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The problem

Given a large, N X N matrix A and a function f

find trace of f(A): 1(f(A))

Common functions:

f(A) = A7
f(A) = log(A)
7(A) = RIA™R,

Applications: Data mining, QMC, Uncertainty Quantification, ...

Our focus LQCD: f(A) =A!or f(A) =TA™!




Standard underlying method

Monte Carlo (Hutchinson 1989)

If x 1s a vector of random Z, variables

o 1 with probability 1/2
Y71 —1 with probability 1/2

then

E(TA %) =1(A™")

Monte Carlo Trace
fori=1:n
x =randZ2(N,1)
sum = sum + x’ A" lx

trace = sum/n




Standard underlying method

Monte Carlo (Hutchinson 1989)

If x 1s a vector of random Z, variables

o 1 with probability 1/2
Y71 —1 with probability 1/2

then
E(xTAx) =¢(A71)
Monte Carlo Trace 2 problems
fori=1:n Large number of samples

x =randZ2(N,1)

I
sum = sum + x’ A" 'x

How to compute x’ A~ 1x

trace = sum/n




Standard underlying method

Monte Carlo (Hutchinson 1989)

If x 1s a vector of random Z, variables

o 1 with probability 1/2
Y71 —1 with probability 1/2

then

E(xTAx) =¢(A71)

Monte Carlo Trace
for i=1:n
x =randZ2(N,1) Solve Ay = x vs quadrature x’ A~ 'x
sum = sum + x/ A" 'x Golub’69, Bai’95, Meurant’06,”09, Strakos’11
O(100 — 1000s) statistically independent RHS
trace = sum/n Recycling (de Sturler), Deflation (Morgan, AS’07)




Standard underlying method

Monte Carlo (Hutchinson 1989)

If x 1s a vector of random Z, variables

o 1 with probability 1/2
Y71 —1 with probability 1/2

then

E(xTAx) =¢(A71)

Monte Carlo Trace
for i=1:n
x =randZ2(N,1) What x to use to reduce variance?
sum = sum + x’ A~'x  Equivalently, transform A to have less variance

trace = sum/n




Variance of the Hutchinson estimator

The “squared error” of the statistical estimator #(A™!) is its variance

Var(t(A™) = 2|A 3 =2 (JA |2 - XL, AL P)

where A~! = A~! — diag(diag(A™"))




Variance of the Hutchinson estimator

The “squared error” of the statistical estimator #(A™!) is its variance

Var(t(A™) = 2|A 3 =2 (JA |2 - XL, AL P)

where A~! = A~! — diag(diag(A™"))

Thus, the goal of variance reduction:

remove weight from the off-diagonals elements of A~




Variance of the Hutchinson estimator

The “squared error” of the statistical estimator #(A™!) is its variance

Var(t(A™) = 2|A 3 =2 (JA |2 - XL, AL P)

where A~! = A~! — diag(diag(A™"))

Thus, the goal of variance reduction:

remove weight from the off-diagonals elements of A~

e Choose vectors that remove particular patterns of A~' (Hierarchical Probing)
e Approximate M ~ A~ t(A™!) =¢t(M) +1(A~! — M)
hope that #(A~! — M) has smaller variance (SVD deflation)




Dilution and Probing

Dilution: removes variance from a pre-determined pattern of A [Peardon 2005]
Spin/Color, Time, or Even/Odd dilution most common
Probing: a general algebraic technique to compute sparse matrix approximations

originally for computing Jacobians and banded matrix approximations
[Coleman & Moré, 82][Chan & Mathew, 92]

Dilution uses the same technique as probing




Dilution and Probing

Dilution: removes variance from a pre-determined pattern of A [Peardon 2005]
Spin/Color, Time, or Even/Odd dilution most common
Probing: a general algebraic technique to compute sparse matrix approximations

originally for computing Jacobians and banded matrix approximations
[Coleman & Moré, 82][Chan & Mathew, 92]

Dilution uses the same technique as probing

E.g.,

the trace of an m-colorable
sparse matrix 1s recovered
exactly by m vectors

t(A) =t(h"Ah)
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Classic Probing (CP) Discovering patterns

Problem 1: How do we determine the sparsity pattern for Probing/Dilution?
Answer: From graph theory: multi-coloring

Problem 2: A~! is not sparse. How do we approximate it?
Answer: Green’s function

Al-;l decay in magnitude with the distance between i and j in the graph of A
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Classic Probing for 7(A~!) [Bekas et al, 07][Tang & Saad,’ 10]
Color A* = distance-k coloring of A. Captures largest elements of A~!




