
Kate Clark, August 2nd 2016

QCD TO THE EXASCALE

CONTENTS

Charting our way to the Exascale
GPUs
Block solvers - Locality
Multigrid - Parallelism
To the Exascale and Beyond

CHARTING OUR WAY TO THE EXASCALE

4

Power of 300 Petaflop  
CPU-only Supercomputer = Power for the city

of San Francisco

HPC’s Biggest Challenge: Power

5

6

THE RISE OF LEAKAGE

7

LEAKAGE IS KILLING VOLTAGE SCALING

The Good Old Days
Leakage not important,

voltage scaled with feature size

L’ = L/2

V’ = V/2

E’ = CV2 = E/8

f’ = 2f

D’ = 1/L2 = 4D

P’ = P

L/2 => 4x transistors

 => 8x capability

 => same power

The New Reality
Leakage limiting threshold voltage,

voltage scaling dying

L’ = L/2

V’ = ~V

E’ = CV2 = E/2

f’ = 2f

D’ = 1/L2 = 4D

P’ = 4P

L/2 => 4x transistors

 => 8x capability

 => 4x power, or…

2x capability,

same power, ¼ area

8

LEAKAGE SOLUTION: GO SLOW

9

ENERGY EFFICIENCY DRIVES LOCALITY

20mm

64-bit DP

28nm IC

20 pJ

9

ENERGY EFFICIENCY DRIVES LOCALITY

20mm

64-bit DP

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ

9

ENERGY EFFICIENCY DRIVES LOCALITY

20mm

64-bit DP

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ 26 pJ 256 pJ

256
bits

9

ENERGY EFFICIENCY DRIVES LOCALITY

20mm

64-bit DP

1000 pJ

28nm IC

256-bit access
8 kB SRAM 50 pJ

20 pJ 26 pJ 256 pJ

256
bits

9

ENERGY EFFICIENCY DRIVES LOCALITY

20mm

64-bit DP

1000 pJ

28nm IC

256-bit access
8 kB SRAM 50 pJ

16000 pJ DRAM Rd/Wr

500 pJ Efficient off-chip link

20 pJ 26 pJ 256 pJ

256
bits

10

SOFTWARE IMPLICATIONS

• Need to expose massive concurrence

• Exaflop at O(GHz) clocks ⇒ O(billion-way) parallelism!

• Need to expose and exploit locality
• Data motion more expensive than computation

• > 100:1 global v. local energy

GPUS

12

THE RISE OF THE GPU

13

WHAT IS A GPU?

• Pascal P100 (2016)
• 3584 FP32 processing elements

• 10.6 TFLOPS FP32 / 5.3 TFLOPS FP64 peak
• Deep memory hierarchy
• Programmed using a thread model

• Architecture abstraction is CUDA
• Fine-grained parallelism is required

• Diversity of programming languages
• CUDA C / C++ / Fortran
• C / C++ / Fortran + OpenACC / OpenMP
• Python, Java, etc.

Q
C

D
 o

n
G

PU
s

What is a GPU?
• Kepler K20X (2012)
– 2688 processing cores
– 3995 SP Gflops peak

• Effective SIMD width of 32 threads (warp)
• Deep memory hierarchy
• As we move away from registers
– Bandwidth decreases
– Latency increases

• Programmed using a thread model
– Architecture abstraction is known as CUDA
– Fine-grained parallelism required

• Diversity of programming languages
– CUDA C/C++/Fortran
– OpenACC, OpenMP 4.0
– Python, etc.

Device MemoryDevice Memory

Multiprocessor 1

Core
1

Core
2

Core
32

 . . .

Multiprocessor 2

Core
1

Core
2

Core
32

 . . .

Multiprocessor n

Core
1

Core
2

Core
32

 . . .

 . . .

RegistersRegisters RegistersRegisters RegistersRegisters

177 GB/s

 1.345 TB/s

L2 CacheL2 Cache

Sh
Mem

Sh
Mem

 10.76 TB/s

TexTex Sh
Mem

Sh
Mem TexTex Sh

Mem

Sh
Mem TexTexL1 L1 L1

Host MemoryHost Memory

8.0 GB/s per directionPCIe

 280 GB/s

O
n

 c
h

ip
O

ff
 c

h
ip

250 GB/s

500 GB/s

2.5 TB/s

2.5 TB/s

192 192 192192 192 192

32 GB/s bi-directional

720 GB/s

2 TB/s

10 TB/s

4 MiB

3.5 + 1.3 MiB

14 MiB

14

HETEROGENOUS NODE PHILOSOPHY
Optimize for Efficiency

CPU

SYSTEM
MEMORY

GPU MEMORY

GPU

LATENCY-
OPTIMIZED

THROUGHPUT-
OPTIMIZED

15

TESLA PASCAL P100

Tesla P100
for NVLink-enabled Servers

Tesla P100
for PCIe-Based Servers

5.3 TF DP · 10.6 TF SP · 21 TF HP
720 GB/sec Memory Bandwidth
16 GB HBM2

4.7 TF DP · 9.3 TF SP · 18.7 TF HP
Config 1: 16 GB (HBM2), 720 GB/sec
Config 2: 12 GB (HBM2), 540 GB/sec

16

DGX-1

• Pascal includes NVLink interconnect technology
• 4x NVLink connections per GPU
• 160 GB/s bi-directional bandwidth per GPU

• NVIDIA DGX-1
• 8x P100 GPUs
• 23 NVLink topology
• 4x EDR IB (via PCIe switches)
• 2x Intel Xeon hosts

• 1 DGX-1 equivalent inter-GPU  
bandwidth to 64 nodes of Titan

PCIe

17

M
IL

C
 o

n
G

PU
s

30

US to Build Two Flagship Supercomputers
Powered by the Tesla Platform

100-300 PFLOPS Peak

10x in Scientific App Performance

IBM POWER9 CPU + NVIDIA Volta GPU

NVLink High Speed Interconnect

40 TFLOPS per Node, >3,400 Nodes

2017

Major Step Forward on the Path to Exascale

18

37

Just 4 nodes in Summit  
would make the Top500 list of

supercomputers today

Similar Power as Titan
5-10x Faster

1/5th the Size

150 PF = 3M Laptops
One laptop for Every Resident in

State of Mississippi

QUDA
• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)
• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD,

Chroma, CPS, MILC, TIFR, tmLQCD, etc.
– Latest release 0.8.0 (8th February 2016)

• Provides:
— Various solvers for all major fermionic discretizations, with multi-GPU support
— Additional performance-critical routines needed for gauge-field generation

• Maximize performance
– Exploit physical symmetries to minimize memory traffic
– Mixed-precision methods
– Autotuning for high performance on all CUDA-capable architectures
– Domain-decomposed (Schwarz) preconditioners for strong scaling
– Eigenvector and deflated solvers (Lanczos, EigCG, GMRES-DR)
– Multi-source solvers
– Multigrid solvers for optimal convergence

