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Introduction

objective: use an iterative method to solve Dirac equation

Du= f

condition number of D increases like (am)−1

→ use a preconditioner M with M−1 ≈ D−1

using
DM−1Mu= DM−1v = f

we solve for v with preconditioned matrix DM−1 (smaller condition
number) and obtain u= M−1 f

error en = u∗ − un can formally be written as a linear combination of the
eigenmodes of D
→ find a preconditioner that reduces the contributions of these eigen-

modes to the error
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Introduction

adaptive multigrid appears to be the method of choice to precondition D
for a, m→ 0 Brannick et al. 0707.4018, Babich et al. 1005.3043

we use the Wuppertal version (DD-αAMG)
Frommer et al. 1303.1377, github.com/DDalphaAMG

domain-decomposition (DD) based smoother reduces contributions of high
modes to error Lüscher hep-lat/0310048
coarse-grid correction (CGC) reduces contributions of low modes
relation to inexact deflation (Lüscher 0706.2298) understood

optimized implementation of Wuppertal code on QPACE 2

work done mostly by Simon Heybrock, Daniel Richtmann, Peter Georg

with support from Matthias Rottmann
currently only 2-level MG is optimized (sufficient for our current lattices)
multi-level MG will be optimized in near future (needed for future lattices)
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QPACE 2: High-level design

PCIe
switch

KNC

KNC

KNC

KNC

CPU

2x FDR IB

machine consists of identical compute nodes:
4 Intel Xeon Phi a.k.a. Knights Corner (KNC)
coupled via PCIe switch (PLX 8796)
weak CPU (Xeon E3-1230L v3)
for root complex functionality (PCIe master)
dual-FDR Infiniband card (Mellanox Connect-IB)
(network b/w consistent with LQCD requirements)

communication
within node via PCIe (8 GB/s between each KNC and PCIe switch)
out of node via Infiniband (13.5 GB/s per node)
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QPACE 2: System design

rack design:

standard 19” rack (height 42U)

64 bricks (256 KNCs) in 24U

rest for PSUs, switches (4x IB and 3x GigE),
management/login server

310 TFlop/s DP peak per rack (KNCs only)
at ∼ 75 kW
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Xeon Phi / Knights Corner

source: intel.com

QPACE 2 uses version 7120X: 61 cores @ 1.238 GHz

512-bit wide SIMD units (one per core)

16 GB memory (170 GB/s sustained)

512 kB private L2 cache per core (unified with distributed tag directory)

peak DP performance 1.2 TFlop/s
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Overview of DD-αAMG

Dirac operator is Wilson clover

lattice volume V is divided into Nblock blocks with Vblock = V/Nblock

each block consists of two aggregates that contain the left- and
right-handed spinor components, respectively

outer solver: FGMRES with deflated restarts Frommer et al. 1204.5463

MG method consists of two parts
setup
solve (application of MG preconditioner in every FGMRES iteration)
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Application of MG preconditioner

Algorithm 1: MG preconditioner (V-cycle)

Input: right-hand side y
Output: approximate solution x of Dx = y

1 apply coarse-grid correction to y (Alg. 2)
2 apply smoother to y , with result from coarse-grid correction as starting guess (Alg. 3)
3 set x to result of smoother

M (ν)SAP

D−1
c

R P
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Coarse-grid correction

Algorithm 2: Coarse-grid correction

Input: right-hand side y
Output: approximate solution x of Dx = y

1 restrict vector y from fine to coarse grid:

yc = Ry

2 Coarse-grid solve to low precision using FGMRES with even/odd preconditioning:

xc ≈ D−1
c yc

3 prolongate solution vector from coarse to fine grid:

x = P xc with P = R†

x should approximate low-mode content of true solution

this is accomplished by a suitable prolongation operator P (computed in
setup phase), which also determines Dc = RDP
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Smoother

Algorithm 3: Smoother (DD)

Input: right-hand side y , starting guess x (0)

Output: approximate solution x (ν) of Dx = y
1 split lattice into blocks
2 write D = B + Z with B = couplings within blocks and Z = couplings between blocks
3 for n= 1 to ν do
4 x (n) = x (n−1) + B−1(y − Dx (n−1)) // simplified; in practice SAP is used

output should approximate high-mode content of true solution

inversion of B done by minimal residual (MR)
choose block size so that block solve runs from cache
even/odd preconditioning on blocks
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MG setup

empirical observation: the O(V ) low Dirac eigenmodes are locally
coherent Lüscher 0706.2298

aim of MG setup: construct a subspace (of dimension Ntv) that
approximates the “near-null space”

define a set of test vectors {v j} ( j = 1, . . . , Ntv)
start with random vectors and apply an iterative process through which
high-mode components are successively damped

setup is expensive and can dominate execution time if only few solves
are done

important to optimize setup
for case of few solves, could make setup less optimal
→ setup cheaper, solve more expensive, faster overall Osborn 1011.2775
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MG setup flow diagram

start with random
test vectors v1, . . . , vNtv

smooth all vi
a few times

build R and Dc

R good?
apply method itself and

solve Dϕi = vi ∀i

set vi ← ϕi and
orthonormalize v1, . . . , vNtv

stop

no

yes

source: Matthias Rottmann
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Setup phase: initial and iterative part

Algorithm 4: MG setup

Input: none
Output: restriction operator R and coarse-grid operator Dc
// Initial setup:

1 set Ntv test vectors to random starting vectors
2 for k = 1 to 3 do
3 update each test vector by applying smoother with ν= k, with starting guess 0

4 setup of restriction and coarse-grid operator (Alg. 5)
5 normalize the test vectors

// Iterative refinement:
6 for i = 1 to Nsetup do
7 update each test vector by applying V-cycle (Alg. 1)
8 setup of restriction and coarse-grid operator (Alg. 5)
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Setup of restriction and coarse-grid operator

