}\right]^{-1}\left(R^{(k)}\right)^{H} R^{(k)} \\
& P^{(k)}=R^{(k)}-P^{(k-1)} \beta^{(k-1)}
\end{aligned}
$$

end for end procedure

BLOCK CG

share Krylov space between multiple rhs

procedure BlockCG

$$
R^{(0)}=B-A X^{(0)}
$$

$$
P^{(0)}=R^{(0)}
$$

for $k=1,2, \ldots$ until converged do

$$
\begin{aligned}
& Z^{(k-1)}=A P^{(k-1)} \\
& \alpha^{(k-1)}=\left[\left(P^{(k-1)}\right)^{H} Z^{(k-1)}\right]^{-1}\left(R^{(k-1)}\right)^{H} R^{(k-1)} \\
& X^{(k)}=X^{(k-1)}+P^{(k-1)} \alpha^{(k-1)} \\
& R^{(k)}=R^{(k-1)}-Z^{(k-1)} \alpha^{(k-1)} \\
& \beta^{(k-1)}=\left[\left(R^{(k-1)}\right)^{H} R^{(k-1)}\right]^{-1}\left(R^{(k)}\right)^{H} R^{(k)} \\
& P^{(k)}=R^{(k)}-P^{(k-1)} \beta^{(k-1)}
\end{aligned}
$$

end for end procedure

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

REDUCED ITERATION COUNT

HISQ, $32^{3} \times 8$, Gaussian random source

$$
\begin{array}{llllll}
-1 & -2 & -4 & -8 & -12 & -16
\end{array}
$$

WHY DOESN'T EVERYONE USE IT?
 BlockCG is not always numerically stable

- Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
- Quadratic scaling with \# rhs
- Becomes prohibitive

Cost per iterationDslash - Vector operationOrthogonalization

WHY DOESN'T EVERYONE USE IT?
 BlockCG is not always numerically stable

- Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
- Quadratic scaling with \# rhs
- Becomes prohibitive

Cost per iterationDslash - Vector operationOrthogonalization

WHY DOESN'T EVERYONE USE IT?

BlockCG is not always numerically stable

- Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
- Quadratic scaling with \# rhs
- Becomes prohibitive

Cost per iterationDslash Vector operation \qquad Orthogonalization

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling
$y_{i}=\sum a_{i j} x_{j}+y_{i}$

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling

$$
y_{i}=\sum a_{i j} x_{j}+y_{i}
$$

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
$(0,3)$	$(1,2)$	$(2,2)$	$(3,2)$
$(0,4)$	$(1,3)$	$(2,3)$	$(3,4)$

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling

$$
y_{i}=\sum a_{i j} x_{j}+y_{i}
$$

easy to exploit locality for texture cache / shared memory

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
$(0,3)$	$(1,2)$	$(2,2)$	$(3,2)$
$(0,4)$	$(1,3)$	$(2,3)$	$(3,4)$

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling

$$
y_{i}=\sum a_{i j} x_{j}+y_{i}
$$

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling

$$
y_{i}=\sum a_{i j} x_{j}+y_{i}
$$

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

EXPLOIT GPU ARCHITECTURE

to overcome quadratic scaling

$$
y_{i}=\sum a_{i j} x_{j}+y_{i}
$$

\square

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

SCALABILITY

Proportional to peak flops not memory bandwidth

Block dot product performance
(roofline model on P100)

COST OF ONE ITERATION

CholQR

Gram-Matrix:
Cholesky Decomposition
apply to vectors
$B=R^{H} R \quad m \times m$ dot products of length n
$S^{H} S=B \quad$ of $m \times m$ matrix
$Q=R S^{-1} \quad$ axpy $m \times m$ (output, input)

Dslash

Orthogonalization

Vector operation

Cost [A.U.]