• A research tool for how to reach the exascale
19

QUDA CONTRIBUTORS

§ Steve Gottlieb (Indiana University)
§ Dean Howarth (Rensselaer Polytechnic Institute)
§ Bálint Joó (Jlab)
§ Hyung-Jin Kim (BNL -> Samsung)
§ Claudio Rebbi (Boston University)
§ Guochun Shi (NCSA -> Google)
§ Mario Schröck (INFN)
§ Alexei Strelchenko (FNAL)
§ Alejandro Vaquero (INFN)
§ Mathias Wagner (NVIDIA)
§ Frank Winter (Jlab)

(multigrid collaborators in green)

§ Ron Babich (NVIDIA)
§ Michael Baldhauf (Regensburg)
§ Kip Barros (LANL)
§ Rich Brower (Boston University)
§ Nuno Cardoso (NCSA)
§ Kate Clark (NVIDIA)
§ Michael Cheng (Boston University)
§ Carleton DeTar (Utah University)
§ Justin Foley (Utah -> NIH)
§ Joel Giedt (Rensselaer Polytechnic Institute)
§ Arjun Gambhir (William and Mary)

20

21

QUDA - LATTICE QCD ON GPUS
http://lattice.github.com/qudaThis repository Pull requests Issues Gist

QUDA is a library for performing calculations in lattice QCD on GPUs. http://lattice.github.com/quda — Edit

include In ColorSpinorParam, if staggered fermions then set field dimension t… 11 days ago

lib Correctly set volumeCB for parity subset references - need to check p… a day ago

tests Requesting --test 1 with staggered_dslash_test now tests MdagM operator 11 days ago

.gitignore Updates to .gitignore and renamed multigrid_benchmark to multigrid_be… 3 months ago

CMakeLists.txt added some comments to CMakeLists.txt 3 months ago

LICENSE updated release dates 6 months ago

Makefile Merged develop branch into feature/deflation branch a year ago

NEWS updated release dates 6 months ago

README Updated README to document profiler. Profile output filename can now … 6 months ago

configure Added --enable-magma-vars option. If both --enable-magma and --enable… 6 months ago

configure.ac Added --enable-magma-vars option. If both --enable-magma and --enable… 6 months ago

configure.chroma.titan Updated configure files for MILC and Chroma on Titan. 3 years ago

configure.milc.titan Updated and fixed bugs in example configure script for MILC 3 years ago

configure.tifr1 Added example configure for building TIFR support with GPU_COMMS. 3 years ago

make.inc.in Merge branch 'develop' of github.com:lattice/quda into feature/peer_t… 4 months ago

45 2936 Watch Unstar Forklattice / quda

 Code Issues 107 Pull requests 2 Wiki Pulse Graphs Settings

 4,621 commits 49 branches 19 releases 16 contributors

Clone or downloadClone or download Create new file Upload files Find file develop Branch: New pull request

Latest commit f3e2aa7 a day ago mathiaswagner committed on GitHub Merge pull request #487 from lattice/hotfix/checkerboard-reference …

 README

Release	Notes	for	QUDA	v0.8.0																									1st	February	2016

Overview:

QUDA	is	a	library	for	performing	calculations	in	lattice	QCD	on
graphics	processing	units	(GPUs),	leveraging	NVIDIA's	CUDA	platform.
The	current	release	includes	optimized	Dirac	operators	and	solvers	for
the	following	fermion	actions:

*	Wilson
*	Clover-improved	Wilson
*	Twisted	mass	(including	non-degenerate	pairs)
*	Twisted	mass	with	a	clover	term
*	Staggered	fermions
*	Improved	staggered	(asqtad	or	HISQ)
*	Domain	wall	(4-d	or	5-d	preconditioned)
*	Mobius	fermion

Implementations	of	CG,	multi-shift	CG,	BiCGstab,	and	DD-preconditioned
GCR	are	provided,	including	robust	mixed-precision	variants	supporting
combinations	of	double,	single,	and	half	(16-bit	"block	floating
point")	precision.		The	library	also	includes	auxilliary	routines
necessary	for	Hybrid	Monte	Carlo,	such	as	HISQ	link	fattening,	force
terms	and	clover-field	construction.		Use	of	many	GPUs	in	parallel	is
supported	throughout,	with	communication	handled	by	QMP	or	MPI.

http://lattice.github.com/quda

review basic details of the LQCD application and of NVIDIA
GPU hardware. We then briefly consider some related work
in Section IV before turning to a general description of the
QUDA library in Section V. Our parallelization of the quark
interaction matrix is described in VI, and we present and
discuss our performance data for the parallelized solver in
Section VII. We finish with conclusions and a discussion of
future work in Section VIII.

II. LATTICE QCD
The necessity for a lattice discretized formulation of QCD

arises due to the failure of perturbative approaches commonly
used for calculations in other quantum field theories, such as
electrodynamics. Quarks, the fundamental particles that are at
the heart of QCD, are described by the Dirac operator acting
in the presence of a local SU(3) symmetry. On the lattice,
the Dirac operator becomes a large sparse matrix, M , and the
calculation of quark physics is essentially reduced to many
solutions to systems of linear equations given by

Mx = b. (1)

The form of M on which we focus in this work is the
Sheikholeslami-Wohlert [6] (colloquially known as Wilson-
clover) form, which is a central difference discretization of the
Dirac operator. When acting in a vector space that is the tensor
product of a 4-dimensional discretized Euclidean spacetime,
spin space, and color space it is given by

Mx,x0 = �1
2

4⇤

µ=1

�
P�µ ⇤ Uµ

x �x+µ̂,x0 + P+µ ⇤ Uµ†
x�µ̂ �x�µ̂,x0

⇥

+ (4 + m + Ax)�x,x0

⌅ �1
2
Dx,x0 + (4 + m + Ax)�x,x0 . (2)

Here �x,y is the Kronecker delta; P±µ are 4 ⇥ 4 matrix
projectors in spin space; U is the QCD gauge field which
is a field of special unitary 3⇥ 3 (i.e., SU(3)) matrices acting
in color space that live between the spacetime sites (and hence
are referred to as link matrices); Ax is the 12⇥12 clover matrix
field acting in both spin and color space,1 corresponding to
a first order discretization correction; and m is the quark
mass parameter. The indices x and x0 are spacetime indices
(the spin and color indices have been suppressed for brevity).
This matrix acts on a vector consisting of a complex-valued
12-component color-spinor (or just spinor) for each point in
spacetime. We refer to the complete lattice vector as a spinor
field.

Since M is a large sparse matrix, an iterative Krylov
solver is typically used to obtain solutions to (1), requiring
many repeated evaluations of the sparse matrix-vector product.
The matrix is non-Hermitian, so either Conjugate Gradients
[7] on the normal equations (CGNE or CGNR) is used, or
more commonly, the system is solved directly using a non-
symmetric method, e.g., BiCGstab [8]. Even-odd (also known

1Each clover matrix has a Hermitian block diagonal, anti-Hermitian block
off-diagonal structure, and can be fully described by 72 real numbers.