Algorithm 5: Setup of restriction and coarse-grid operator

Input: test vectors {v j}
Output: restriction operator R and coarse-grid operator Dc
// Setup of restriction operator:

1 for i = 1 to Nblock do
2 foreach h= `, r do
3 set Rh

i to Ntv × 6Vblock matrix having in its rows the vectors v†
j restricted to

aggregate Ah
i

4 run Gram-Schmidt on the rows of Rh
i

// Setup of coarse-grid operator:
5 compute

Dc = RDR†
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General strategy

select most suitable algorithm for given hardware

adapt data layout to make optimal use of hardware (cache and vector
units) and to minimize data movement (memory and network)

identify main contributors to wall-clock time and optimize them
vectorization
cache management and prefetching
intra-core threading
inter-core parallelization
multi-node implementation

some extra tricks
half-precision storage (for some objects)
multiple RHS
communication latency hiding
software prefetching
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Miscellanei

SIMD implementation
originally based on intrinsics for Intel compiler
now same API for intrinsics and auto-vectorization by compiler
real and imaginary parts are not mixed in same register

threading
lattice is decomposed into pieces that are assigned to individual threads
done with OpenMP
we use persistent threads with synchronization points
(better performance than fork-join)

multi-node communication
originally based on Intel MPI
now being replaced by high-performance comms library pMR (Peter Georg)
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Vectorization: the threefold way

before working on DD-αAMG, Simon Heybrock developed optimized
DD-based solver for 512-bit SIMD/KNC Heybrock et al. 1412.2629

used as smoother on fine grid in DD-αAMG
vectorization by site-fusing (combine several lattice sites in SIMD unit)
SOA data layout (domain boundary data also in AOS)
https://rqcd.ur.de:8443/hes10653/mic-qcd-solver

remaining parts of DD-αAMG are easier to vectorize:
number of components that can be treated on same footing contains factor
of Ntv (on fine grid) or 2Ntv (on coarse grid)
choose this factor to be an integer multiple of SIMD length NSIMD

→ perfect use of SIMD unit
if not an integer multiple, part of SIMD unit is wasted in last iteration

when multiple RHS are present: better to vectorize over RHS
(requires change in data layout)
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Current status

2-level DD-αAMG fully vectorized

most optimizations completed

multiple RHS implemented in iterative setup phase (coarse grid)

several improvements in comms
threading of copying from/to comm buffers
MRHS implementation leads to fewer and larger messages
MPI replaced by pMR for halo exchange on coarse grid
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TBD

DD-preconditioning of FGMRES on coarse levels

multiple RHS for smoother in setup phase
vectorization over test vectors

multiple RHS for smoother on fine grid (for analysis)
vectorization over RHS

optimized DD-based smoother on coarse levels (for multi-level algorithm)
SRHS: vectorization over test vectors
MRHS: vectorization over RHS

further optimization of comms
pMR also for global sums
replace all performance-relevant MPI calls by pMR calls
(MPI could be still be used as a provider within pMR)

How to optimally map coarse grid(s) to machine partition?
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Domain Decomposition

1 2 3

5 64

1

2

3

4

5

6

decomposition of xy-plane
into 6 domains

split stencil matrix A
into A = D + R

matrix D: matrix R:

Jacobi iteration for linear
system Au = f

main idea: Schwarz (1870), Lüscher hep-lat/0310048
subdivide lattice into domains and reorder indices→ block-diagonal + rest
inversion only on domains (no communication required, ideally from cache)
rest (application of R) needs comms but does not occur frequently

→ less communication, better latency tolerance, more cache reuse
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Data layout and mapping to SIMD

goals:
avoid loading cache lines that are only partially needed
use all SIMD elements
avoid instruction overhead due to permutations (for complex arithmetic)

our solution:
structure-of-array (SOA) format, i.e., all 24 floating-point components of a
spinor are stored in 24 separate registers and cache lines
this leads to “site fusing”: 16 lattice sites in one 512-bit register (for SP)
in our case: 4×4 sites per register in x and y direction

computation of hopping terms:
straightforward in z and t direction
in x and y , use permute/mask→ wastes 12.5% (25%) of SIMD units in x (y)
in site-fused dimensions, hopping terms between domains would give large
overhead:

need to load cache line with neighbor’s boundary data
but this cache line contains extra data that are not needed

→ additionally store boundary data in array-of-structure (AOS) format
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Permuting/masking and repacking of boundary data

permuting/masking:
xy-plane site-fused layout in memory

permute

mask_add

0 4 8 12

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

repacking of boundary data:
site-fused layout of domain on KNC/core A

site-fused layout of
domain on KNC/core B

xy-plane

permute

add

0 4 8 12

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 4 8 12

0 4 8 12

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

blend

0 4 8 12

12 components
.....

.....