Classic Probing (CP) Discovering patterns

Problem 1: How do we determine the sparsity pattern for Probing/Dilution?
Answer: From graph theory: multi-coloring

Problem 2: A~! is not sparse. How do we approximate it?
Answer: Green’s function

Al-;l decay in magnitude with the distance between i and j in the graph of A

Classic Probing for 7(A~!) [Bekas et al, 07][Tang & Saad,’ 10]
Color A* = distance-k coloring of A. Captures largest elements of A~!

Limitations of CP:

(1) If t(A~") not accurate enough, discard work and repeat for larger k
(because the subspaces of the vectors £ are not hierarchical)

(2) Coloring A* very expensive for large k




Hierarchical Probing on lattices [JLAS,’13] Distances k =2"m=1,2,...

1D: HP(L lattice)

® ®© 00 0 0 O K1

o 2 1 3 0 2 1 3 k=2 Red-black color L

0O 2 1 3 4 7 5 8 k=4 HP(red nodes)
HP(black nodes)

2D: HP(L lattice, d = 2)
Red-black color L
Split L to 2¢ sublattices, L;
fori=1:2¢
HP(L;)

d-D: same algorithm

— Extremely efficient implementation

— Extensible to non-powers of 2

— Probing vectors H special permutations of Hadamard vectors
— z® H(:,i) makes it statistical




SVD deflation for variance reduction

If Uy, X,,V, are k known singular triplets of A, then
A=UX\ V] + U,XV) =Ap+Ag

and
HAT) =t(Ap) +1(Ag))
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SVD deflation for variance reduction

If Uy, X,,V, are k known singular triplets of A, then
A=UX\ V] + U,XV) =Ap+Ag

and
HAT) =t(Ap) +1(Ag))

t(A,") computed trivially
t(A,") using the Hutchinson estimator (A ")

Singular vectors vs Eigenvectors

e Easier to model theoretically
e I'A = (T'U)XV! is also SVD decomposition, if I unitary

e Works better in practice




SVD deflation for variance reduction

Question: does the variance reduce?

Var(1(Ap") = | AR '[|7 < [A7Y[E = Var(t(A™1))

WLOG consider seeking #(A) instead of (A1)




Variance analysis
SVD based deflation implies:
IAlE = lAbllF + [Ax]l7

Let D =diag(A), Dp = diag(Ap) and Dy = diag(Ag)

Theorem:

IAllZ = Apll7 + |Ax |7 — 2Real (D, D)

Possible that variance increases!




Variance analysis

SVD based deflation implies:

lAllF = lAbllF + [lA-l7

Let D =diag(A), Dp = diag(Ap) and Dy = diag(Ag)

Theorem:

IAllZ = Apll7 + |Ax |7 — 2Real (D, D)

Possible that variance increases!

Example:

>> [U,”] =qr([ -1 1 1 A=U=x[2
1 1 1 O 1.
1 1 -11); 0

>> Ar = U(:,2:3)*diag([1.5, 1]1)*U(:,2:3)’;
Var(t (A)) /Var(t (Ar))

0.4074




Variance analysis with singular values and vectors

Theorem:
Assume we deflate the largest k singular triplets Uy, %, V;
Let A= (U® V)" (U ®V) which implies
N
A = leimvimuilvila m,l=1,...,N
i=1

Then,
1 N N N
EVar( (Ar))= )Y, Gn— ), ) 0CuCAuw
m=k-+1 m=k+1[1=k+1
1 k k N
E(Var(t(A)) Var(t Z mm)—z Z OO (Ami + Apy).

m=1I[l=m+1




Variance analysis with singular values and vectors

Problems, if A,,; has highly localized density

Best case scenario:
If 01 > 20, > 403 > ... > 2K0y. 1 variance reduces with any singular vectors

