
Container Technology
applied to HEP in High
Performance Computing

Isabel Campos -- CSIC (Spain)
Mario David, Jorge Gomes and Jorge Sevilla -- LIP (Portugal)

RIA-653549

Imagine that Computing & Storage resources are made
available as a “big pool” in which you don’t know which
machine is being used to run your code

Would such resource provisioning model be
suitable/viable for Scientific Computing ?

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 2

Motivation

There is no simple answer to that question

• From the “software dependencies” point of view, we will see that much progress has been achieved:

 Perhaps there is no fundamental obstacle anymore

• From the hardware provisioning point of view, it depends

What is more efficient for the Computing Center ? as resource provider
What is more convenient for the scientific users.

A technical inspection into current technologies is needed to propose the right trade-off

3I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Outline of this presentation

• Give an overview of what is currently developed/tested/available to
enhance access to computing facilities using this technology.

• Review basics of container technologies

• How does it work in practice: running complex HEP software on
Linux clusters (and in general on multi-user environments) using
container technology

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

• For the Computing Center

 Deploy the resources using system software that allows such service provision model:
Cloud Middleware Frameworks (CMF): OpenStack, OpenNebula, etc…

 Providing the needed interfaces for users to access the resources in a simple way

• For the researcher using the infrastructure

 Being able to exploit such infrastructures, smoothly and efficiently, implies additional effort on software encapsulation

You will upload your application software to a storage system, from where it will be executed in
a transparent environment: the software must be “self-contained” in terms of dependencies.

 Success at this level has an impact: seamless access to resources

What implies that “big-pool” for each actor?

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

l Deploying computing resources using Cloud Middleware Frameworks:

• Using open source interfaces (OCCI) (i.e. no propietary interfaces like EC2)
• Provide Large amounts of Storage: always a bit more complex due to the unclear standardization.

Currently efforts on providing an open source interface (CDMI) ongoing
as the “de facto standard” is S3 (Amazon closed source interface)

l It allows providing such resources in very elastic ways

Manage the resources using system software like Infrastructure Manager (IM)*, that allows users asking for the
deployment of a private sub-cluster within a global facility:

• Run interactively on that sub-cluster serial and MPI jobs

(*) See https://github.com/indigo-dc/im

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

At Computing Centers it is technically straightforward

l Deploying computing resources using Cloud Middleware Frameworks:

• Using open source interfaces (OCCI) (i.e. no propietary interfaces like EC2)
• Provide Large amounts of Storage: always a bit more complex due to the unclear standardization.

Currently efforts on providing an open source interface (CDMI) ongoing
as the “de facto standard” is S3 (Amazon closed source interface)

l It allows providing such resources in very elastic ways

Manage the resources using system software like Infrastructure Manager (IM)*, that allows users asking for the
deployment of a private sub-cluster within a global facility:

• Run interactively on that sub-cluster serial and MPI jobs

(*) See https://github.com/indigo-dc/im

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

At Computing Centers it is technically straightforward

For this flexibility to translate into a benefit for researchers, in terms of facilitating
access to resources, Application Software developers need to give also a step forward

For this flexibility to translate into a benefit for researchers, in terms of facilitating
access to resources, Application Software developers need to give also a step forward

Containers Technology
The future of software provisioning both in industry and academia
https://access.redhat.com/articles/1353593

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 8

The Linux Kernel & containers support

• “Linux Containers” is a technology provided by the Linux kernel, to “encapsulate”
a group of processes in an independent execution environment: “container”

• It offers an environment as close to possible from a Virtual Machine, but without
the overhead that comes with running a separate kernel and simulating all the
hardware.

• It relies in built-in kernel features (full functionality if kernel >= 3.12):
• cgroups for assignation, limitation and prioritization of resources to “groups” of

processes
• namespaces to isolate “groups” regarding process trees, networking, user IDs

and mounted filesystems: each “group” has the illusion of being the only
process running in the system.