AOS layout for 12 components
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Cache management and prefetching

one domain per core since L2 is not shared

cache size (512 kB/core) restricts domain size to 8× 43 (in SP)

KNC can do up/down-conversion between half/single on load/store
→ store (some) domain data in half precision
→ reduced working set and reduced bandwidth requirements

to ensure stability, spinors are kept in single precision
gauge links and clover matrices in half precision
no noticeable impact on iteration count of outer solver

prefetching:
no L1 hardware prefetcher
L2 hardware prefetcher only for streaming access
compiler-generated software prefetches often not good enough
manual L1 and L2 prefetches essential (using intrinsics)
fine-tuning of prefetches rather time-consuming
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Intra-core threading

need at least two threads per core for full pipeline utilization

we assign threads to alternating time slices within domain

we see no significant differences between two or four threads per core:
two threads: more stalls due to latency of L1 or L2 misses
four threads: working set exhausts L1 size

→ threads evict each other’s data more frequently
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Inter-core parallelization

using OpenMP

recall: one domain per core

synchronization between cores only necessary after MR block solve
(MR = inversion on domains)
→ cost of barrier has no significant impact

load-balancing issues with standard lattice sizes (2n) on 60 cores
(some cores would be unused)

simple issue but significant impact on performance
possible workarounds:

use prime factors of 3 and 5 in lattice sizes (for new lattices)
non-uniform partitioning of the lattice
example: processors with 6 cores each, 4×16 lattice

2 · 8 = 16 processors
(16 · 2 = 32 cores unused)

2 · 5 + 1 = 11 processors
(2 cores unused)
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Multi-node implementation

could have each thread issue its own MPI calls, but:
typically high overhead for MPI calls from several threads
message sizes too small for efficient network utilization

better:
combine surface data of all domains and communicate them using a single
thread
needs explicit on-chip synchronization

hiding communication behind computation is important (even for DD)
standard method (divide local volume into interior and surface) does not
work for us since most domains would be on the surface
instead, send boundary data when half of them are ready

Tilo Wettig DD-αAMG on QPACE 2 August 2, 2016 33 / 64



Communication latency hiding for DD

boxes represent domains, numbers represent order of execution,
small letters represent order of communication

bad:

1
2

3
4

t

x,y,z

KNC A

KNC B

1 1 1
2 2 2

333
444

1 1 1 1
2 2 2 2

3333
4444

good:

t

z

1 1 1 1
2 23 3

334 4

1
2

3 4
5

1 1 1
2

3
33

4
555

5555

1
2

3 4
5

1 1 1
2

3
33

4
555

1 1 1 1
2 23 3

334 4
5555

a

b

c

a

b

c

d d

b

c

c

b

linear representation:
1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

a b
c

d

computer time

KNC X

neighbors of X

iteration n iteration n+1

t-backward
t-forward

z-backward
z-forward
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Results: Single core

theoretical performance model predicts 56% of peak = 20 GFlop/s/core

actual MR performance ∼ 12 GFlop/s on single core
main culprit (VTune): stalls due to outstanding L1 prefetches

optimal number of MR iterations (for minimal time-to-solution) is only 4∼5
→ other parts of Schwarz method contribute significantly
→∼ 8 GFlop/s/core

single-core performance in GFlop/s:

MR iteration DD method
single half single half

no software prefetching 5.4 7.9 4.1 5.9
L1 prefetches 9.2 11.8 5.8 7.7
L1+L2 prefetches 9.1 11.8 6.3 8.4
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Results: Single KNC
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16x8x20x24, ndomain=60
32x32x20x24, ndomain=480
48x12x12x16, ndomain=108

perfect scaling (based on linear fit to 1-10 cores)

almost perfect scaling (except for load imbalance):
cores can work independently during MR inversion
almost no competition for memory access since MR runs from cache
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Results: DD strong scaling (on Stampede)
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x64 lattice

DD solver
non-DD solver
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number of KNCs

48
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x64 lattice

 0  256  512  768  1024
number of KNCs

64
3
x128 lattice

DD, non-uniform partitioning
(preliminary)

mπ = 290 MeV, 150 MeV (QCDSF), SU(3) point (∼ 800 MeV) (USQCD)

results normalized to minimum time-to-solution for non-DD solver (BiCGstab)

DD strong-scales to more nodes (also better for equal number of nodes)
performance drop for large number of nodes:

overlapping communication with computation becomes harder/impossible
message sizes are smaller→ less efficient network communication

max. number of nodes is determined by local volume:
if domains too small→ DD less efficient
we don’t split domains over cores (no shared L2)
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Application of restriction operator (single RHS)

compute yc = Ry with R= diag(R`1, Rr
1, . . . , R`Nblock

, Rr
Nblock
)

dim(R`,ri ) = Ntv × 6Vblock → vectorize over row index:

Algorithm 6: SIMD implementation of Ry

1 for i = 1 to Nblock do
2 foreach h= `, r do
3 set (yc)hi = 0 in SIMD vectors (real and imaginary part) // dim(yc)hi = Ntv

4 for n= 1 to 6Vblock do // work on aggregate Ah
i

5 load real and imaginary part of column n of Rh
i into SIMD vectors

6 broadcast real and imaginary part of corresponding element of y into
SIMD vectors

7 increase (yc)hi by complex fused multiply-add (corresponding to 4 real
SIMD fmadds)

8 write (yc)hi to memory

row index of Rh
i runs in SIMD vector (latter contains column of Rh

i if Ntv = NSIMD)
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Application of restriction operator (single RHS)

�
(yc)

h
i

�
m =
∑

n

(Rh
i )mn(y

h
i )n





h= `, r
i = 1, . . . , Nblock

m= 1, . . . , Ntv

n= 1, . . . , 6Vblock

SIMD FMA:

�
(yc)hi
�

1

�
(yc)hi
�

2

�
(yc)hi
�

3

...