Fig. 1. The nearest neighbor stencil part of the lattice Dirac operator D,
as defined in (2), in the µ� ⇥ plane. The color-spinor fields are located on
the sites. The SU(3) color matrices Uµ

x are associated with the links. The
nearest neighbor nature of the stencil suggests a natural even-odd (red-black)
coloring for the sites.

as red-black) preconditioning is used to accelerate the solution
finding process, where the nearest neighbor property of the
Dx,x0 matrix (see Fig. 1) is exploited to solve the Schur com-
plement system [9]. This has no effect on the overall efficiency
since the fields are reordered such that all components of
a given parity are contiguous. The quark mass controls the
condition number of the matrix, and hence the convergence of
such iterative solvers. Unfortunately, physical quark masses
correspond to nearly indefinite matrices. Given that current
leading lattice volumes are 323 ⇥ 256, for > 108 degrees of
freedom in total, this represents an extremely computationally
demanding task.

III. GRAPHICS PROCESSING UNITS

In the context of general-purpose computing, a GPU is
effectively an independent parallel processor with its own
locally-attached memory, herein referred to as device memory.
The GPU relies on the host, however, to schedule blocks of
code (or kernels) for execution, as well as for I/O. Data is
exchanged between the GPU and the host via explicit memory
copies, which take place over the PCI-Express bus. The low-
level details of the data transfers, as well as management of
the execution environment, are handled by the GPU device
driver and the runtime system.

It follows that a GPU cluster embodies an inherently het-
erogeneous architecture. Each node consists of one or more
processors (the CPU) that is optimized for serial or moderately
parallel code and attached to a relatively large amount of
memory capable of tens of GB/s of sustained bandwidth. At
the same time, each node incorporates one or more processors
(the GPU) optimized for highly parallel code attached to a
relatively small amount of very fast memory, capable of 150
GB/s or more of sustained bandwidth. The challenge we face is
that these two powerful subsystems are connected by a narrow
communications channel, the PCI-E bus, which sustains at
most 6 GB/s and often less. As a consequence, it is critical
to avoid unnecessary transfers between the GPU and the host.

D
x,x

0 =
x x

x

x−

x−

U x

U
x

μ

μ

ν

22

MAPPING THE DIRAC OPERATOR TO CUDA

• Assign a single space-time point to each thread
V = XYZT threads, e.g., V = 244 => 3.3x106 threads

• Looping over direction each thread must
– Load the neighboring spinor (24 numbers x8)

– Load the color matrix connecting the sites (18 numbers x8)

– Do the computation

– Save the result (24 numbers)

• Each thread has (Wilson Dslash) 0.92 naive arithmetic intensity
• QUDA reduces memory traffic

Exact SU(3) matrix compression (18 => 12 or 8 real numbers)
Use 16-bit fixed-point representation with mixed-precision solver

23

WILSON-DSLASH PERFORMANCE
K20X (2012), ECC on, V = 243xT

8 16 32 64 128
Temporal Extent

200

300

400

500

600

700

800

G
FL

O
PS

Half 8 GF
Half 8
Half 12
Single 8 GF
Single 8
Single 12

24

PASCAL

• Newly launched Pascal P100 GPU provides  
significant performance uplift through  
stacked HBM memory

• Wilson-clover dslash 3x speedup vs K40
• double ~500 GFLOPS
• single ~1000 GFLOPS
• half ~2000 GFLOPS

Wilson-clover dslash

P100

25

LQCD WITH GPU GENERATION
Single precision Wilson-dslash performance

G
FL

O
PS

0

500

1000

1500

2000

Tesla  
2007

Tesla2  
2008

Fermi  
2010

Kepler 
2012

Maxwell  
2014

Pascal  
2016

Volta  
(projected)

single 12 single 12

Improved L2

Stacked  
memory

Same kernel from
2008 runs unchanged

SOLVERS FOR MULTIPLE RIGHT HAND SIDES

27

CONJUGATE GRADIENT
just as a reminder

procedure CG

r

(0) = b�Ax

(0)

p

(0) = r

(0)

for k = 1, 2, . . . until converged do

z

(k�1) = Ap

(k�1)

↵

(k�1) =
|r(k�1)|2

h(p(k�1)),z(k�1)i
x

(k) = x(k � 1) + ↵

(k�1)
p

(k�1)

r

(k) = r

(k�1) � ↵

(k�1)
z

(k�1)

�

(k�1) =
|r(k�1)|2
|r(k)|2

p

(k) = r

(k) + �

(k�1)
p

(k�1)

end for

end procedure

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

WILSON CLOVER DSLASH
Volume = 324

0

500

1000

1500

2000

2500

K80
Half

P100
Half

K80
Single

P100
Single

K80
Double

P100
Double

GFLOPS Reconstruct 8 Reconstruct 12 Reconstruct 18

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

Reuse gauge field for multiple rhs

28

QCD PERFORMANCE LIMITERS

QCD is memory bandwidth bound
Dslash arithmetic intensity for HISQ ~ 0.7

exploit SU(3) symmetry:
reconstruct gauge field from 8/12 floats

Smearing kills symmetry: stuck with 18 floats

Reuse gauge field for multiple rhs

reconstruct

ar
it

hm
et

ic
 in

te
ns

it
y

0

0.7

1.4

2.1

2.8

rhs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

18 13 9

29

MULTI-SRC DSLASH ON PASCAL

0

500

1000

1500

2000

1 2 3 4 5 6 8 10 12 14 16

P100 double P100 single Titan X single

G
Fl

O
P/

s

rhs

Volume 244, HISQ, tuned gauge reconstruct

29

MULTI-SRC DSLASH ON PASCAL

0

500

1000

1500

2000

1 2 3 4 5 6 8 10 12 14 16

P100 double P100 single Titan X single

G
Fl

O
P/

s

rhs

Volume 244, HISQ, tuned gauge reconstruct

29

MULTI-SRC DSLASH ON PASCAL

0

500

1000

1500

2000

1 2 3 4 5 6 8 10 12 14 16

P100 double P100 single Titan X single

G
Fl

O
P/

s

rhs

Volume 244, HISQ, tuned gauge reconstruct

29

MULTI-SRC DSLASH ON PASCAL

0

500

1000

1500

2000

1 2 3 4 5 6 8 10 12 14 16

P100 double P100 single Titan X single

G
Fl

O
P/

s

rhs

Volume 244, HISQ, tuned gauge reconstruct

30

CONJUGATE GRADIENT

exploit multi-src Dslash performance

do all the linear algebra for each rhs

same iteration count as CG

using multi-src Dslash
procedure CG WITH MULTI-SRC DSLASH

ri = bi �Ax

(0)
i

p

(0)
i = r

(0)
i

for k = 1, 2, . . . until converged do

n

z

(k�1)
i

o

= A

�

p

(k�1)