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

To use containers one needs:

• An image: a copy of the entire state system,
stored in a file (the image file)
• They are Snapshot of the OS modified to

run as a “container”
• In particular it has no kernel.

• A “container engine” to run that image as a
container in the kernel host

10I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

The Linux Kernel & containers support

One typically downloads an existing image
from an image repository, made available by

 the Container Engine we are using

• The “container engine runs the image
• It creates a R/W layer the user can modify:

Copying there your application software
i.e. the environment you to have a fully

encapsulated application

• When you are done, stop the container,
and save your new image.

and you have containerized your
application

11I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

The Linux Kernel & containers support

“Images” again ?

“container image” ≠ “VM image”

• In particular, when comparing with an image
for a hypervisor (VM), it has no Kernel.

• Also other features have been removed
(because the container image uses the
kernel of the host machine, and therefore
can profit from certain parts

• Still they are large, minimum 500MB
(libraries…)

• Those “images” will not run when launched
with a hypervisor !

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

The Linux Kernel & containers support

LXC as Container Engine

• LXC exposes a set of libraries and tools to work with
containers

• Packages are available for all main Linux distributions:

yum install -y lxc lxc-templates debootstrap bridge-utils
apt-get install lxc

Container network connectivity is handled by a local
Linux bridge by default.

See:
https://linuxcontainers.org/lxc/getting-started/

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Download a container from the list of the
available ones with:

lxc-create -t download -n my-container

Start it: lxc-start -n my-container –d

Get a shell inside: lxc-attach -n my-container

Stop it: lxc-stop -n my-container

Remove it: lxc-destroy -n my-container

Docker

• Docker can be seen as an advanced packaging tool for
container images

• It provides a very advanced repository of images ready
• for container running, with capabilities such as image

tagging, version control, etc...

https://hub.docker.com

• It offers autobuild features, which allow re-creation of
images on the fly, via cloud-services offered, for free, by
docker
l You can connect the dockerhub, with your favourite

repository: github, gitlab,...

• They introduced the Dockerfile concept

14I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Docker - Dockerfile

15I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

#
Super simple example of a Dockerfile
#
FROM centos:latest
MAINTAINER Isabel Campos "isabel.campos@csic.es"

RUN apt-get update
RUN apt-get install gcc
RUN wget https://www.open-mpi.org/software/ompi/v2.0/downloads/openmpi-2.0.0.tar.gz

RUN tar xvf openmpi-2.0.0.tar.gz
RUN cd openmpi-2.0.0
RUN ./configure & make & make install
RUN cd ..

WORKDIR /home/isabel
RUN wget http://luscher.web.cern.ch/luscher/openQCD/openQCD-1.4.tar.gz
RUN tar xvf openQCD-1.4.tar.gz
RUN cd openQCD-1.4/main
RUN make clean & make

Docker can build images
automatically by reading the
instructions from a Dockerfile.

A Dockerfile is a text
document that contains all
the commands to assemble
an image.

Using docker build users can
create an image out of a
Dockerfile

Practical Example:
Mastercode
Phenomenology Tools

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 16

cern.ch/mastercode

• Collaborative effort between Experimentals and
 Theorist in High Energy Particle Physics

The code takes as input experimental data coming
from Particle Accelerators and Astrophysics
observations, in order to build a consistent model
of Nature explaining the experimental data

 It focuses on the search for Supersymmetric models

It is supported by an ERC Advanced Grant:
“Exploring the Terauniverse with the LHC,
 Astrophysics and Cosmology” (J. Ellis)

See http://johne.web.cern.ch/johne/

17

Members of the MasterCode collaboration
• E. Bagnaschi, O. Buchmüller, R. Cavanaugh, M. Citron, A.