+ =
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i )1n
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i )2n
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i )n
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Prolongation (single RHS)

similar to restriction but with R→ P = R†

aspect ratio of rectangular matrix is reversed
→ now column index of P`/ri (= row index of R) runs in SIMD vector

at the end, require additional sum over elements in SIMD vector
→ prolongation somewhat less efficient than restriction
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Setup of coarse-grid operator

Dc = RDP in detail:

�
D``c D`rc
Dr`

c Dr r
c

�

i j
=

�
R`i 0
0 Rr

i

��
D``i j D`ri j
Dr`

i j Dr r
i j

��
P`j 0
0 P r

j

�

i and j are equal or nearest neighbors, and run from 1 to Nblock

(Dc)i j computed for i = j and forward neighbors

for backward neighbors use (Dc)hh
ji = (Dc)

hh†
i j and (Dc)hh′

ji = −(Dc)
h′h†
i j (h 6= h′)

Dc is stored in half precision (reduces memory capacity and bandwidth
requirements, no impact on algorithmic performance)
we also store (Dc) ji since transpose is expensive in SIMD

first compute Dhh′
i j Ph′

j , i.e., sparse matrix applied to multiple vectors

(the Ntv columns of Ph′
j )→ vectorize over column index (Alg. 7)

application of R to result = restriction with multiple RHS (#RHS= Ntv)
→ vectorize over RHS
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Setup of coarse-grid operator

Algorithm 7: SIMD implementation of Dhh′
i j Ph′

j

1 for x ∈ block i do
2 set output = 0 in SIMD vectors (real and imaginary parts)
3 foreach µ ∈ {±1,±2,±3,±4} do
4 if x + µ̂ ∈ block j then
5 load real and imag. parts of the 6 rows of Ph′

j corresponding to x+µ̂
into SIMD vectors

6 broadcast real and imag. parts of the 9 elements of SU(3) link Uµ(x)
into SIMD vectors

7 increase output by complex fmadd (1+ γµ)hh′Uµ(x)†Ph′
j (x + µ̂)

8 if i = j and h= h′ then
9 load real and imaginary parts of the 6 rows of Ph

i corresponding to x into
SIMD vectors

10 broadcast real and imaginary parts of the clover matrix elements Chh(x)
into SIMD vectors

11 increase output by complex fmadd Chh(x)Ph
i (x)
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Restriction with multiple RHS
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Application of coarse-grid operator

(Dc)i j 6= 0 only if i and j are equal or nearest neighbors
then (Dc)i j is dense and stored in memory

dim(DC)i j = 2Ntv

vectorization can be done as in the restriction (but different approach/
data layout depending on whether we have SRHS or MRHS)
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Gram-Schmidt on aggregrates

needed to orthonormalize rows of Rh
i

we do not use modified Gram-Schmidt:
classical Gram-Schmidt easier to vectorize, and needs fewer globals sums
stability of Gram-Schmidt process not an issue in preconditioner

we use block Gram-Schmidt method
obtains better cache reuse and thus saves memory bandwidth

vectorization done as before: merge same components of the Ntv test
vectors in the SIMD vectors

disadvantage: axpy operations and dot products waste parts (on
average one half) of the SIMD vectors
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BLAS-like linear algebra on coarse grid

needed for FGMRES on coarse grid

SRHS:
data layout change on coarse grid would be needed to utilize SIMD unit
this change would propagate to other parts of code
→ not done since impact on performance is not dominant
temporary workaround: de-interleave real and imaginary parts on the fly to
do SIMD computation

MRHS: no such issues
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SIMD speedup of DD-αAMG

speedup factor w.r.t. original Wuppertal code:

MG component Restrict. Prolong. Dc setup (Dc)i 6= j (Dc)ii GS on aggr.
SIMD speedup 14.1 8.6 19.7 20.2 19.5 10.8

single core on a single KNC, lattice size = 84 (does not fit in cache)
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Strong scaling of DD-αAMG (single RHS implementation)
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CLS lattice: 483 × 96, β = 3.4, mπ = 220 MeV, a = 0.086 fm
(small lattice size chosen intentionally to see breakdown of strong scaling)

after optimizations, off-chip communication now dominant
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Multiple RHS and optimization of communications (Daniel Richtmann)

small message sizes imply inefficient network utilization
→ alleviated by multiple RHS (fewer and larger messages)

so far: V-cycle applied to test vectors in setup sequentially (SRHS)
→ message size on coarse grid:

Sµ =
3∏

ν=0,ν6=µ

(local lattice)ν
(domain size)ν

· 2Ntv

2
· 8 Byte

now: apply V-cycle to NSIMD test vectors simultaneously (MRHS)
→ message size increases by factor of NSIMD = 16
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Impact of MRHS on effective network bandwidth
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MHRS: Change in data layout and mapping to SIMD

change in data layout:

v1

v2

v3

...

v(1)i

v(2)i

v(3)i

...

yields more natural mapping to SIMD and performance gains
BLAS-like linear algebra (e.g., vector adds) vectorized trivially
de-interleaving overhead eliminated
no data dependencies of individual entries in registers
→ reduction operations over elements in register no longer needed
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Further benefits of MRHS

arithmetic intensity of dense complex matrix-vector multiplication
SRHS: ∼ 32 Byte/cycle per core→ 2377 GB/s on KNC
MRHS: ∼ 2 Byte/cycle per core→ 149 GB/s on KNC

KNC memory bandwidth is about 170 GB/s
→ MRHS no longer memory-bandwidth bound

fewer calls to barriers→ less synchronization overhead

Tilo Wettig DD-αAMG on QPACE 2 August 2, 2016 54 / 64



MRHS performance gains

projection operators 2.9x
coarse-grid computation 2.4x
on-chip synchronization 2.7x
halo exchange 4.7x
global sums 10.3x
coarse-grid total 2.9x
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Impact of MRHS on wall-clock time

so far, MHRS implemented in coarse-grid solve and projection operators

MRHS implementation of smoother in progress

results on 64 KNCs (with parameters tuned for SRHS setup):

Init. setup Iter. setup fine
(SRHS/MRHS)

Iter. setup coarse
(SRHS/MRHS)

Solve
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SolveSetupRestr. & Prolong.
Tmp. Copy Overhead
Halo Exchange
Global Sums

Copy from/to MPI buffers

Computation
On-chip sync.