↵

(k�1)
i = |r(k�1)

i |2/h(p(k�1)
i), z(k�1)

i i
x

(k)
i = x

(k�1)
i + ↵

(k�1)
i p

(k�1)
i

r

(k)
i = r

(k�1)
i � ↵

(k�1)
i z

(k�1)
i

�

(k�1)
i = |r(k�1)

i |2/|r(k)i |2

p

(k)
i = r

(k)
i + �

(k�1)
i p

(k�1)
i

end for

end procedure

31

MULTI-SRC CG ON PASCAL

0

500

1000

1500

1 2 3 4 5 6 8 10 12 14 16

P100 single

G
FL

O
P/

s

rhs

Volume 244, HISQ

32

BLOCK KRYLOV SOLVERS

BlockCG solver suggested by O’Leary in early 80’s
retooled BlockCG by Dubrulle 2001
In exact precision converges in N / rhs iterations

Share the Krylov space

32

BLOCK KRYLOV SOLVERS

BlockCG solver suggested by O’Leary in early 80’s
retooled BlockCG by Dubrulle 2001
In exact precision converges in N / rhs iterations

Application in QCD:
Nakamura et. (modified block BiCGStab)
Birk and Frommer (block methods,
including block methods for multi shift)

Share the Krylov space

36 Y. Nakamura et al. / Computer Physics Communications 183 (2012) 34–37

Algorithm 2.2. Memory Saving Version(A, M, B,ϵ).

1 initial guess X ∈ CN×L

2 R = B − A X
3 P = R
4 choose R̃ ∈ CN×L

while maxi(|r(i)|/|b(i)|) ! ϵ

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.1 QR decomposition P = Q γ , P ← Q
4.2 U = M P
4.3 V = AU
4.4 solve(R̃ H V)α = R̃ H R for α
4.5 R ← R − V α
4.6 X ← X + Uα
4.7 S = M R
4.8 Z = A S
4.9 ζ = Tr(Z H

k Rk)/Tr(Z H
k Zk)

4.10 X ← X + ζ S
4.11 R ← R − ζ Z
4.12 solve(R̃ H V)β = −R̃ H Z for β
4.13 P ← R + (P − ζ V)β

5 return (X)

LEE is the forward hopping term and UEE is the backward one. We
perform SAP preconditioning in the single precision for effective
use of memory bandwidth and network bandwidth between nodes.

It is known that “sloppy” precision can be used in right precon-
ditioning, but not in left one [12]. Suppose calculation of S = MT
at line 4.6 in Algorithm 2.1 is performed with “sloppy” precision
in k-th iteration. Numerical errors for Sk , Zk , ζk and Xk+1 may be
expressed as

Sk → S ′
k = Sk + δSk, (11)

Zk → Z ′
k = A S ′

k, (12)

ζk → ζ ′
k = ζk + δζk, (13)

Xk+1 → X ′
k+1 = Xk + Ukαk + ζ ′

k S ′
k. (14)

These yield

R ′
k+1 = Rk − Vkαk − ζ ′

k Z ′
k

= Rk − AUkαk − ζ ′
k A S ′

k

= B − A Xk − A
(
Ukαk + ζ ′

k S ′
k

)

= B − A X ′
k+1, (15)

which satisfies the exact relation between approximate solutions
and residuals in (k+1)-th iteration. For the case that both U = M P
at line 4.2 and S = MT at line 4.6 are computed with “sloppy” pre-
cision one can also reproduce the above relation with the following
formulae:

Uk → U ′
k = Uk + δUk, (16)

Vk → V ′
k = AU ′

k, (17)

αk → α′
k = αk + δα, (18)

Tk → T ′
k = Rk − V ′

kα
′
k, (19)

Sk → S ′′
k = Sk + δS, (20)

Zk → Z ′′
k = A S ′′

k , (21)

ζk → ζ ′′
k = ζk + δζ, (22)

Xk+1 → X ′′
k+1 = Xk + U ′

kα
′
k + ζ ′′

k S ′′
k . (23)

Fig. 2. Representative case for residual norm as a function of number of iteration
with L = 1,2,3,4,6,12 on 323 × 64.

3. Numerical test

3.1. Choice of parameters

We test modified block BiCGSTAB employing a so-called “local
source”, B = [e1, . . . , eL], with L = 12 for color-spin components.
We use 2 sets of statistically independent 10 configurations gener-
ated at almost the physical point, (κud,κs) = (0.137785,0.136600)
on 323 × 64 [1] and (0.137785,0.136650) on 644, in 2 + 1 fla-
vor lattice QCD with the nonperturbatively O (a)-improved Wilson
quark action and the Iwasaki gauge action [13] at β = 1.9. We
choose the hopping parameter κ = 0.137785 for the Wilson–Dirac
equation and NSAP = 5 with 8 × 8 × 8 × 8 domain size for the SAP
preconditioning following Ref. [1]. Parameters for SSOR method are
also fixed with NSSOR = 1 and ω = 1.26. The stopping criterion is
set to be maxi(|r(i)|/|b(i)|) ! ϵ with ϵ = 10−14.

3.2. Test environment

Numerical test is performed on 16 nodes for smaller lattice
and on 128 nodes for larger lattice of a large-scale cluster sys-
tem called T2K-Tsukuba. The machine consists of 648 compute
nodes providing 95.4 Tflops of computing capability. Each node
consists of quad-socket, 2.3 GHz Quad-Core AMD Opteron Model
8356 processors whose on-chip cache sizes are 64 KBytes/core,
512 KBytes/core, 2 MB/chip for L1, L2, L3, respectively. Each proces-
sor has a direct connect memory interface to an 8 GBytes DDR2-
667 memory and three hypertransport links to connect other pro-
cessors. All the nodes in the system are connected through a
full-bisectional fat-tree network consisting of four interconnection
links of 8 GBytes/sec aggregate bandwidth with Infiniband. For
numerical test we modify the lattice QCD simulation program LD-
DHMC/ver1.04b12.31 developed by PACS-CS Collaboration [14].

3.3. Results

Fig. 2 shows a representative case for residual norm as a func-
tion of number of iterations for modified block BiCGSTAB. We ob-
serve one of important features of block Krylov subspace methods
that the number of iterations required for convergence decreases
as the block size L is increased.