De Roeck, M. Dolan, J. Ellis, H. Flächer, S. Heinemeyer, G.
Isidori, J. Marrouche, D. Martinez, K. Olive and K.
Sakurai

Codes involved
• RGE running: SoftSUSY
• Higgs, (g-2)μ: FeynHiggs
• Higgs observables: HiggsBounds and HiggsSignal
• B-physics: SuFla
• B-physics: SuperIso
• EWPO: FeynWZ
• Dark matter observables: Micromegas
• Dark matter observables: DarkSUSY
• Recast of LHC searches: Atom
• Recast of LHC searches: Scorpion
• SUSY decay modes: SDECAY

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Our pilot case: Mastercode

• Mastercode is an “über-code” writen in C++ which connects all the different codes

• It does parametric runs: scanning through large parameter spaces, in single core mode

• Those original codes are treated as subroutines, or sub-codes

• The sub-codes are writen in C++ or Fortran. Many different authors, often legacy code is there….

• Perfect candidate to be “containerized”: problems to run the code in current computing centers
because it is difficult to install (library dependences and compatibility issues with local software, etc…)

• One of the main problems they have: finding a computing center where it works!

18I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Using docker to build a container for Mastercode

Description of the automated process via github + dockerhub:

1.We have created a project in github: https://github.com/indigo-dc/docker-mastercode

2.The project contains just a Dockerfile to build a fedora-based container that includes all the
libraries and system software needed to run Mastercode

3.We created a hub in docker for the container to be built automatically in the dockerhub cloud:
https://hub.docker.com/r/indigodatacloud/docker-mastercode

4.We connected github-docker to automatically build the container

19I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Github project & Dockerfile

Integrating distributed data infrastructures with INDIGO-
DataCloud 20

21

Connect Github with the Dockerhub

We created a project in dockerhub, which
reads as source repository our github
Mastercode repository.

In particular dockerhub is aware of the
changes committed to the Dockerfile

Dockerhub provides a service to build the
containers automatically on their cloud
facilities (not very fast, but for free).

We use this service to maintain up-to-date
The container for Mastercode

We created a project in dockerhub, which
reads as source repository our github
Mastercode repository.

In particular dockerhub is aware of the
changes committed to the Dockerfile

Dockerhub provides a service to build the
containers automatically on their cloud
facilities (not very fast, but for free).

We use this service to maintain up-to-date
The container for Mastercode

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

22

A change in the dockerfile, triggers automatically a new build of the containerA change in the dockerfile, triggers automatically a new build of the container

Connect Github with the Dockerhub - II

Using the Mastercode container with docker

On your local Linux box, with root user privileges:

1. Install docker with your favourite package manager (eg. ”# yum install docker”)
2. Start the docker daemon: # systemctl start docker
3. Download the container: # docker pull indigodatacloud/docker-mastercode
4. Run it

docker run -t –i -v $HOME \ mounts your HOME directory when running the container
-w $HOME/mcpp-master \ Mastercode sources directory is set as working directory
indigodatacloud/docker-mastercode \ Name of the container to run
/bin/bash Get a bash shell inside the container

Notice: the container does not contain the code, only the environment necessary to run it:
•. Developpers keep doing their own modifications to Mastercode in their private copy.

• In MacOS, download the Docker Tool Box for Mac, and start from (3).

23I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Docker limitations

• The Union Filesystem poses a big constraint on container sizes:
• The size of a container, is monotonously increasing with time…. no matter what you delete.
• Decreasing a container size with docker, can be done only by re-creating it

• The docker “root” has limited capabilities:
• Cannot access /dev (try your audio/video) inside a container
• Cannot mount filesystems external to the container (unless you dissable SElinux),…

• On multi-user environments (eg. a Linux cluster) with a batch system:
• Docker runs formally under root
• There are issues with traceability of the processes (who did what?)
• Accounting of resources is very complex/impossible
• Could a kernel bug in the container, be exploited to attack the host machine?

