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Outline

I Lattice QCD – solvers

I Review of Multigrid iterative solvers

I Bootstrap / adaptive Multigrid solvers for the Dirac system
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The Dirac PDE

D[A]ψ =
∑
µ

γµ∂µψ +mψ = f

I γµ ∈ C4×4 satisfy {γµ, γν} = δµ,νI and γ5 =
∏4
µ=1 γµ = γ∗5

I ψjs,c : s = 1, 2, 3, 4, c = 1, 2, 3, j = 1, .., nf (nf = 1)

Wilson’s discretization

Dx,y = δx,y − κ
d∑

µ=1

(1− γµ)⊗ Uµx δx+µ,y + (1 + γµ)⊗ Uµ∗x−µ δx−µ,y

I Removes spurious zero modes, but breaks chiral symmetry

I Basic building block of chiral Overlap and Domain Wall operators
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The Dirac-Wilson matrix

Dx,y = δx,y − κ
d∑

µ=1

(1− γµ)⊗ Uµx δx+µ,y + (1 + γµ)⊗ Uµ∗x−µ δx−µ,y

I D = I − κD0 is positive real for
0 ≤ κ < κc

I nearest neighbor coupling on hypercubic
lattice embedded in a 4d torus

I 12 variables per grid point

I n = 12 · n1 · n2 · n3 · n4

I ni = 16 . . . 128

I Interesting case: κ→ κc ⇒

m =
1

2

(
1

κ
−

1

κc

)
≈ 0

I Performance of Krylov methods degrades
as κ→ κcr
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2d Dirac-Wilson matrix: block-spin form

Wilson system consists of a sum of two parts, a stabilization term

Axy = −
1

2

d∑
µ=1

(
Uµx δx+µ,y + Uµ∗x−µ δx−µ,y

)
+
(
d+m

)
δx,y

referred to as the Gauge Laplacian, and a central covariant difference approximation of the
Dirac system

Bxy =
1

2

d∑
µ=1

γµ ⊗ Uµx δx+µ,y − γµ ⊗ Uµ∗x−µ δx−µ,y .

where for a 2d lattice

γ1 =

(
0 1
1 0

)
and γ2 =

(
0 i
−i 0

)

and D can be written as a block matrix

D =

(
A B
−B∗ A

)
J. Brannick (PSU) MG for LQCD June 19, 2014 6 / 33



Symmetries of the Wilson fermion matrix

γ5-Symmetry:

Γ5D = D∗Γ5,

where

Γ5 = I ⊗ (γ5), γ5 =

ns∏
i=1

γi

I λ ∈ spec(D)⇒ λ̄ ∈ spec(D)

I Q = Γ5D is hermitian and maximally indefinite
worst case for BiCGSTAB, GMRES, etc...1

S. M. Pickles, Algorithms in Lattice QCD, Ph.D., University of Edinburgh, 1998, UKQCD
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Odd-even system

I grid points x are odd or even ( = red or green).

I odd-even-ordering yields

D0 =

(
0 Deo
Doe 0

)
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Spectrum of the Dirac-Wilson matrix and the odd-even
Schur-complement
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Multigrid for QCD circa 2000

I Gauge field U is not geometrically smooth ⇒ near kernel is locally oscillatory
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⇒ Constant preserving (algebraic) multigrid methods completely fail
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Multigrid for QCD circa 2000
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Many others ...
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Multigrid for QCD circa 2000

Jacobi (Diamond), CG (circle), MG V-cycle (square), W-cycle (star)

R. C. Brower, R. G. Edwards, C. Rebbi, and E. Vicari, Projective multigrid for Wilson
fermions, Nucl. Phys. B366 (1991), pp. 689–705.
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Basic Multigrid components

Fewer

First Coarse Grid

Finest Grid

Smooth
The Multigrid
    V−cycle

Restriction

Prolongation

Dofs
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Multigrid Methods

I Geometric Multigrid methods

• Specialized, e.g., for PDEs they are integrated with the
finite element / volume / difference discretization

• Highly (maximally) efficient iterative solvers

• Limited applicability, e.g., with respect to the geometry and parameters of the problem