- Large benefits from multi-src Dslash but relative importance of Dslash reduces

2	4	8	12	16
		\# rh		

COST OF ONE ITERATION

CholQR

Gram-Matrix:
Cholesky Decomposition
apply to vectors
$B=R^{H} R \quad m \times m$ dot products of length n
$S^{H} S=B \quad$ of $m \times m$ matrix
$Q=R S^{-1} \quad$ axpy $m \times m$ (output, input)

Orthogonalization

COST OF ONE ITERATION

CholQR

Gram-Matrix:
Cholesky Decomposition
apply to vectors
$B=R^{H} R \quad m \times m$ dot products of length n
$S^{H} S=B \quad$ of $m \times m$ matrix
$Q=R S^{-1} \quad$ axpy $m \times m$ (output, input)

- Linear algebra and orthogonalization stay constant
- Large benefits from multi-src Dslash but relative importance of Dslash reduces

COST OF ONE ITERATION

CholQR

Gram-Matrix:
Cholesky Decomposition
apply to vectors
$B=R^{H} R \quad m \times m$ dot products of length n
$S^{H} S=B \quad$ of $m \times m$ matrix
$Q=R S^{-1} \quad$ axpy $m \times m$ (output, input)

WORK TO BE DONE

$-1-2-4-8-12-16$

stability needs real world testing orthogonalization might be necessary
iteration count improvement may depend on gauge field and sources
need to finish up implementation
add mixed precision

SPEEDUP OVER CG

$$
-\mathrm{CG} \quad-\text { MSRC CG } \quad-\text { Block CG } \quad \text { BlockCG rQ }
$$

10
projected

SPEEDUP OVER CG

SPEEDUP OVER CG

$$
-\mathrm{CG} \quad-\text { MSRC CG } \quad-\text { Block CG } \quad \text { BlockCG rQ }
$$

Reuse gauge field for Dslash

Reduced iteration count

SPEEDUP OVER CG

$-\mathrm{CG} \quad-\mathrm{MSRC} C G \quad-$ Block CG \quad BlockCG rQ

Reduced iteration count

SPEEDUP OVER CG

$-\mathrm{CG} \quad-\mathrm{MSRC}$ CG \quad Block CG \quad BlockCG rQ

Reuse gauge field for Dslash

Reduced iteration count

Avoid quadratic scaling in LA

Speedups up to $10 x$

Scalable algorithm for future architectures

MULTIGRID

WHY MULTIGRID?

Babich et al 2010

Chroma propagator benchmark
Figure by Balint Joo
MG Chroma integration by Saul Cohen MG Algorithm by James Osborn

ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors
Dynamically learn the null space and use this to define the prolongator
Algorithm is self learning

Setup

1. Set solver to be simple smoother
2. Apply current solver to random vector $v_{i}=P(D) \eta_{i}$
3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1-PR) $\mathrm{v}_{\mathrm{k}}=0$
\Rightarrow Typically use 4^{4} geometric blocks
\Rightarrow Preserve chirality when coarsening $R=\gamma_{5} P^{\dagger} \gamma_{5}=P^{\dagger}$
5. Construct coarse operator $\left(D_{c}=R D P\right)$
6. Recurse on coarse problem
7. Set solver to be augmented V -cycle, goto 2

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but $0(10,000)$ threads per GPU
Fine grids run very efficiently
High parallel throughput problem
Coarse grids are worst possible scenario
More cores than degrees of freedom
Increasingly serial and latency bound
Little's law (bytes = bandwidth * latency)
Amdahl's law limiter
Multigrid exposes many of the problems expected at the Exascale

INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

- Multigrid setup
- Block orthogonalization of null space vectors
- Batched QR decomposition
- Smoothing (relaxation on a given grid)
- Repurpose existing solvers
- Prolongation
- interpolation from coarse grid to fine grid
- one-to-many mapping
- Restriction
- restriction from fine grid to coarse grid
- many-to-one mapping
- Coarse Operator construction (setup)
- Evaluate R A P locally
- Batched (small) dense matrix multiplication
- Coarse grid solver
- Need optimal coarse-grid operator

COARSE GRID OPERATOR

- Coarse operator looks like a Dirac operator (many more colors)