24I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Docker limitations

• The Union Filesystem poses a big constraint on container sizes:
• The size of a container, is monotonously increasing with time…. no matter what you delete.
• Decreasing a container size with docker, can be done only by re-creating it

• The docker “root” has limited capabilities:
• Cannot access /dev (try your audio/video) inside a container
• Cannot mount filesystems external to the container (unless you dissable Selinux),…

• On multi-user environments (eg. a Linux cluster) with a batch system:
• Docker runs formally under root
• There are issues with traceability of the processes (who did what?)
• Accounting of resources is very complex/impossible
• Could a kernel bug in the container, be exploited to attack the host machine?

25I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

INDIGO devel. --> bdocker

We can run docker under
batch systems

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 26

Solves the “root” problem by a token mechanism
Provides proper accounting of resources to the scheduler

We have developed bdocker

• Bdocker allows submission of batch jobs running containers to linux clusters running
docker as part of their system software deployment.

• Two daemons are working under root privileges
• Working daemon controls the docker execution on each working node.
• Accounting daemon listens the working nodes and stores job accounting.

• Command line tool called 'bdocker'
• Follows the same semantic that the docker command line client

• ./bdocker run -d my_image_name -v /home/jorge/:/tmp -w /tmp './script.sh'

• Two administration commands to be executed by prolog/epilog.
• bdocker configure

• Configure user credentials and batch environment.
• bdocker clean

• Clean user credentials and batch environment, and notify accounting.

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Bdocker Workflow

#/bin/bash

bdocker pull ubuntu
bdocker run -d <image> -v /home/:/tmp -w /tmp './script.sh'
bdocker logs <container_id>

JOB SCRIPT

Bdocker configure

PROLOG

Bdocker clean

EPILOG

Bdocker Working Node Daemon

Configure

Bdocker Accounting
Daemon

Store
Accounting

Configure
Environment

Launch monitor
accounting

Run script

Clean job

Notify
accounting

Clean
environment

Authorization

Run Docker
commands

Own
Container

Exist
Token

Path in
HOME

Delete
Containers

Clean
Environment

Check
Accounting

Kill
Job

When docker is not available in the
computing center...

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 29

In HPC centers / multi-user environment

• Adoption of docker is being very slow in HPC centers
• Thus the tipical situation is that docker is not installed and one cannot run

containers without some support from the system software.
• In general Docker adoption will be slow in any computing farm or interactive linux

system shared by many users eg. conflicting software dependencies...

30I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

In HPC centers / multi-user environment

• Adoption of docker is being very slow in HPC centers
• Thus the tipical situation is that docker is not installed and one cannot run

containers without some support from the system software.
• It will take time for sysadmins to overcome the concerns of the security teams.

31I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

In HPC centers / multi-user environment

• Adoption of docker is being very slow in HPC centers. Why?
• The tipical situation is that docker is not installed and one cannot run containers

without some support from the system software.
…. yet another service to maintain...

32I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

For those not willing to deal with their
particular “Mordac”, we developed udocker

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016 33

udocker: capabilities

• It is tool to execute content of docker containers in user space when docker is not available
• enables download of docker containers from dockerhub
• enables execution of docker containers by non-privileged users

• It can be used to execute the content of docker containers in Linux batch systems and
interactive clusters managed by others

• Acts as a wrapper around other tools to mimic docker capabilities
• current version uses proot to provide a chroot like environment without privileges (runs on

CentOS 6, CentOS 7, Fedora, Ubuntu)

• More info and downloads at:
• https://www.gitbook.com/book/indigo-dc/udocker/details
• https://indigo-dc.gitbooks.io/udocker/content/doc/user_manual.html

34I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

udocker: basic description

• Everything is stored in the $HOME or some other directory belonging to the user (tunable
parameter).