I Single-grid methods: geometric-algebraic methods

• More generally applicable

• Slight loss in efficiency vs. GMG resulting from use of auxiliary-grid (mesh) and some
algebraic techniques, as needed

• Intended for grid-based problems

I No-grid methods: algebraic methods

• Black-box iterative solver for sparse M-matrix systems

• Convergence and complexity difficult to control in practice
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A two-grid method

For a given fine-level system of equations Dψ = f (D HPD) defined on a space Vh, a
two-level solver is described in terms of its two main components

1 a smoother M

2 a coarse space VH related to P the prolongation operator and R the restriction operator

Given an initial guess u0, a single iteration of a two–grid method is as follows:

1 Fine-level smoothing: ũ = u0 +M−1(f −Du0)

2 Coarse-level correction: solve DHeH = rH with rH = R(f −Dũ)

3 Update: u1 := ũ+ PeH

Oftentimes, DH = RDP and R = P ∗ if D HPD
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Two-grid theory

It follows that u− u1 = ETG(u− u0) where

ETG = (I − πD)(I −M−1D), πD := PD−1
H P ∗D

A sharp estimate of the convergence of a two-grid method is ‖ETG‖2D = 1− 1/K(P ), where

K(P ) = sup
v

‖(I − π
M̃

)v‖2
M̃

‖v‖2D
M̃ := M∗(M∗ +M −D)−1M, ‖v‖2D := (Dv, v)

At least three different approaches are possible in choosing the components of a two–level
method:

1 For a fixed P , construct a suitable M – geometric methods

2 For a fixed M , optimize the choice of P – (adaptive) algebraic methods

3 Given certain measures on the suitability of M and P , simultaneously construct both
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Weak approximation property

The suitability of VH is measured via an approximation property. Assuming M̃ h ‖D‖I and

noting that π
M̃

is the M̃ -orthogonal projector onto Range(P ), we have

‖(I − π
M̃

)v‖2
M̃

≤ ‖(I − π)v‖2
M̃

. ‖D‖‖(I − π)v‖2 all v ∈ V

Thus,

K(P ) = sup
v 6=0

‖(I − πM̃ )v‖2
M̃

‖v‖2D
. sup
v 6=0

‖D‖ ‖(I − π)v‖2

‖v‖2D
,

where π := P (P ∗P )−1P ∗

Smooth error w satisfies

‖Dw‖
‖w‖

≈ min
v

‖Dv‖
‖v‖
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No-grid (algebraic) methods

I “Algebraic” stands for the fact that all the tools of the method are constructed solely on
the basis of the original matrix M in a setup phase

I Coarse space is constructed automatically within the algorithm, level by level, in a
(hopefully) computationally optimal setup procedure which involves

1 Picking a set of coarse variables, i.e., set of indices ΩH = {i1, . . . , inH } → graph
theoretic approaches

2 Definiing VH = span{ψk}
nH
k=1 such that each ψk is supported in Ωk, for a vector:

Ωk ⊂ {1, . . . , n} → null space of the system matrix

I Each of the VH (or Vi obtained recursively) must satisfy certain properties, related to
the convergence of the overall algorithm. As subspaces are built “on the fly”, multilevel
theory for the convergence of such algorithms is very difficult
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Operator-dependent interpolation

Setup algorithm

I Given D HPD and Ω = {1, ..., n}, select ΩH = {1, ..., nH}, nH < n

I Compute entries of P : VH 7→ Vh, R : Vh 7→ VH , and DH = RAP

1. Classical AMG: ΩH ⊂ Ω and

P =

[
W
I

]
} ΩH

,

where W ∈ Cm×nH with m = n− nH

2. Aggregation AMG: Ω = ∪nHi=1Ωi,

Pji =

{
1 for j ∈ Ωi
0 for j /∈ Ωi

i = 1, ..., nH

In Smoothed Aggregation, additional smoothing step applied to interpolation:

P ← SP, S = I − τD

I Typically, for PDEs use constant preserving P , i.e., select P to ensure that there exists
vH such that PvH = 1 for some vector of coefficients vH
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Multilevel iterative solvers in lattice computations