Other (Misc)

here, copy operations to/from comm. buffers were not threaded yet
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MRHS + threading of copy to/from comm. buffers

Init. setup Iter. setup fine
(SRHS/MRHS)

Iter. setup coarse
(SRHS/MRHS)

Solve
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Further comms optimization: pMR

switch from MPI to high-performance communications library pMR for
performance-relevant parts

for details see poster
persistent, one-sided communication (RDMA)
written in C++11
separate code for supported network providers (IB verbs, Linux CMA)
supports exotic network topologies
so far only implemented for halo exchange on coarse grid

check out now from https://rqcd.ur.de:8443/gep21271/pmr
will be put on github for contributions
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Synthetic benchmarks

0 32 64 96 128 160 1920

500

2000

2500

Message size in KiB

Ba
nd

w
id

th
in

M
iB

/s

4d halo exchange on 224 KNCs

red: pMR
blue: Intel MPI (DAPL, port 1)
cyan: Intel MPI (DAPL, port 2)
green: Intel MPI (OFA, one port)
yellow: Intel MPI (OFA, two ports)

0 32 64 96 128 160 192 224 2560

25

75

100

Xeon Phis

T
im

e
in

μs

global sum

red: pMR
blue: Intel MPI

Tilo Wettig DD-αAMG on QPACE 2 August 2, 2016 59 / 64



Halo exchange on coarse grid for one solve
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CLS lattice: 483 × 96, β = 3.4, mπ = 220 MeV, a = 0.086 fm
(small lattice size chosen intentionally to see breakdown of strong scaling)
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From KNC to KNL

porting has started very recently, so no real results yet
(only synthetic benchmarks)

KNL supports different memory and cluster modes
MCDRAM: flat, cache, hybrid
cluster: quadrant, SNC-4 (and others)

two vector units per core (instead of one)
memory bandwidth went up by about 2.5x
but only 16GB fast memory (MCDRAM)

barriers still slow: O(10,000) cycles for 64 cores with two threads each

cores can now do hardware prefetching
→ software prefetching efforts should be eliminated (or reduced?)

half precision:
Xeon Phi does not have HP arithmetic instructions, but storing some objects
in HP is still beneficial (memory capacity/bandwidth)
KNC ISA has up/down conversion on load/store, no longer present on KNL
instead, use combination of AVX-512 intrinsics

Tilo Wettig DD-αAMG on QPACE 2 August 2, 2016 62 / 64



Outline

1 Introduction

2 Xeon Phi and QPACE 2

3 Main elements of DD-αAMG

4 Overview of implementation and optimizations

5 Details and benchmarks
DD-based smoother on fine grid
Coarse-grid correction
Communications and multiple RHS

6 From KNC to KNL

7 Conclusions

Tilo Wettig DD-αAMG on QPACE 2 August 2, 2016 63 / 64



Conclusions

DD-αAMG is a good target for SIMD architectures

optimized 2-level implementation on QPACE 2/KNC mostly completed
most important missing piece: MRHS for smoother

high-performance comms library pMR

TBD:
optimize multi-level implementation
port to QPACE 3/KNL
optimal mapping of coarse level(s) to machine partitions
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Strong-coupling expansion

action of lattice QCD (sum over colors and flavors implied):

S = SYM + S f

= − β
Nc

∑
p

Re tr Up +
∑

x

�
ψ̄xψx − κ
∑
±µ
ψ̄x+µ(1+ γµ)Uxµψx

�

with β = 2Nc/g2 and κ= 1/(2m+ 8)
lattice perturbation theory is an expansion about the g = 0 limit
there is another limit about which perturbation theory can be set up:
g =∞ or, equivalently, β = 0
→ strong-coupling expansion

can be done to almost arbitrary orders by computing group integrals
(doable since at β = 0 gauge fields appear only linearly, while Up ∼ U4)
leads to novel simulation algorithms
known since the 1970s
still of interest in cases where standard Monte Carlo simulations are not
possible (e.g., sign problem at µ 6= 0)
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Induced QCD

to use the strong-coupling techniques also away from β = 0, one should
linearize the plaquette action

this can be done, e.g., by rewriting the plaquette term as an integral over
suitable auxiliary fields to which U couples linearly (“induced QCD”)
several ways to do this have been proposed in the 1980s and 1990s:

Bander 1983 (auxiliary scalar fields)
Hamber 1983 (auxiliary Wilson fermions)
Hasenfratz-Hasenfratz 1992 (like Hamber + 4-fermion interaction)
Kazakov-Migdal 1993 (adjoint scalars, no YM limit but useful for large Nc)

in the cases that reproduce YM theory in the continuum limit, this
requires taking the combined limit N f →∞ and κ→ 0 such that
N f κ

4 = const∝ β (with N f = number of auxiliary flavors)
→ inconvenient (need many auxiliary flavors and extrapolation)

new idea by Budczies-Zirnbauer (2003) requires only small number of
auxiliary bosons and no extrapolation
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Budczies-Zirnbauer action

Budczies-Zirnbauer (math-ph/0305058) propose a “designer action”

SBZ[ϕ, ϕ̄, U] =
Nb∑

b=1

∑
±p

4∑
j=1

�
mBZϕ̄b,p(x

p
j )ϕb,p(x

p
j )

− ϕ̄b,p(x
p
j+1)U(x

p
j+1, xp

j )ϕb,p(x
p
j )
�

the ϕ are auxiliary boson fields and carry an
(oriented) plaquette index
j labels the points of the plaquette
the second term corresponds to the hopping of the
ϕ around the plaquette U(x+p

2 , x+p
1 )