The results are summarized in Tables 1 and 2. In both tables,
the second column is total time to solve the Wilson–Dirac equation
for all 12 color-spin components at one local source. In case of
L = 6, for example, 12 right-hand side vectors are divided into two

Nakamura et al., CPC 183 (2012) 34–37

BLOCK CG
share Krylov space between multiple rhs

procedure BLOCKCG
R(0) = B �AX(0)

P (0) = R(0)

for k = 1, 2, . . . until converged do

Z(k�1) = AP (k�1)

↵(k�1) =
⇥
(P (k�1))HZ(k�1)

⇤�1
(R(k�1))HR(k�1)

X(k) = X(k�1) + P (k�1)↵(k�1)

R(k) = R(k�1) � Z(k�1)↵(k�1)

�(k�1) =
⇥
(R(k�1))HR(k�1)

⇤�1
(R(k))HR(k)

P (k) = R(k) � P (k�1)�(k�1)

end for

end procedure

33

BLOCK CG
share Krylov space between multiple rhs

procedure BLOCKCG
R(0) = B �AX(0)

P (0) = R(0)

for k = 1, 2, . . . until converged do

Z(k�1) = AP (k�1)

↵(k�1) =
⇥
(P (k�1))HZ(k�1)

⇤�1
(R(k�1))HR(k�1)

X(k) = X(k�1) + P (k�1)↵(k�1)

R(k) = R(k�1) � Z(k�1)↵(k�1)

�(k�1) =
⇥
(R(k�1))HR(k�1)

⇤�1
(R(k))HR(k)

P (k) = R(k) � P (k�1)�(k�1)

end for

end procedure

1 m

n n

33

BLOCK CG
share Krylov space between multiple rhs

procedure BLOCKCG
R(0) = B �AX(0)

P (0) = R(0)

for k = 1, 2, . . . until converged do

Z(k�1) = AP (k�1)

↵(k�1) =
⇥
(P (k�1))HZ(k�1)

⇤�1
(R(k�1))HR(k�1)

X(k) = X(k�1) + P (k�1)↵(k�1)

R(k) = R(k�1) � Z(k�1)↵(k�1)

�(k�1) =
⇥
(R(k�1))HR(k�1)

⇤�1
(R(k))HR(k)

P (k) = R(k) � P (k�1)�(k�1)

end for

end procedure

=
1 m

n n

33

BLOCK CG
share Krylov space between multiple rhs

procedure BLOCKCG
R(0) = B �AX(0)

P (0) = R(0)

for k = 1, 2, . . . until converged do

Z(k�1) = AP (k�1)

↵(k�1) =
⇥
(P (k�1))HZ(k�1)

⇤�1
(R(k�1))HR(k�1)

X(k) = X(k�1) + P (k�1)↵(k�1)

R(k) = R(k�1) � Z(k�1)↵(k�1)

�(k�1) =
⇥
(R(k�1))HR(k�1)

⇤�1
(R(k))HR(k)

P (k) = R(k) � P (k�1)�(k�1)

end for

end procedure

=

= +

+=

1 m

n n

33

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

34

REDUCED ITERATION COUNT
HISQ, 323x8, Gaussian random source

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 500 1000 1500 2000 2500 3000 3500 4000 4500

1 2 4 8 12 16

re
si

du
al

iterations

35

WHY DOESN’T EVERYONE USE IT?

• Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
• Quadratic scaling with # rhs
• Becomes prohibitive

BlockCG is not always numerically stable

Cost per iteration

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation Orthogonalization

35

WHY DOESN’T EVERYONE USE IT?

• Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
• Quadratic scaling with # rhs
• Becomes prohibitive

BlockCG is not always numerically stable

Cost per iteration

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation Orthogonalization

35

WHY DOESN’T EVERYONE USE IT?

• Remedy with orthogonalization: Gram-Schmidt or modified Gram-Schmidt
• Quadratic scaling with # rhs
• Becomes prohibitive

BlockCG is not always numerically stable

Cost per iteration

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation Orthogonalization

36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi +=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi

(0,0)

(0,3)

(0,1)

(0,4)

(1,0)

(1,2)

(1,1)

(1,3)

(2,0)

(2,2)

(2,1)

(2,3)

(3,0)

(3,2)

(3,1)

(3,4)

+=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi

y0(0) = a00x0(0) + a01x1(0) + . . .

y1(0) = a10x0(0) + a11x1(0) + . . .

y2(0) = a20x0(0) + a21x1(0) + . . .

y3(0) = a30x0(0) + a31x1(0) + . . .

(0,0)

(0,3)

(0,1)

(0,4)

(1,0)

(1,2)

(1,1)

(1,3)

(2,0)

(2,2)

(2,1)

(2,3)

(3,0)

(3,2)

(3,1)

(3,4)

+=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi

y0(0) = a00x0(0) + a01x1(0) + . . .

y1(0) = a10x0(0) + a11x1(0) + . . .

y2(0) = a20x0(0) + a21x1(0) + . . .

y3(0) = a30x0(0) + a31x1(0) + . . .

(0,0)

(0,3)

(0,1)

(0,4)

(1,0)

(1,2)

(1,1)

(1,3)

(2,0)

(2,2)

(2,1)

(2,3)

(3,0)

(3,2)

(3,1)

(3,4)

+=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

cache reuse
36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi

y0(0) = a00x0(0) + a01x1(0) + . . .

y1(0) = a10x0(0) + a11x1(0) + . . .

y2(0) = a20x0(0) + a21x1(0) + . . .

y3(0) = a30x0(0) + a31x1(0) + . . .

(0,0)

(0,3)

(0,1)

(0,4)

(1,0)

(1,2)

(1,1)

(1,3)

(2,0)

(2,2)

(2,1)

(2,3)

(3,0)

(3,2)

(3,1)

(3,4)

+=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

cache reuse
36

EXPLOIT GPU ARCHITECTURE

CUDA supports two dimensional grid blocks:
easy to exploit locality for texture cache / shared memory

to overcome quadratic scaling

yi =
X

aijxj + yi

y0(0) = a00x0(0) + a01x1(0) + . . .

y1(0) = a10x0(0) + a11x1(0) + . . .

y2(0) = a20x0(0) + a21x1(0) + . . .

y3(0) = a30x0(0) + a31x1(0) + . . .

(0,0)

(0,3)

(0,1)

(0,4)

(1,0)

(1,2)

(1,1)

(1,3)

(2,0)

(2,2)

(2,1)

(2,3)

(3,0)

(3,2)

(3,1)

(3,4)

+=

GP100 Pascal Whitepaper GP100 GPU Hardware Architecture In-Depth

NVIDIA Tesla P100 WP-08019-001_v01.1 | 13

Figure 8. Pascal GP100 SM Unit

Designed for High-Performance Double Precision

Double precision arithmetic is at the heart of many HPC applications such as linear algebra, numerical
simulation, and quantum chemistry. Therefore, one of the key design goals for GP100 was to significantly
improve the delivered performance for these use cases.

Each SM in GP100 features 32 double precision (FP64) CUDA Cores, which is one-half the number of FP32
single precision CUDA Cores. A full GP100 GPU has 1920 FP64 CUDA Cores. This 2:1 ratio of single
precision (SP) units to double precision (DP) units aligns better with GP100’s new datapath configuration,
allowing the GPU to process DP workloads more efficiently. Like previous GPU architectures, GP100
supports full IEEE 754‐2008 compliant single precision and double precision arithmetic, including support
for the fused multiply‐add (FMA) operation and full speed support for denormalized values.