Difficult to characterize A,
A Hermitian positive definite

For Hermitian matrices A,; = YN, |uim|*|uir|> = A doubly stochastic

How can we factor A,,;; out? Average case




The average case for A

Assumption:

U,V standard random unitary matrices (Haar distribution)

Assumption justified in Lattice QCD [Shuryak, Verbaarschot, Carlsson]

Jiang showed that v/NU,, ~ .4 (0,1)
but only for submatrices up to O(v/N x v/N)

Our formula involves more than O(N) elements of U and V

Instead we used random matrix theory to obtain E(A,,;) and Var(A,,;) directly




Bounding the A,

Lemma: For non-Hermitian matrices,
E (A ) =0,
Var(A

Var(A,

E(

Apm) = 1/N
) = (N=1)/(N*(N+1)%).

Al =ON"), Apn=0(N1)

Lemma: For Hermitian matrices,

( ml
V&I‘(Aml

(Amm
Var(Aum

) =
)
)
)

1/(N+1),
2(N—1)/((N+1)*(N+2)(N+3)),
2/(N+1),

4(N—=1)/((N4+1)*(N+2)(N+3)).

Ay =O0NY=A,,




Expected variance of the deflated estimator

Theorem: Define the mean and the variance of the N — k singular values of Ay
N

e =1/(N—k) _Z Om
Vi=1/(N—k) _Xk: (O — a)°

Then, for non-Hermitian matrices it holds

%E(Var(t(AR))) = (N—k)(1 —]lv)(anLu;?)

and for Hermitian matrices,

1 N o,k
! E(Var(r(42))) = (N & (ka+ S 1) .

A model only on o; to predict whether deflation will reduce variance and how much




A remarkable result

For non-Hermitian matrices and for any 1 < k& < N, variance does not increase!

E(Var(t(Ag))) < E(Var(t(A)))

For Hermitian matrices, the expected deflated variance reduces only if

2 k
uz_(N_k) ‘u2<l 2
We are not aware of another property where non-Hermitian matrices may out-
perform Hermitian ones




Deflation benefits wrt singular spectra decay
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Deflation benefits wrt singular spectra decay
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Robust for matrices with non random singular vectors
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A large Lattice QCD experiment Disconnected diagrams

4D lattice: 323 x 64 with 12 unknowns per node (25 million matrix size)

Variance improvement estimated through MC (red circles)
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Model and experiment agree that 1000 singular vectors give 25% speedup

Hierarchical Probing gets 2 or 3-fold speedup on this ill conditioned problem!




The synergy of HP with Deflation

Ensemble A Ensemble B
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Speedup: 10-15 over HP!




The synergy of HP with Deflation
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The synergy of HP with Deflation

Ensemble A
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More than 50 speedup over MC!
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Singular triplet computation and timings

PRIMME using block method and AMG preconditioner (~30-fold speedup)

6000 : : : . . 10* ‘ ‘ :
O O Hierarchical Probing ||
O SvD 500 ]
5000 + {» SVD 1000
= 3
ERS o 10°t
Q
g e
. 3000 | 8 ¢ O
S T
S © .,
= 2000 | 10+
=
O
1000 o o
o O O
0 1 1 1 1 1 101 I I I 1
200 400 600 800 1000 0 0.5 1 1.5 2 2.5
Singular Vectors Locked Wallclock (seconds) x 10*

Overhead of PRIMME is less than 10% of a one-shot calculation

Singular triplets can be used for many #(IA~!) and other computations




Scalability issues

Well-conditioned problems
deflation effect smaller but HP effect much larger
I1I-conditioned problems
HP effect reduces but deflation becomes important
Scalability issue:
The size of deflation subspace scales up with the volume
Using Multigrid for obtaining singular values scaled 1t back down

To reduce the cost of application of the subspace we are currently working on a
multigrid representation of the singular vectors




Conclusions

e Analyzed effects of deflation on Hutchinson method

e Analyzed “expected” effects when U,V are standard random unitary matrices
e The model based on the distribution of singular values robust in general

e Applied results on a large scale disconnected diagrams calculation

— Synergy between hierarchical probing and deflation
— 50-fold speedup over MC
— A challenging eigenvalue computation with PRIMME+AMG

For more details see arXiv 1603.05988