- Link matrices have dimension $2 \mathrm{~N}_{\mathrm{v}} \times 2 \mathrm{~N}_{\mathrm{v}}$ (e.g., 48×48)

$$
\hat{D}_{\mathbf{i} \hat{s} \hat{c}, \mathbf{j} \hat{s}^{\prime} \hat{c}^{\prime}}=-\sum_{\mu}\left[Y_{\mathbf{i} \hat{c} c \hat{j}, \hat{s}^{\prime} \hat{c}^{\prime}}^{-} \delta_{\mathbf{i}+\mu, \mathbf{j}}+Y_{\mathbf{i} s \hat{c}, \mathbf{j} s^{\prime} c^{\prime}}^{+\mu \dagger} \delta_{\mathbf{i}-\mu, \mathbf{j}}\right]+\left(M-X_{\mathbf{i} \hat{s} \hat{c}, \mathbf{j} \hat{\mathbf{s}}^{\prime} \hat{c}^{\prime}}\right) \delta_{\mathbf{i} \hat{s} \hat{c}, \mathbf{j} \hat{\mathbf{s}}^{\prime} \hat{c}^{\prime}} .
$$

- Fine vs. Coarse grid parallelization
- Fine grid operator has plenty of grid-level parallelism
- E.g., 16x16x16x16 = 65536 lattice sites
- Coarse grid operator has diminishing grid-level parallelism
- first coarse grid $4 \times 4 \times 4 \times 4=256$ lattice sites
- second coarse grid $2 \times 2 \times 2 \times 2=16$ lattice sites
- Current GPUs have up to 3840 processing elements
- Need to consider finer-grained parallelization
- Increase parallelism to use all GPU resources
- Load balancing

SOURCE OF PARALLELISM

$$
\begin{gathered}
\text { thread } \mathrm{y} \\
\text { index }
\end{gathered}\left(\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)+=\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23} \\
a_{30} & a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \begin{array}{l}
\text { 2. Link matrix-vector } \\
\text { partitioning } \\
\text { 2 Nvec-way thread parallelism } \\
\text { (spin*color) }
\end{array}\right.
$$

1. Grid parallelism

Volume of threads

$$
\left(\begin{array}{llll}
a_{00} & a_{01} & a_{02} & a_{03}
\end{array}\right)\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) \Rightarrow\left(\begin{array}{ll}
a_{00} & a_{01}
\end{array}\right)\binom{b_{0}}{b_{1}}+\left(\begin{array}{ll}
a_{02} & a_{03}
\end{array}\right)\binom{b_{2}}{b_{3}} \quad \begin{aligned}
& \text { 4. Dot-product partitioning } \\
& \text { 4-way thread parallelism + ILP }
\end{aligned}
$$

COARSE GRID OPERATOR PERFORMANCE

Tesla K20X (Titan), FP32, $\mathrm{N}_{\text {vec }}=24$

24,576-way parallel

16-way parallel
48 nvidia

COARSE GRID OPERATOR PERFORMANCE

8 -core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32

- Autotuner finds optimum degree of parallelization
- Larger grids favor less fine grained
- Coarse grids favor most fine grained
- GPU is nearly always faster than CPU
- Expect in future that coarse grids will favor CPUs
- For now, use GPU exclusively

COARSE GRID OPERATOR PERFORMANCE

IMPROVING STRONG SCALING

IMPROVING STRONG SCALING

MULTIGRID VERSUS BICGSTAB

- Compare MG against the state-of-the-art traditional Krylov solver on GPU
- BiCGstab in double/half precision with reliable updates
- 12/8 reconstruct
- Symmetric red-black preconditioning $\hat{M}_{e e}=1_{e e}-\kappa^{2} A_{e e}^{-1} D_{e o} A_{o o}^{-1} D_{o e}$
- Adaptive Multigrid algorithm
- GCR outer solver wraps 3-level MG preconditioner
- GCR restarts done in double, everything else in single
- 24 null-space vectors on fine grid
- Minimum Residual smoother
- Symmetric red-black preconditioning on each level
- GCR coarse-grid solver

MULTIGRID VERSUS BICGSTAB

Wilson, $\mathrm{V}=24^{3} \times 64$, single workstation (3 x M6000)

MULTIGRID VERSUS BICGSTAB

Wilson, $\mathrm{V}=24^{3} \times 64$, single workstation (3 x M6000)

MULTIGRID VERSUS BICGSTAB

Wilson-clover, Strong scaling on Titan (K20X)