� Note: Kepler GK110 had a 3:1 ratio of SP units to DP units.

y0(1) = a00x0(1) + a01x1(1) + . . .

y1(1) = a10x0(1) + a11x1(1) + . . .

y2(1) = a20x0(1) + a21x1(1) + . . .

y3(1) = a30x0(1) + a31x1(1) + . . .

37

SCALABILITY
Proportional to peak flops not memory bandwidth

0

1500

3000

4500

6000

rhs
1 10 100

Block dot product performance 
(roofline model on P100)

quadratic  
scaling

linear  
scaling

38

COST OF ONE ITERATION

CholQR
Gram-Matrix: dot products of length n

Cholesky Decomposition of matrix

apply to vectors axpy (output, input)

• Linear algebra and orthogonalization stay constant

• Large benefits from multi-src Dslash but relative  
importance of Dslash reduces

m⇥m

m⇥m

m⇥m

B = RHR

SHS = B

Q = RS�1

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation
Orthogonalization

38

COST OF ONE ITERATION

CholQR
Gram-Matrix: dot products of length n

Cholesky Decomposition of matrix

apply to vectors axpy (output, input)

• Linear algebra and orthogonalization stay constant

• Large benefits from multi-src Dslash but relative  
importance of Dslash reduces

m⇥m

m⇥m

m⇥m

B = RHR

SHS = B

Q = RS�1

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation
Orthogonalization

38

COST OF ONE ITERATION

CholQR
Gram-Matrix: dot products of length n

Cholesky Decomposition of matrix

apply to vectors axpy (output, input)

• Linear algebra and orthogonalization stay constant

• Large benefits from multi-src Dslash but relative  
importance of Dslash reduces

m⇥m

m⇥m

m⇥m

B = RHR

SHS = B

Q = RS�1

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation
Orthogonalization

38

COST OF ONE ITERATION

CholQR
Gram-Matrix: dot products of length n

Cholesky Decomposition of matrix

apply to vectors axpy (output, input)

• Linear algebra and orthogonalization stay constant

• Large benefits from multi-src Dslash but relative  
importance of Dslash reduces

m⇥m

m⇥m

m⇥m

B = RHR

SHS = B

Q = RS�1

Co
st

 [
A.

U
.]

rhs

2 4 8 12 16

Dslash Vector operation
Orthogonalization

39

WORK TO BE DONE

stability needs real world testing 
orthogonalization might be necessary

iteration count improvement may
depend on gauge field and sources

need to finish up implementation

add mixed precision

re
si

du
al

 n
or

m

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

iterations

0 1000 2000 3000 4000

1 2 4 8 12 16

40

SPEEDUP OVER CG

sp
ee

du
p

pe
r

rh
s

0

2.5

5

7.5

10

rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected

40

SPEEDUP OVER CG

Reuse gauge field for Dslash

sp
ee

du
p

pe
r

rh
s

0

2.5

5

7.5

10

rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected

40

SPEEDUP OVER CG

Reuse gauge field for Dslash

Reduced iteration count

sp
ee

du
p

pe
r

rh
s

0

2.5

5

7.5

10

rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected

40

SPEEDUP OVER CG

Reuse gauge field for Dslash

Reduced iteration count

sp
ee

du
p

pe
r

rh
s

0

2.5

5

7.5

10

rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected

40

SPEEDUP OVER CG

Reuse gauge field for Dslash

Reduced iteration count

Avoid quadratic scaling in LA

Speedups up to 10x

Scalable algorithm for future
architectures

sp
ee

du
p

pe
r

rh
s

0

2.5

5

7.5

10

rhs

1 2 4 8 12 16

CG MSRC CG Block CG BlockCG rQ

projected

MULTIGRID

WHY MULTIGRID?

-0.43 -0.42 -0.41 -0.4
mass

100

1000

10000

1e+05

D
ir

ac
 o

p
er

at
o
r

ap
p
li

ca
ti

o
n
s

32
3
96 CG

24
3
64 CG

16
3
64 CG

24
3
64 Eig-CG

16
3
64 Eig-CG

32
3
96 MG-GCR

24
3
64 MG-GCR

16
3
64 MG-GCR

Babich et al 2010

0"

10"

20"

30"

40"

50"

60"

70"

QUDA"(32"XK"nodes)" Mul:Grid"(16"XE"nodes)""

Av
er
ag
e'
Ru

n'
Ti
m
e'
fo
r'1

'so
ur
ce
''

(s
ec
on

ds
)'

Wallclock'9me'for'Light'Quark'solves'in'Single'
Precision''

0"

5"

10"

15"

20"

25"

30"

35"

QUDA"(16"XK"Nodes)" Mul:"Grid(16"XE"Nodes)"

Av
er
ag
e'
Ti
m
e'
fo
r'1

'so
ur
ce
'

(s
ec
on

ds
)'

Wallclock'9me'for'Strange'Quark'solves'in'Single'
Precision'

Chroma propagator benchmark  
Figure by Balint Joo 

MG Chroma integration by Saul Cohen 
MG Algorithm by James Osborn

42Osborn et al 2010

Optimality Speed

Stability

43

ADAPTIVE GEOMETRIC MULTIGRID

Adaptively find candidate null-space vectors

Dynamically learn the null space and use this to  
define the prolongator

Algorithm is self learning

Setup

1. Set solver to be simple smoother

2. Apply current solver to random vector vi = P(D) ηi

3. If convergence good enough, solver setup complete

4. Construct prolongator using fixed coarsening (1 - P R) vk = 0

➡ Typically use 4
4
 geometric blocks

➡ Preserve chirality when coarsening R = γ5 P
†
 γ5 = P

†

5. Construct coarse operator (Dc = R D P)

6. Recurse on coarse problem

7. Set solver to be augmented V-cycle, goto 2

Falgout

Babich et al 2010

see also Inexact Deflation (Lüscher, 2007)
Local coherence = weak approximation theory

44

THE CHALLENGE OF MULTIGRID ON GPU

GPU requirements very different from CPU
Each thread is slow, but O(10,000) threads per GPU

Fine grids run very efficiently
High parallel throughput problem

Coarse grids are worst possible scenario
More cores than degrees of freedom

Increasingly serial and latency bound

Little’s law (bytes = bandwidth * latency)

Amdahl’s law limiter

Multigrid exposes many of the problems expected at
the Exascale

INGREDIENTS FOR PARALLEL ADAPTIVE MULTIGRID

▪ Multigrid setup
– Block orthogonalization of null space vectors
– Batched QR decomposition

▪ Smoothing (relaxation on a given grid)
– Repurpose existing solvers

▪ Prolongation
– interpolation from coarse grid to fine grid
– one-to-many mapping

▪ Restriction
– restriction from fine grid to coarse grid
– many-to-one mapping

▪ Coarse Operator construction (setup)
– Evaluate R A P locally
– Batched (small) dense matrix multiplication