• Container layers are download to the above specified directory
• Directory trees can be created/extracted from these container layers
• proot uses the debugger ptrace mechanism to change pathnames and execute transparently

inside a directory tree
• No impact on read/write or execution, only impact on system calls using pathnames (ex. open,

chdir, etc)
• Does not require installation of software in the host system:

• udocker is a python script
• proot is statically compiled

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Running Mastercode with udocker

1.Download udocker from: https://github.com/indigo-dc/udocker

2.Download the container: $./udocker.py pull indigodatacloud/docker-mastercode

3.Make sure you have enough space to uncompress it by pointing to a proper directory (default is
$HOME): export UDOCKER_DIR=/MY_LARGE_FILESYSTEM/userabc/.udocker

4. Create the container directory tree on your user space
$./udocker.py create indigodatacloud/docker-mastercode
bb889c79-2872-37f3-adad-cd9e937dd6f0
5. You probably want to give it a nicer name:
$./udocker.py name bb889c79-2872-37f3-adad-cd9e937dd mymastercode

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Running Mastercode with udocker:
directory tree

37I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August
2016

38

Running Mastercode with udocker:
Linux Cluster: batch script

export MASTERDIR=/gpfs/csic_users/userabc/mastercode
export UDOCKER_DIR=$MASTERDIR/.udocker

 ../udocker-master/udocker.py run --hostauth \
 -v /home/csic/cdi/ica/mcpp-master \
 -v /home/csic/cdi/ica \
 -user=userabc \
 -w /home/csic/cdi/ica/mcpp-master mastercode \
 '/bin/bash -c "pwd; ./udocker-mastercode.sh"'

export MASTERDIR=/gpfs/csic_users/userabc/mastercode
export UDOCKER_DIR=$MASTERDIR/.udocker

 ../udocker-master/udocker.py run --hostauth \
 -v /home/csic/cdi/ica/mcpp-master \
 -v /home/csic/cdi/ica \
 -user=userabc \
 -w /home/csic/cdi/ica/mcpp-master mastercode \
 '/bin/bash -c "pwd; ./udocker-mastercode.sh"'

-hostauth : to use the /etc/passwd of the host machine

-v makes directories available inside the container

-user: your userid

-w working directory from where the commands will
be issued

./mc_point.py --run-mode mc-cmssm --predictors all --inputs 500 600 0 10 --print-mc-spectrum > output.txt./mc_point.py --run-mode mc-cmssm --predictors all --inputs 500 600 0 10 --print-mc-spectrum > output.txt

Where udocker-mastercode.sh is the (usual) command line sequency to execute Mastercode

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Support to MPI execution (under dev.)

• Seems it will work as well
• We noticed that:

• We are able to modify the agents so that each MPI process is launched as a container
• Under such conditions individual containers can be instructed to communicate via MPI libraries,

as any regular MPI execution does.
• In our preliminary tests, it works over Ethernet and yes, under Infiniband too.

• Will be part of our 2nd software release in February 2017:
• If you want to help us testing, let us know (beta-testers very much wanted)

39I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Conclusions

40

• Thanks to recent system software developments it became much easier exploiting
computing resources in a transparent way
• It needs to be kept in mind when developing new application software packages

• Cloud-like resources are optimized exclusively for this type of usage: many resources,
• But one must get smarter to exploit them efficiently.
• Today it is possible accessing resources in this mode in commercial environments

• As of today Computing Resources are offered still as classic Linux Clusters
• It will change in time, despite the HPC centers are forced to be very conservative in this

respect (production infrastructure)
• We need to be ready for a smooth transition, and the good news is that the user has

new possibilities to be independent from the underlying system software.

41I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Technical References. If you wish to…

Move your infrastructure to a Cloud Middleware Framework:
• Install your infrastructure under openStack and run containers there:
• Provide your cluster users the capability of deploying private sub-clusters on

demand for interactive access:

Use containers technology, but without moving to a CMF:
• Install support to docker execution via your batch system

• https://github.com/indigo-dc/bdocker
• Use udocker

• https://github.com/indigo-dc/udocker

42

https://www.indigo-datacloud.eu/indigo-support-and-technical-services

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

Questions?

43

“Using udocker we can run the container as an unprivileged user
Without the need of any additional system software”

I. Campos @ QCDNA Workshop, Edinburgh, 1-3 August 2016

“I find your lack of faith disturbing”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

