Experiments with Staggered Multigrid

Alexei Strelchenko

Fermilab, Batavia, IL

in collaboration with Richard Brower, Kate Clark, Evan Weinberg

QCDNA 2016, Edinburgh

- Introduction
- Designing MG for the staggered operator
- Adapting AMG to QUDA framework
- Results
- Conclusions and future work

- Push to exascale enables increasingly accurate lattice calculations.
- Physical pion mass, finer lattices: critical slowing down.
 - MILC: $144^3 \times 288$, physical pion mass, single precision multi-mass solve to rel. resid. 10^{-6} : about 25,000 iterations.
- New measurements (disconnected diagrams) require more $\not\!\!D$ inversions.
- ... and this is a missing point in QUDA

Mixed precision incremental eigCG performance, 800 eigenvectors, $32^3\times48$ HISQ 2+1+1 configuration (6 nodes, 24 K40m)

Solver type	Inc. NRHS / Time	CG Iters	CG Time
inc. eigCG (full)	100 (1534)	790(×10.1)	1.48 (x7.8)
inc. eigCG (mixed)	46 (642)	1255 (×6.4)	2.13 (x5.4)
undef. CG (mixed)	N.A.	8000 (×1.0)	11.5 (x1.0)

The Staggered Operator

$$D_{xy} = \sum_{\mu} \eta_{\mu}(x) \left[U_{\mu}^{\dagger}(x) \delta_{y+\mu,x} - U_{\mu}(x) \delta_{x+\mu,y} \right] + m \delta_{x,y}$$

= $iA + m\mathbf{I} \quad \leftarrow \text{Anti-Hermitian} + \text{Hermitian piece}$
decomposition:

Schur ŀ

$$\begin{bmatrix} m & D_{eo} \\ D_{oe} & m \end{bmatrix} = \begin{bmatrix} 1 & \frac{D_{eo}}{m} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (m^2 - D_{eo} D_{oe}) & 0 \\ 0 & m^2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{D_{oe}}{m} & 1 \end{bmatrix}$$

The normal equation

Due to $D_{eo} = -D_{oe}^{\dagger}$, the E/O preconditioned operator is Hermitian positive definite: Rich theory of multigrid exists.

$$(m^2 - D_{eo}D_{oe})\psi_e = mb_e - D_{eo}b_o;$$
 $\psi_o = \frac{1}{m}(b_o - D_{oe}\psi_e)$
Issues:

- Two link sparsity pattern is computationally inefficient.
- Further issue: Even and odd decouple in chiral limit.

Follow lead of Wilson-Clover MG: Directly precondition $\not D$.

Adaptive Algebraic Multigrid

• Algorithm setup for 2-level V-Cycle:

- Solution Relax on homogeneous problem $D\vec{x}_i = 0$ for N_{vec} random \vec{x}_0 . (Each vector = extra degree of freedom per coarse site.)
- Cut vectors x
 _i into geometrically regular subsets to be aggregated (blocked)
- **③** Block orthonormalize vectors \vec{x}_i
- This defines the prolongator such that $(1 PP^{\dagger}) \vec{x}_i = 0$
- Define coarse grid operator $D_c = P^{\dagger} D P$

Designing Staggered AMG

$$D_{xy} = \sum_{\mu} \eta_{\mu}(x) \left[U_{\mu}^{\dagger}(x) \delta_{y+\mu,x} - U_{\mu}(x) \delta_{x+\mu,y} \right] + m \delta_{x,y}$$

= $iA + m\mathbf{I} \quad \leftarrow \text{Anti-Hermitian} + \text{Hermitian piece}$

The "Gamma-5" symmetry ; $D^{\dagger} = \gamma_5^{stag} D \gamma_5^{stag}$

Unique to staggered: $\gamma_5^{stag} \equiv \epsilon(x) = (-1)^{\sum_{\mu} x_{\mu}}$ $(1 \pm \gamma_5^{stagg})$ is just parity (even/odd) projection operator.

Parity Aggregation

Similar to Wilson, every right eigenv. v_{λ} corresponds to a left eigenv. $\tilde{v}_{\bar{\lambda}}$:

$$\tilde{v}_{\bar{\lambda}} = \gamma_5^{stag} v_{\lambda}$$

$$v_\lambda = egin{pmatrix} v^e_\lambda \ v^o_\lambda \end{pmatrix} o ilde v_\lambda = egin{pmatrix} v^e_\lambda \ -v^o_\lambda \end{pmatrix}$$

I.e., the staggered $\gamma_5\text{-compitibile}$ aggregation:

$$v_i = \begin{pmatrix} v_i^e \\ v_i^o \end{pmatrix}
ightarrow \begin{pmatrix} v_i^e \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ v_i^o \end{pmatrix}$$

Constructing intergrid operators

The staggered γ_5 -compitibile aggregation:

$$P_{x,c;\hat{x},\hat{c},s} = \left[V_{\hat{x},\hat{c},s}(x,c) \right], \ R = P^{\dagger}$$

On coarse grid we get spin-2 fileds:

$$\begin{pmatrix} w_i^e(x,c) \\ 0 \end{pmatrix} = P_{x,c;s=0}\hat{w}_{s=0}, \begin{pmatrix} 0 \\ w_i^o(x,c) \end{pmatrix} = P_{x,c;s=1}\hat{w}_{s=1}$$

$$P^{\dagger}\gamma_5^{stagg} = \sigma_3 P^{\dagger}$$

Coarse-grid staggered operator has structure similar to Wilson case!