▪ Coarse grid solver
– Need optimal coarse-grid operator

x
x

x

x−

x−

U x

U
x

μ

μ

ν

x x

x

x−

x−

U x

U
x

μ

μ

ν

45

COARSE GRID OPERATOR

▪ Coarse operator looks like a Dirac operator (many more colors)
– Link matrices have dimension 2Nv x 2Nv (e.g., 48 x 48)

▪ Fine vs. Coarse grid parallelization
– Fine grid operator has plenty of grid-level parallelism

– E.g., 16x16x16x16

= 65536 lattice sites
– Coarse grid operator has diminishing grid-level parallelism

– first coarse grid 4x4x4x4= 256 lattice sites
– second coarse grid 2x2x2x2 = 16 lattice sites

▪ Current GPUs have up to 3840 processing elements

▪ Need to consider finer-grained parallelization
– Increase parallelism to use all GPU resources
– Load balancing

dofs (geometry). We start by defining the fields

W±µ
ksĉ,ls�ĉ� = V †

ksc,ksĉP
±µ
s,s�U(k+µ)c,lc��k+µ,lVls�c�,lŝ�ĉ�

note that here we are defining di�erent links for forward and backwards,
they are not simply the conjugate of each other (because of the di�erent spin
projection between the two). Also note that these e�ective link matrices have
also a spin index, this is because the vectors used to define the V rotation
matrices have spin dependence now. In this form we can now write down the
coarse Dirac operator as

D̂iŝĉ,jŝ�ĉ� = �
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

ksĉ,ls�ĉ��k+µ,l + W+µ†
ksĉ,ls�ĉ��k�µ,l

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥

+M �iŝĉ,jŝ�ĉ� .

We now finish up by blocking the geometry and spin onto the coarse lattice,
defining the e�ective link matrices Y ±µ that connect sites on the coarse
lattice:

Y ±µ
iŝĉ,jŝ�ĉ� =

�
�i,k/B�ŝ,s/Bs

⇥
W±µ

ksĉ,ls�ĉ�

�
�l/B,j�s�/Bs,ŝ�

⇥
�i⇤µ,j (2)

Xiŝĉ,jŝ�ĉ� =
�
�i,k/B�ŝ,s/Bs

⇥ ⇤

µ

⌅
W�µ

iŝĉ,kŝ�ĉ� + W+µ†
iŝĉ,kŝ�ĉ�

⇧ �
�l/B,j�s�/Bs,ŝ�

⇥
�i,j,

where we note now that the matrix X is not Hermitian. Thus the coarse
operator is written

D̂iŝĉ,jŝ�ĉ� = �
⇤

µ

⌅
Y �µ

iŝĉ,jŝ�ĉ��i+µ,j + Y +µ†
isĉ,js�ĉ��i�µ,j

⇧
+ (M �Xiŝĉ,jŝ�ĉ�) �iŝĉ,jŝ�ĉ� . (3)

For the explicit form of these matrices we refer the reader to Appendix A.
After the first blocking, subsequent blockings require that Bs = 1, i.e., we

cannot block the spin dimension again since we cannot remove the chirality.
Apart from this observation, the next coarse operator will have a similar form
to the current one: it will be a nearest neighbour non-Hermitian operator
connecting sites with ds = 2 spin dimension (in 2d and 4d anyway).

We note here in passing that because of the definition of the matrix field V
include explicit spin dependence, this destroys the tensor product structure
of the spin and colour on the coarse operator, i.e., we have to define an
e�ective link matrix that rotates in spin and colour space. If this were not
the case, i.e., if V were to be spin independent, then this structure would be

8

x
x

x

x−

x−

U x

U
x

μ

μ

ν

46

47

X[0]

X[1]

SOURCE OF PARALLELISM

�
a00 a01 a02 a03

�

0

BB@

b0
b1
b2
b3

1

CCA)
�
a00 a01

�✓b0
b1

◆
+

�
a02 a03

�✓b2
b3

◆

x
x

x

x−

x−

U x

U
x

μ

μ

ν

warp 0

x
x

x

x−

x−

U x

U
x

μ

μ

ν warp 1

x
x

x

x−

x−

U x

U
x

μ

μ

ν warp 2

x
x

x

x−

x−

U x

U
x

μ

μ

ν

warp 3

x
x

x

x−

x−

U x

U
x

μ

μ

ν

3. Stencil direction
8-way thread parallelism

1. Grid parallelism
Volume of threads

2. Link matrix-vector
partitioning
2 Nvec-way thread parallelism
(spin * color)

0

BB@

c0
c1
c2
c3

1

CCA+ =

0

BB@

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

1

CCA

0

BB@

b0
b1
b2
b3

1

CCA
thread y  

index

4. Dot-product partitioning
4-way thread parallelism + ILP

48

COARSE GRID OPERATOR PERFORMANCE
Tesla K20X (Titan), FP32, Nvec = 24

0"

20"

40"

60"

80"

100"

120"

140"

160"

10" 8" 6" 4" 2"

GF
LO

PS
'

La)ce'length'

baseline"

color2spin"

dimension"+"direc7on"

dot"product"

24,576-way parallel

16-way parallel

COARSE GRID OPERATOR PERFORMANCE

▪ Autotuner finds optimum
degree of parallelization

▪ Larger grids favor less fine
grained

▪ Coarse grids favor most
fine grained

▪ GPU is nearly always faster
than CPU

▪ Expect in future that coarse
grids will favor CPUs

▪ For now, use GPU exclusively

8-core Haswell 2.4 GHz (solid line) vs M6000 (dashed lined), FP32

0 20 40 60 80 100
2N

0

50

100

150

200

250

300

G
FL

O
PS

2x2x2x2
4x2x2x2
4x2x2x4
4x2x4x4
4x4x4x4

Coarse Dslash performance (8-core Haswell 2.4 GHz vs M6000)
Solid symbol CPU, open symbol / dashed line GPU

49

50

COARSE GRID OPERATOR PERFORMANCE
G

FL
O

PS

0

150

300

450

600

Lattice length
2 4 6 8 10

Kepler (FP32) Maxwell (FP32) Pascal (FP32)

51

IMPROVING STRONG SCALING

fine-grained  
parallelization  
of ghost packer

fuse memcpys to  
reduce latency

52

IMPROVING STRONG SCALING
Vcoarse = 44, 8-way communication, FP32, Quadro M6000

G
FL

O
PS

0

75

150

225

300

Nv=4 Nv=8 Nv=12 Nv=16 Nv=20 Nv=24

no comms naive comms
fine-grained pack fine-grained pack + fused copy
no comms + split gather fine-grained pack + fused copy + split gather
no comms + split column split column

53

MULTIGRID VERSUS BICGSTAB

• Compare MG against the state-of-the-art traditional Krylov solver on GPU
• BiCGstab in double/half precision with reliable updates
• 12/8 reconstruct
• Symmetric red-black preconditioning