+p

−p

x±p
1 x+p

2 /x−p
4

x+p
3 /x−p

3x+p
4 /x−p

2

integrating out the ϕ yields the weight factor

ωBZ[U] =
∏

p

��det
�
m4

BZ − Up

���−2Nb

product is over unoriented plaquettes
Up ∼ U4 is the usual product of the four links around the plaquette
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Conventional pure gauge limit

write weight factor as

ωBZ[U]∼ exp
¦
− 2Nb Re
∑

p

tr log
�
1−αBZUp

�©

with αBZ = m−4
BZ (allowed range is mBZ > 1 and thus 0< αBZ < 1)

expand in small αBZ :

Seff
BZ[U] = −2NbαBZ

∑
p

Re tr Up +O(α2
BZ)

this gives the usual Wilson plaquette action if

αBZ→ 0 , Nb→∞ such that β = 2NcNbαBZ fixed

however, they can do better
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Nontrivial pure gauge limit for U(Nc)

first consider d = 2 and gauge group U(Nc)

then one can prove that in the limit

αBZ→ 1

the BZ theory has a continuum limit that coincides with YM theory,
provided that Nb > Nc
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Proof of continumm limit

for Nb ≥ Nc , weight factor approaches δ-function for αBZ→ 1

lim
αBZ→1

〈 f 〉
〈1〉 = f (1) , 〈 f 〉=

∫

G
dUp f (Up)
��det
�
1−αBZUp

���−2Nb

proof by group theory (character expansion) and some algebra

thus fluctuations from unity are strongly suppressed
→ diverging correlation length
→ continuum limit (same reasoning as for Wilson action)

the key was the minus sign in the exponent (resulting from bosons)

BZ say that the bound Nb ≥ Nc is optimal:
δ-function is obtained if all irreps r of the group occur in the character
expansion with coefficient cr = dr (Peter-Weyl theorem)
for Nb < Nc BZ say some irreps are missing→ no δ-function
we will later relax this bound for non-integer Nb
(we find that irreps are not missing but cr 6= dr )
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Equivalence of continuum limit with YM

proof by character expansion of the weight function (a class function):

ω(U) =
∑

r

crχr(U) with cr =

∫
dUω(U)χr(U

−1)

for Nb ≥ Nc + 1, the expansion coefficients have a Taylor expansion in
(1−αBZ)2

in the limit αBZ→ 1, first nontrivial term leads to boundary-value
partition function for a 2-dim. area

Γ (U) =
∑

r

dr χr(U)exp
§
−µ

2

�
Cas2(r) +

B1

B2
q(r)2
�ª

with µ∼ (1−αBZ)2

this was the starting point of Witten’s combinatorial treatment of 2d YM
→ equivalence established Witten, Commun. Math. Phys. 141 (1991) 153

Nb = Nc is a special case (non-renormalizable theory with Cauchy
distribution), which does not persist for d > 2
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From d = 2 to d > 2

proof becomes a conjecture

increasing the number of dimensions also increases the collective
behavior of the link variables (more transverse gluons)

this enhances the universal properties of the microscopic theory

thus, if we start with a microscopic theory in the YM universality class for
d = 2, this theory should remain in the YM universality class for d > 2
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Spurious sign problem

the weight factor
∏

p

��det
�
m4

BZ − Up

���−2Nb has no sign problem

however, the action with auxiliary bosons does: SBZ is generically
complex since in

Nb∑
b=1

∑
±p

4∑
j=1

ϕ̄b,p(x
p
j+1)U(x

p
j+1, xp

j )ϕb,p(x
p
j )

the imaginary parts of the terms containing the positively and negatively
oriented links do not cancel per configuration, but only after integration

this can be fixed easily by noting
��det
�
m4

BZ − Up

���2 = det
�
m4

BZ − Up

� �
m4

BZ − U†
p

�

∼ det
�
m̄− �Up + U†

p

��

with m̄= m4
BZ +m−4

BZ
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Modified designer action

a modified action without sign problem is thus

SB[ϕ, ϕ̄, U] =
Nb∑

b=1

∑
p

4∑
j=1

�
mϕ̄b,p(x

p
j )ϕb,p(x

p
j )− ϕ̄b,p(x

p
j+1)U(x

p
j+1, x p

j )ϕb,p(x
p
j )

− ϕ̄b,p(x
p
j )U(x

p
j , x p

j+1)ϕb,p(x
p
j+1)
�

with m̄= m4 − 4m2 + 2

now p labels unoriented plaquettes, and we have only half the number of
bosons compared to BZ

the resulting weight function is

ω[U] =
∏

p

�
det
�
1− α

2

�
Up + U†

p

���−Nb

with α= 2/m̄ (allowed range is 0< α < 1)
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Bounds on Nb: δ-function property

in the formulation with auxiliary boson fields, Nb is integer

however, in the weight function det
�
1− α

2

�
Up + U†

p

��−Nb

Nb can be non-integer

we find that the weight function goes to a δ-function for α→ 1 if

Nb ≥ Nc − 1
2 for U(Nc)

Nb ≥ Nc − 5
4 for SU(Nc)

proof by character expansion: recall

ω(U) =
∑

r

crχr(U) with cr =

∫
dUω(U)χr(U

−1)

δ-function is obtained if cr = dr for all r
to compute the integrals for the expansion coefficients, we use an
exponential parameterization U = ei

p
γH with γ= 2(1−α)/α

details are lengthy (essentially, one needs to compute the LO terms in γ)
we find cr 6= dr if Nb is below the bound
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Numerical checks

for historical reasons, the following is for the BZ action (for which the
refined bounds are the same)

to check the δ-function property, consider an expectation value

〈 f 〉= 1
Z

∫
dU det |1−αBZU |−2Nb f (U)

for some test function f (U)

for αBZ→ 1 we should have 〈 f 〉 → f (1)
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One-link expectation value for SU(2)
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Zoom in on αBZ→ 1
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One-link expectation value for SU(3)
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One-link expectation value for SU(4)
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Other test functions

e.g., F(U) = tr(U + 6U2 − 1.5U3)
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Bounds on Nb: Nature of continuum limit

again use character expansion of the weight function

now need to compute NLO terms in γ→ 0 expansion of cr

we get the correct boundary-value partition function Γ (U) if

Nb ≥ Nc +
1
2

for U(Nc)