Solver challenges:

I Systems are nearly singular

I Non-hermitian and positive real or hermitian and maximally indefinite

I Near kernel is unknown: highly oscillatory with oscillations dependent upon fluctuations
in background gauge fields ← heterogeneity of covariant derivatives

I Large near kernel dependent upon on topology

What is needed? A method that can

I Approximate several “arbitrary” kernel components to within desired level of accuracy

I Extract the components from the algebraic problem (suitable smoother required)

I Automatically construct coarse–level basis
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Aggregation MG solver for Dirac-Wilson system

Given standard geometric blocking into md aggregates and matrix X := [x(1), ..., x(r)] such
that Dx(i) ≈ 0, interpolation defined as 2

P =



X1

. . .

XnH



}
Ω1 → Q1R1

...}
ΩnH → QnHRnH

I |Ωi| = md, i = 1, ..., nH
I P ∗P = Q∗Q = I

I PXH = PR = X

I P = SP , S = I − τD
(smoothed aggregation)

Generalized SA, P. Vanek, M. Brezina, J. Mandel, 2001
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Basic Adaptive (A)MG Algorithm

For ` = 0, ..., J

While ‖I −B−1
` D`‖est increasing: x` ← (I −B−1

` D`)x`

If ‖I − B−1
` D`‖est is large

recalibrate interpolation based on (new) x`

recompute coarse-grid operator

recurse

• Relax on Dx = 0, x rand, if
‖I − B−1D‖est > tol, set X = [x]
update P

◦ Relax on Dx = 0

� Iterate on Dx = 0

Iterate on Dx = 0, if
‖I − B−1D‖est > tol, set X = [X x]
update P
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2d Dirac-Wilson system: adaptive Smoothed Aggregation MG solver
3

Dx,y = −
1

2

2∑
µ=1

(1− γµ)⊗ Uµx δx+µ,y + (1 + γµ)⊗ Uµ∗x−µ δx−µ,y + (4 +m)δx,y

with U(x) ∈ U(1) on 2d space-time lattice

I Solve D∗Dψ = D∗f

I Use adaptive V (4, 4)-cycle setup with Gauss Seidel smoother based on current hierarchy
to test solver

I Previously found error components quickly reduced and “new” error vector rich in
unresolved components of the error

I Augment hierarchy to preserve additional vector space

I Use SA framework to cut vectors x1, x2, ..., xr into blocks and on each block use QR to
define augmented – multiple vector preserving – P

I Add more vectors until satisfactory solver found, where each vector corresponds to an
extra dof per coarse site

Adaptive Multigrid for Lattice QCD, Br., et al, PRL, 2008, arXiv:0707.4018
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Results for 2d Dirac-Wilson system with U(1) background
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Adaptive SA results...
4
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Number of applications of D∗D needed to reduce relative residual to O(10−8)

I 128× 128 lattice, β = 1, 6, 4× 4 blocking, 3 levels, 8 vectors

I Use GS for smoothing with exact solve on coarse grid

I Standard algorithm requires hpd =⇒ D∗D

I Apply MG V-cycle as a preconditioner to CG

I Compare total number of D∗D applications on fine level only with plain CG

J. Brannick, R. Brower, M. Clark, J. Osborn, and C. Rebbi, Adaptive multigrid algorithm for lattice QCD,
Phys. Rev. Lett., published 28 January 2008, Issue 4, Volume 100, article 041601
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Solving the non-hermitian system

I Solve D directly, instead of D∗D

I Better sparsity of DH = RMP,R 6= P∗ and less vectors required to define P

I Reduce the setup cost; for normal equations setup requires equivalent of 3-4 CG
inversions

I DH = RDP,R 6= P∗

I Use variant of MG solver for D∗D for D

I γ5 symmerty: Q = Γ5D = D∗Γ5 = Q∗ such that

Q =
N∑
i=1

λiviv
∗
i ⇒ D =

n∑
i=1

λi(Γ5vi)v
∗
i

so that left and right eigenvectors (singular) vectors are related by ui = Γ5vi
I Coarse-grid operator RDP , with P based on vi and R based on ui = Γ5vi