• Adaptive Multigrid algorithm
• GCR outer solver wraps 3-level MG preconditioner
• GCR restarts done in double, everything else in single
• 24 null-space vectors on fine grid
• Minimum Residual smoother
• Symmetric red-black preconditioning on each level
• GCR coarse-grid solver

M̂
ee

= 1
ee

� 2A�1
ee

D
eo

A�1
oo

D
oe

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Wilson, V = 243x64, single workstation (3x M6000)
MULTIGRID VERSUS BICGSTAB

54

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Wilson, V = 243x64, single workstation (3x M6000)
MULTIGRID VERSUS BICGSTAB

54

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Wilson, V = 243x64, single workstation (3x M6000)
MULTIGRID VERSUS BICGSTAB

54

Ti
m

e
to

 s
ol

ut
io

n

0

2

4

6

8

10

12

Mass parameter

-0.42 -0.415 -0.410 -0.405 -0.40

BiCGstab (double-half) GCR-MG (double-single)

Iterations GFLOPs

mass BiCGstab GCR-MG BiCGstab GCR-MG

-0.400 251 15 980 376

-0.405 372 16 980 372

-0.410 510 17 980 353

-0.415 866 18 980 314

-0.420 3103 19 980 293

Wilson, V = 243x64, single workstation (3x M6000)
MULTIGRID VERSUS BICGSTAB

54

56

Wilson-clover, Strong scaling on Titan (K20X)

Ti
m

e
to

 S
ol

ut
io

n

0

10

20

30

40

50

Number of Nodes

24 48

BiCGstab MG

6.6x 6.3x

MULTIGRID VERSUS BICGSTAB
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

20 32

BiCGstab MG

7.9x 6.1x

V = 403x256, mπ = 230 MeV V = 483x96, mπ = 197 MeV

57

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, mπ = 197 MeV
Ti

m
e

to
 S

ol
ut

io
n

0

10

20

30

40

50

Number of Nodes

32 64 128 256 512

BiCGstab MG

5.5x 10.2x 8.9x 7.4x

MULTIGRID VERSUS BICGSTAB

58

Wilson-clover, Strong scaling on Titan (K20X), V = 643x128, 12 linear solves
Ti

m
e

0

10

20

30

40

50

Number of Nodes

64 128 256 512

level 1 level 2 level 3

MULTIGRID TIMING BREAKDOWN

59

ERROR REDUCTION AND VARIANCE
V = 403x256, mπ = 230 MeV

60

MULTIGRID FUTURE WORK

• Absolute Performance tuning, e.g., half precision on coarse grids

• Strong scaling improvements:
• Combine with Schwarz preconditioner
• Accelerate coarse grid solver: CA-GMRES instead of GCR, deflation
• More flexible coarse grid distribution, e.g., redundant nodes

• Investigate off load of coarse grids to the CPU
• Use CPU and GPU simultaneously using additive MG

• Full off load of setup phase to GPU - required for HMC

61

HIERARCHICAL ALGORITHMS ON HETEROGENEOUS
ARCHITECTURES

PCIe

GPU

CPU

62

MULTI-SRC SOLVERS

• Multi-src solvers increase locality through link-field reuse
• Multi-grid operators even more so since link matrices are 48x48

• Coarse Dslash / Prolongator / Restrictor
• Coarsest grids also latency limited

• Kernel level latency
• Network latency

• Multi-src solvers are a solution
• More parallelism
• Bigger messages

G
FL

O
PS

0

200

400

600

800

Number of right hand sides
1 2 4 8 16 32 64 128

2^4 4^4

Coarse dslash on  
M6000 GPU vs #rhs

> 3x speedup

TO THE EXASCALE AND BEYOND

64

SOFTWARE AND ALGORITHMS

• Algorithms continue to innovate rapidly inside and outside of LQCD
• E.g., Krylov solvers

• Communication avoiding solvers (Demmel et al)
• Cooperative Krylov methods (Bhaya et al)
• Enlarged Krylov space methods (Grigori et al)

• Software can be the problem
• Hierarchical / overlapping grids break most LQCD frameworks
• Used to calling solvers in serial fashion
• Precision often baked in

65

FINE-GRAINED PARALLELISM AND THE
IMPLICATIONS FOR DLLS

• Traditional DSL approach is to abstract the grid parallelism

• Compiler / front end will then transform this expression into a data parallel operation using OpenMP /
CUDA / C++ meta template magic, etc.

• This abstraction breaks with multigrid
• Not enough grid parallelism

• Platform and algorithmic independent conjecture

 

Matrix u;
Vector x, y;
y = u * x;

“Fine-grained parallelization will becoming increasingly
a requirement at the Exascale (and beyond)”

66

PRECISION

• How much precision is really required?
• 16-bit solvers with high precision  

reliable updates (arXiv:0911.3191)
• Truncate trailing mantissa bits in  

halo exchange (P. Boyle, arXiv:1402.2585)

• Use fp16 for coarse grid solve  
(Heybrock et al, arXiv:1512.04506)

• Large HMC runs with tolerance ~10-13

• What happens when the volumes get bigger?
• Precision optimization an important part  

of the puzzle

Q
C

D
 o

n
G

PU
s

Strong Scaling Chroma with DD

Preliminary, NVIDIA Confidential – not for distribution

Chroma (Lattice QCD) –
High Energy & Nuclear Physics

Chroma
483x512 lattice
Relative Scaling (Application Time)

XK7 (K20X) (BiCGStab)

XK7 (K20X) (DD+GCR)

XE6 (2x Interlagos)

0

2

4

6

8

10

12

14

16

18

0 128 256 384 512 640 768 896 1024 1152 1280

R
el

at
iv

e
Sc

al
in

g

Nodes

3.58x vs. XE6
@1152 nodes

“XK7” node = XK7 (1x K20X + 1x Interlagos)
“XE6” node = XE6 (2x Interlagos)

COMMUNICATION

data provided by Balint Joo

68

TO THE EXASCALE AND BEYOND

• (At least) four challenges to overcome

• Parallelism
• Locality
• Communication
• Latency

•What’s the answer to the above?

Algorithms
 *and the ability to express those algorithms

Q
C

D
 o

n
G

PU
s

How to get to the Exascale (and beyond)?
▪ Four challenges to overcome
▪ Communication
▪ Latency
▪ Parallelism
▪ Locality

▪What’s the answer to all  
of the above?

Algorithms
*and the ability to express  

and utilize those algorithms

K Jansen
K. Jansen

69

HMC AND STREAM PARALLELISM

• Network bandwidth increasing becoming a limiting factor
• Starting to see hierarchy of network bandwidths

• CORAL: fat nodes with thin network
• HMC requires strong scaling

• HMC has a flat communications profile
• Limited by slowest connection

• Split determinants and impose task parallelism

• Each fat node computes one determinant contribution
• Eliminates slow connection from fermion solver

Z
dUe�Sg(U) det(M) =

Z
dUe�Sg(U)

nY

i=1

det(M1/n)