Nb ≥ Nc −
3
4

for SU(Nc)

i.e., with these bounds the continuum limit of the induced theory is
equivalent to YM (in d = 2)

for d > 2 numerical evidence suggests that these bounds can be
relaxed (but cannot be weaker than those for the δ-function)
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Perturbation theory

goal: connect parameters of standard theory (β ) and induced theory (α)
must be done numerically (i.e., non-perturbatively), but close to the
continuum limit we should get some idea from perturbation theory

normally one would expand in powers of (1−α) at fixed Nb, but there
are two problems with the action

Seff = −Nb

∑
p

tr log
�
1− α

2

�
Up + U†

p

��

expansion about Up = 1 for α→ 1 has zero radius of convergence
(expansion of log about 0)
even if we ignore this convergence issue, formal expansion does not allow
for saddle-point analysis
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Large-Nb perturbation theory

instead, we approach the cont. limit by large-Nb pert. theory for fixed α
write log(1− α

2 (Up + U†
p)) = log(1− α

2(1−α) (Up + U†
p − 2)) + const

leading-order expansion then gives definition of coupling in induced theory:

1
g2

I

=
Nbα

2(1−α) (i.e., large Nb ↔ small gI )

an n-loop calculation yields

1
g2

W

=
1
g2

I

�
1+ c1(α)gI + c2(α)g

2
I + . . .
�

(∗)

however: expansion of the log converges only for α≤ 1
3 , thus (∗) does not

apply directly to continuum limit α→ 1 with Nb fixed

if we ignore this problem, (∗) can be rewritten as

β =
b−1

1−α + b0 + b1(1−α) + . . .

with coefficients bn that depend on Nb (and on Nc and the dimension d)
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Basic setup

consider first the cheapest nontrivial case: SU(2) in d = 3

do simulations in standard Wilson pure gauge theory (WPG) and in the
induced pure gauge theory (IPG)

use one observable to match the couplings β and α
then compare other observables in both theories

observables for our first tests:
T = 0: quantities connected with the q̄q potential
T 6= 0: transition temperature and order of the transition

simulation details:
WPG: standard mixture of heatbath and overrelaxation updates
IPG: local Metropolis with links evolving in ε-ball
computation of q̄q potential: Lüscher-Weisz algorithm JHEP 0109 (2001) 010

scale setting: Sommer parameter r0 NPB 411 (1994) 839

Tilo Wettig Induced QCD with two bosonic flavors August 2, 2016 34 / 64



Introduction Budczies-Zirnbauer proposal Analytical results Numerical tests of the BZ conjecture Dual representation Summary

First step: matching of α and β

matching via Sommer scale r0:
for each α, find β(α) such that r0(α)IPG = r0(β)WPG

then fit coefficients in

β(α) =
b−1

1−α + b0 + b1(1−α) + . . .

numerical results:

Nb b−1 b0 b1

1 0.623(4) −1.78(11) 3.59(69)
2 2.453(14) −2.76(38) 0.99(5)
3 4.399(29) −4.43(16) −0.17(21)
4 6.286(52) −6.01(23) −0.52(25)
5 8.54(11) −8.99(41) 0.45(38)
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Comparison to large-Nb perturbation theory

2-loop result for Nc = 2 in d = 3:

b−1(Nb)
NcNb

= 1− 5
6Nb

+
0.0908283

N2
b

+O(N−3
b )

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.2 0.4 0.6 0.8 1

b −
1
(N

b
)/
N

c
N

b

1/Nb

LO
NLO

SU(2), d = 3

so (∗) seems to hold even outside its formal range of applicability
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Second step: static potential at similar lattice spacings

compare to high-precision results obtained with Wilson action
Brandt, PoS EPS-HEP (2013)

at large distances R, the energy levels of the q̄q bound state are well
described by an effective string theory
Nambu, PLB 80 (1979) 372, Lüscher-Symanzik-Weisz, NPB 173 (1980) 365,

Polyakov, NPB 164 (1980) 171

potential in effective string theory for the flux tube (d = 3):
Aharony et al. JHEP 0906 (2009), JHEP 1012 (2010), JHEP 1101 (2011), JHEP 1305 (2013)

V (R) = σR
s

1− π

12σR2
− b̄2

π3

60
p
σ3R4

two non-universal parameters: σ and b̄2 (boundary coefficient)p
σr0 is the same in both theories (by construction)

agreement of b̄2 means that the potential is identical up to 4–5
significant digits
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Results for b̄2

-0.05

-0.04

-0.03

-0.02

-0.01

0 0.02 0.04 0.06 0.08

b̄ 2

(a/r0)
2

SU(2), WPG [BB (2011)]
SU(2), WPG [BB (2013)]
SU(3), WPG [BB (2014)]
SU(2), IPG, Nb = 1
SU(2), IPG, Nb = 2

excellent agreement
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Finite-T properties

will look at finite-T transition

SU(2) in d = 3: second-order phase transition in the 2d Ising
universality class Engels et al. NPPS 53 (1997)

first tests at Nt = 4 (and some results at Nt = 6)

scale setting via r0 and the matching between α and β obtained at
T = 0
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Phase transition at Nt = 4

Polyakov loop expectation value:
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Phase transition at Nt = 4