$$\begin{bmatrix} M^{\text{ss'}}_{\hat{e}\hat{e}} & D^{\text{ss'}}_{\hat{e}\hat{o}} \\ D^{\text{ss'}}_{\hat{o}\hat{e}} & M^{\text{ss'}}_{\hat{o}\hat{o}} \end{bmatrix} = \begin{bmatrix} m & M_{\hat{e}\hat{e}} & 0 & D^{01}_{\hat{e}\hat{o}} \\ M^{\dagger}_{\hat{e}\hat{e}} & m & D^{10}_{\hat{e}\hat{o}} & 0 \\ 0 & D^{01}_{\hat{o}\hat{e}} & m & M_{\hat{o}\hat{o}} \\ D^{10}_{\hat{o}\hat{e}} & 0 & M^{\dagger}_{\hat{o}\hat{o}} & m \end{bmatrix}$$

I.e., integration to QUDA MG framework is straightforward.

Testing Environment

- Use a simpler model with similar physics for initial testing:
- Two-flavor Schwinger model in two dimensions:

$$\mathcal{L} = \frac{1}{2}F^2 - i\sum_{f=1,2}\bar{\psi}_f\gamma^{\mu}\left(\partial_{\mu} - igA_{\mu}\right)\psi_f + m\sum_{f=1,2}\bar{\psi}_f\psi_f$$

- Confinement
- Chiral symmetry breaking
- Vorticies (2 dimensional "instantons")
- Topology
- ► Two flavor theory has a "pion"-like state: $M_{gap}(m) = A_{gap}m^{2/3}g^{1/3}$ [Phys.Rev. D55 (1997)]
- Comparatively very inexpensive to look at large volumes: 128^2

Remark: Our presecription isn't final-this just fixes our tests!

- Null vector generation:
 - Use (full precision) BiCGStab
 - Generate random vector $\vec{x_0}$.
 - Solve to tolerance 5×10^{-5} .
 - ▶ Generate N_{vec} null vectors.
- MG Solve:
 - One-level V cycle
 - Outer solver: GCR(24) to tolerance 5×10^{-7}
 - Block size: 4×4
 - Pre- and Post-Smoother: 6 iterations of GCR
 - Inner solver: GCR(64) to tolerance 10^{-3}

Outer Iterations: Free Case

Figure : Outer Iterations for 128², free field

Demonstrates working (free algorithm), but not a "fair" comparison.

Fine D Operators: Free Case

Figure : Fine $\not\!\!D$ for 128^2 , free field

For large mass, MG doesn't make a difference... There's no critical slowing down to remove!

Interacting Case

Quenched Schwinger model: Non-Compact 2D U(1) gauge action.

β	6.0	10.0	[Phys.Rev.Lett. 100 (2008): [J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn, C. Rebbi []]	
l_{σ}	3.30	4.35	Gauge correlation length via Wilson loop: $W \approx e^{-A/l_{\sigma}^2}$	
μ^{-1}	≈ 5.5	≈ 6.3	Pseudoscalar meson correlation length for $m = 0.01$	

Interacting Case

Quenched Schwinger model: Non-Compact 2D U(1) gauge action.

β	6.0	10.0	[Phys.Rev.Lett. 100 (2008): [J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn, C. Rebbi]	
l_{σ}	3.30	4.35	Gauge correlation length via Wilson loop: $W \approx e^{-A/l_{\sigma}^2}$	
μ^{-1}	pprox 5.5	≈ 6.3	Pseudoscalar meson correlation length for $m = 0.01$	

As a representative ensemble, we will look in depth at 128^2 , $\beta = 10.0$.

Fine D: Interacting, $\beta = 10.0$

Figure : Fine $\not\!\!D$ for $128^2, \beta = 10.0, N_{vec} = 4$

For small m, critical slowing down is suppressed.

Residual per Iteration: Interacting, $\beta = 10.0$

Figure : Relative Residual for 128^2 , $\beta = 10.0$, $N_{vec} = 4$, $m = 10^{-3}$

MG can stabilize otherwise unstable solves.

Number of Null Vectors: Interacting, $\beta = 10.0$

Figure : Comparison of different N_{vec} for 128^2 , $\beta = 10.0$

Diminishing returns with more N_{vec} : not a problem!

A. Strelchenko

Coarse Solve: Interacting, $\beta = 10.0$

Figure : Inner Iterations for 128^2 , $\beta = 10.0$, $N_{vec} = 4$

Critical slowing down moves to coarse operator. Still coarser levels will cure this.

Fine D: Interacting, $\beta = 6.0$

Figure : Fine $\not\!D$ for $128^2, \beta = 6.0, N_{vec} = 4$

MG still works for coarser β .

Overview and Future Work

Overview

• Showed a working MG algorithm for two-flavor Schwinger model

Future Work

- Investigate 4 dimensional staggered operator: naïve, HISQ
- Continue progress on an implementation in QUDA
 - Extended existing infrastructure for Wilson-Clover
 - Implementation there, further room for tuning and optimization.
 - sithub.com/lattice/quda/tree/feature/staggered-multigrid
- Experiment with alternative methods to generate null vectors
 - Can we use the normal equation to generate null vectors?
 - If we can, can we use approximate low vectors from EigCG instead?
 - This lets us do "real" solves while generating null vectors!
 - or we can use an eigensolver for the direct system?