I Leads to Galerkin coarse-level operator and preserves γ5-symmetry on coarse levels

I Use adaptivity with MinRes smoother to compute the nearly singular vectors and
incorporate them into unsmoothed aggregation solver

I Compare with previous results obtained for the normal equations
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2d Dirac-Wilson system
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Bootstrap MG solver for Dirac-Wilson system

(c) Odd-even coars-
ening of the grid

(d) Structure of the
even system

(e) Full coarsening of
the even grid

Figure : Coarsening of the grid of even points and the odd-even reduction

Given matrix X = [x(1), ..., x(r)] = [V W ], rows of interpolation, pi, i ∈ Ω \ ΩH , are defined
such that

L(pi) =
r∑

κ=1

ωκ

x(κ)
{i} −

∑
j∈Ci∪{i}

(pi)j x
(κ)
{j}

2

7→ min,

where weights ωκ ∼ ‖x(κ)‖
‖Dx(κ)‖

∈ R+ and r = |V|+ |W|
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Bootstrap setup - multilevel eigensolver

Assuming no a priori information on low modes available

I Smoother and initial test vectors given

v(s) = Gη ṽ(s), ṽ(s) random

I Observation (P` = P 0
1 · · ·P

`−1
` , D` = PH` DP`, T` = PH` P`)

〈w`, w`〉D`
〈w`, w`〉T`

=
〈P`w`, P`w`〉D
〈P`w`, P`w`〉2

Bootstrap Idea

Eigenpairs
(w`, λ`) of (D`, T`)

−→
Eigenpairs

(P`w`, λ`) of D
+interpolation error
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Bootstrap multilevel eigensolver – cycling

Compute W such that Dw = λTw,w ∈ W

Relax on Dv = 0, v ∈ V and (D − λT )w = 0, w ∈ WRelax on (D − λT )w = 0, w ∈ W

Relax on Dv = 0, v ∈ V
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Solving the non-hermitian system: BAMG

Recall the abstract smoothing property: for smooth error, e,
‖De‖
‖e‖ ≈ minv

‖Mv‖
‖v‖ . It is simple

to show that

σ1 ≤ |λ| ≤ σn,
where σ1 ≤ σ1 ≤ ... ≤ σn are the ordered singular values of D and λ is any of its eigenvalues.
Thus, smooth error dominated by singular vectors (and eigenvectors?), suggesting use of a
multilevel SVD solver in bootstrap cycle

Modifications to the setup:

I Kaczmarz smoother for D∗ and D in the bootstrap and adaptive cycles to compute left
and right singular vectors, respectively

I Weighted LS formulation to compute restriction (left singular vectors) and interpolation
(right singular vectors)

I Multilevel singular value solver in the bootstrap approach where on the coarsest level we
solve the symmetric eigenvalue problem directly:(

DL
DHL

)(
U U
V −V

)
=

(
TL

QL

)(
U U
V −V

)(
Σ 0
0 −Σ

)
where Dl = RlDPl, Ql = RlR

H
l , and Tl = PHl Pl with

Pl = P 0
1 · . . . · P

l−1
l ,

Rl = Rll−1 · . . . ·R
1
0, l = 2, . . . , L
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BAMG variant for 4d Dirac-Wilson system of QCD
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Figure. Flops needed to reduce residual to 10−8 versus mass

I 323 × 96 lattice, β = 6, 44 blocking, 3 levels

I Apply aggregation-based MG solver as preconditioner to GCR
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Concluding remarks

Summary

I Bootstrap / Adaptive MG provide effective solvers for Dirac-Wilson systems effectively
removing critical slowing down (Rottman)

I Extensions of methodology to chiral models (and other stochastic PDEs) underway with
promising results (Kahl)

Outlook

I Parallel version(s) of Bootstrap algorithm under development (e.g., in Hypre)

I Smoothing analysis and two-grid theory in progress, both complicated by fact that D is
non-normal matrix
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