Polyakov loop susceptibility χL ∼ 〈|L|2〉 − 〈|L|〉2:
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Phase transition at Nt = 4
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Critical exponents at Nt = 4

fit: lnχL = C + γ
ν ln Ns (valid only at phase transition, deviations otherwise)

phase transition identified by smallest χ2/dof
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black point (WPG): γ/ν= 1.70(4) Engels et al. NPPS 53 (1997)

for IPG we obtain γ/ν= 1.69(4) at Tc r0 = 1.34(2)
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Phase transition at Nt = 6
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Phase transition at Nt = 6
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Dual representation

we have seen, by a combination of analytical and numerical arguments,
that the induced pure gauge theory has the same continuum limit as the
Wilson pure gauge theory

now: instead of integrating out the auxiliary bosons, integrate out the
gauge fields to arrive at a theory involving only auxiliary bosons (and
later also fermions)

goal: construction of new simulation algorithms, possibly solving some
sign problems

start from

SB[ϕ, ϕ̄, U] =
Nb∑

b=1

∑
p

4∑
j=1

�
mϕ̄b,p(x

p
j )ϕb,p(x

p
j )− ϕ̄b,p(x

p
j+1)U(x

p
j+1, x p

j )ϕb,p(x
p
j )

− ϕ̄b,p(x
p
j )U(x

p
j , x p

j+1)ϕb,p(x
p
j+1)
�
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Integration over gauge fields

write partition function as a product of integrals

Z =

∫
DϕDϕ̄F[ϕ, ϕ̄]

∏
x ,µ

∫
dUµ(x) e

1
2 tr
�

Uµ(x)Aµ(x)[ϕ,ϕ̄]+U†
µ(x)A

†
µ(x)[ϕ,ϕ̄]
	

=

∫
DϕDϕ̄F[ϕ, ϕ̄]

∏
x ,µ

Ix ,µ[ϕ, ϕ̄]

with

F[ϕ, ϕ̄] = exp
§
−

Nb∑
b=1

∑
p

4∑
j=1

m̄ϕ̄b,p(x j)ϕb,p(x j)
ª

Aµ(x)[ϕ, ϕ̄] = 2
Nb∑

b=1

∑
µ6=ν

�
ϕb,p̄(x ,µ,ν)(x j̄(µ,ν,0,1))ϕ̄b,p̄(x ,µ,ν)(x j̄(µ,ν,0,0))

+ϕb,p̄(x−ν̂,µ,ν)(x j̄(µ,ν,1,1))ϕ̄b,p̄(x−ν̂,µ,ν)(x j̄(µ,ν,1,0))
�
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Integration over gauge fields

need to solve integral I =
∫

dU etr(UA+U†A†)

some results known in literature for U(Nc) and SU(Nc)
(sometimes restricted to special cases like small Nc or A∝ 1)
e.g., Brower-Rossi-Tan, PRD 23 (1981), Lenaghan-Wilke, Nucl.Phys. B 624 (2002)

result for SU(Nc):

I ∼
∞∑
ν=0

εν cos
�
νθ
�det
�
λ

j−1
i Iν+ j−1

�
λi

��

∆
�
λ2
�

εν: Neumann’s factor (εν=0 = 1 and εν>0 = 2)

exp(iθ ): complex phase of det(A)
λ2

i : eigenvalues of the Nc × Nc matrix AA†

∆(λ2): Vandermonde determinant

I : Bessel function of the first kind

looks difficult, but sum over ν converges very rapidly
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Full QCD

now add fermionic fields, e.g., with a staggered-type action:

S f =
∑

x

mqψ̄(x)ψ(x) +
∑
x ,µ

�
ψ̄(x)αµ(x)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ̂)α̃µ(x)U

†
µ
(x)ψ(x)
�

and perform the following steps (first two as in Karsch-Mütter, NPB 313 (1989)):

expand weight factor in the Grassmann variables

integrate out Grassmann variables
→ constraints on the “dual variables” (occupation numbers)

integrate out gauge fields
possible since they still appear linearly in the exponent
pre-exponential factors obtained as derivatives w.r.t. components of A
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Full QCD

result:

Z =
∑

{n,k,`b ,`q}

∏
x

ωx

∏
b

ωb

∏
`b

ω`b

∫
Dϕ̄Dϕ
∏
`q

ω`q [ϕ, ϕ̄]F[ϕ, ϕ̄]
∏

b

Ib[ϕ, ϕ̄]

monomer terms: ωx =
Nc !
nx ! (2amq)nx with nx ∈ {0, . . . , Nc}

dimer terms: ωb =
(Nc−kb)!

Nc !kb! with kb ∈ {0, . . . , Nc}
baryon loops `b: ω`b

depends on loop geometry

quark loops `q: ω`q
[ϕ̄,ϕ] depends on loop geometry NEW

ω`b
and ω`q

are not positive definite→ sign problem (to be solved)

future work: find a smarter way to do this (Howe duality à la BZ?)
currently we would generate many configurations whose contribution to
gauge-invariant quantities is zero after averaging over gauge fields
should generate only configurations with nonzero contributions after
averaging
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Summary and outlook

promising (and economical) new approach to induced QCD

sign problem in original BZ proposal can be eliminated easily

correct continuum limit (YM) can be shown analytically in d = 2

bounds on Nb vs Nc refined, also for SU(Nc)
perturbation theory to connect parameters of WPG and IPG

numerical tests for SU(2) in d = 3 show good agreement with Wilson
gauge action for both T = 0 and T 6= 0

same conclusions from preliminary results for SU(3) in d = 4
dual representation via integration over gauge fields

fermions can also be integrated out
resulting theory contains only auxiliary boson fields
partition function can be written in terms of monomers, dimers, baryon
loops and quark loops
dual representation currently has a sign problem (solvable?)
if solvable: new simulation algorithms possible
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