MULTIGRID VERSUS BICGSTAB

Wilson-clover, Strong scaling on Titan (K20X), V = 64³x128, $m_{\pi}=197 \mathrm{MeV}$

MULTIGRID TIMING BREAKDOWN

Wilson-clover, Strong scaling on Titan (K20X), V = $64^{3} \times 128$, 12 linear solves

ERROR REDUCTION AND VARIANCE

$\mathrm{V}=40^{3} \times 256, \mathrm{~m}_{\pi}=230 \mathrm{MeV}$

MULTIGRID FUTURE WORK

- Absolute Performance tuning, e.g., half precision on coarse grids
- Strong scaling improvements:
- Combine with Schwarz preconditioner
- Accelerate coarse grid solver: CA-GMRES instead of GCR, deflation
- More flexible coarse grid distribution, e.g., redundant nodes
- Investigate off load of coarse grids to the CPU
- Use CPU and GPU simultaneously using additive MG
- Full off load of setup phase to GPU - required for HMC

HIERARCHICAL ALGORITHMS ON HETEROGENEOUS ARCHITECTURES

GPU

CPU

MULTI-SRC SOLVERS

- Multi-src solvers increase locality through link-field reuse
- Multi-grid operators even more so since link matrices are 48×48
- Coarse Dslash / Prolongator / Restrictor
- Coarsest grids also latency limited
- Kernel level latency
- Network latency
- Multi-src solvers are a solution
- More parallelism

TO THE EXASCALE AND BEYOND

SOFTWARE AND ALGORITHMS

- Algorithms continue to innovate rapidly inside and outside of LQCD
- E.g., Krylov solvers
- Communication avoiding solvers (Demmel et al)
- Cooperative Krylov methods (Bhaya et al)
- Enlarged Krylov space methods (Grigori et al)
- Software can be the problem
- Hierarchical / overlapping grids break most LQCD frameworks
- Used to calling solvers in serial fashion
- Precision often baked in

FINE-GRAINED PARALLELISM AND THE IMPLICATIONS FOR DLLS

- Traditional DSL approach is to abstract the grid parallelism

```
Matrix u;
Vector x, y;
Y = u * X;
```

- Compiler / front end will then transform this expression into a data parallel operation using OpenMP / CUDA / C++ meta template magic, etc.
- This abstraction breaks with multigrid
- Not enough grid parallelism
- Platform and algorithmic independent conjecture
"Fine-grained parallelization will becoming increasingly
a requirement at the Exascale (and beyond)"

PRECISION

- How much precision is really required?
- 16-bit solvers with high precision reliable updates (arxiv:0911.3191)
- Truncate trailing mantissa bits in halo exchange (P. Boyle, arXiv:1402.2585)
- Use fp16 for coarse grid solve (Heybrock et al, arXiv:1512.04506)
- Large HMC runs with tolerance $\sim 10^{-13}$
- What happens when the volumes get bigger?
- Precision optimization an important part

COMMUNICATION

Chroma

$48^{3} \times 512$ lattice
Relative Scaling (Application Time)

$$
\begin{aligned}
& \text { "XK7" node }=\text { XK7 (1x K20X }+1 x \text { Interlagos) } \\
& \text { "XE6" node }=\text { XE6 (} 2 x \text { Interlagos) }
\end{aligned}
$$

TO THE EXASCALE AND BEYOND

- (At least) four challenges to overcome
- Parallelism
- Locality
- Communication
- Latency
-What's the answer to the above?

Algorithms

*and the ability to express those algorithms

HMC AND STREAM PARALLELISM

- Network bandwidth increasing becoming a limiting factor
- Starting to see hierarchy of network bandwidths
- CORAL: fat nodes with thin network
- HMC requires strong scaling
- HMC has a flat communications profile

- Limited by slowest connection
- Split determinants and impose task parallelism
- Each fat node computes one determinant contribution
- Eliminates slow connection from fermion solver

$$
\int d U e^{-S_{g}(U)} \operatorname{det}(\mathcal{M})=\int d U e^{-S_{g}(U)} \prod_{i=1}^{n} \operatorname{det}\left(\mathcal{M}^{1 / n}\right)
$$

