DD- α AMG on QPACE 2 : A case study

Tilo Wettig

Department of Physics
University of Regensburg

QCDNA 2016, Edinburgh

arXiv:1412.2629, 1512.04506, 1601.03184, Lattice 2016 (work done by Peter Georg, Simon Heybrock, Daniel Richtmann)

Outline

(9) Introduction
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- $\alpha \mathrm{AMG}$

4 Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
(1) Introduction
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- $\alpha \mathrm{AMG}$
(4) Overview of implementation and optimizations
(5) Details and benchmarks
- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
- objective: use an iterative method to solve Dirac equation

$$
D u=f
$$

- condition number of D increases like $(a m)^{-1}$
\rightarrow use a preconditioner M with $M^{-1} \approx D^{-1}$
- using

$$
D M^{-1} M u=D M^{-1} v=f
$$

we solve for v with preconditioned matrix $D M^{-1}$ (smaller condition number) and obtain $u=M^{-1} f$

- error $e_{n}=u^{*}-u_{n}$ can formally be written as a linear combination of the eigenmodes of D
\rightarrow find a preconditioner that reduces the contributions of these eigenmodes to the error
- adaptive multigrid appears to be the method of choice to precondition D for $a, m \rightarrow 0 \quad$ Brannick et al. 0707.4018, Babich et al. 1005.3043
- we use the Wuppertal version (DD- α AMG)

```
Frommer et al. 1303.1377, github.com/DDalphaAMG
```

- domain-decomposition (DD) based smoother reduces contributions of high modes to error
- coarse-grid correction (CGC) reduces contributions of low modes
- relation to inexact deflation (Lüscher 0706.2298) understood
- optimized implementation of Wuppertal code on QPACE 2
- work done mostly by Simon Heybrock, Daniel Richtmann, Peter Georg

with support from Matthias Rottmann
- currently only 2-level MG is optimized (sufficient for our current lattices)
- multi-level MG will be optimized in near future (needed for future lattices)
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- $\alpha \mathrm{AMG}$

4 Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS

6 From KNC to KNL
(7) Conclusions

- communication
- within node via PCle (8 GB/s between each KNC and PCle switch)
- out of node via Infiniband ($13.5 \mathrm{~GB} / \mathrm{s}$ per node)

QPACE 2: System design

rack design:

- standard 19" rack (height 42U)
- 64 bricks (256 KNCs) in 24U
- rest for PSUs, switches (4x IB and 3x GigE), management/login server
- 310 TFlop/s DP peak per rack (KNCs only) at $\sim 75 \mathrm{~kW}$

- QPACE 2 uses version 7120X: 61 cores @ 1.238 GHz
- 512-bit wide SIMD units (one per core)
- 16 GB memory ($170 \mathrm{~GB} / \mathrm{s}$ sustained)
- 512 kB private L2 cache per core (unified with distributed tag directory)
- peak DP performance 1.2 TFlop/s
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG

4) Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS

6 From KNC to KNL
(7) Conclusions

- Dirac operator is Wilson clover
- lattice volume V is divided into $N_{\text {block }}$ blocks with $V_{\text {block }}=V / N_{\text {block }}$
- each block consists of two aggregates that contain the left- and right-handed spinor components, respectively
- outer solver: FGMRES with deflated restarts Frommer et al. 1204.5463
- MG method consists of two parts
- setup
- solve (application of MG preconditioner in every FGMRES iteration)

Algorithm 1: MG preconditioner (V-cycle)
Input: right-hand side y
Output: approximate solution x of $D x=y$
1 apply coarse-grid correction to y (Alg. 2)
2 apply smoother to y, with result from coarse-grid correction as starting guess (Alg. 3)
3 set x to result of smoother

Algorithm 2: Coarse-grid correction

Input: right-hand side y
Output: approximate solution x of $D x=y$
1 restrict vector y from fine to coarse grid:

$$
y_{c}=R y
$$

2 Coarse-grid solve to low precision using FGMRES with even/odd preconditioning:

$$
x_{c} \approx D_{c}^{-1} y_{c}
$$

3 prolongate solution vector from coarse to fine grid:

$$
x=P x_{c} \quad \text { with } \quad P=R^{\dagger}
$$

- x should approximate low-mode content of true solution
- this is accomplished by a suitable prolongation operator P (computed in setup phase), which also determines $D_{c}=R D P$

Algorithm 3: Smoother (DD)

Input: right-hand side y, starting guess $x^{(0)}$
Output: approximate solution $x^{(v)}$ of $D x=y$
1 split lattice into blocks
2 write $D=B+Z$ with $B=$ couplings within blocks and $Z=$ couplings between blocks
3 for $n=1$ to v do
4

$$
x^{(n)}=x^{(n-1)}+B^{-1}\left(y-D x^{(n-1)}\right) \quad / / \text { simplified; in practice SAP is used }
$$

- output should approximate high-mode content of true solution
- inversion of B done by minimal residual (MR)
- choose block size so that block solve runs from cache
- even/odd preconditioning on blocks
- empirical observation: the $O(V)$ low Dirac eigenmodes are locally coherent
- aim of MG setup: construct a subspace (of dimension $N_{\text {tv }}$) that approximates the "near-null space"
- define a set of test vectors $\left\{v_{j}\right\}\left(j=1, \ldots, N_{\mathrm{tv}}\right)$
- start with random vectors and apply an iterative process through which high-mode components are successively damped
- setup is expensive and can dominate execution time if only few solves are done
- important to optimize setup
- for case of few solves, could make setup less optimal
\rightarrow setup cheaper, solve more expensive, faster overall Osborn 1011.2775

source: Matthias Rottmann

Algorithm 4: MG setup

Input: none
Output: restriction operator R and coarse-grid operator D_{c}
// Initial setup:
1 set $N_{\text {tv }}$ test vectors to random starting vectors
2 for $k=1$ to 3 do
update each test vector by applying smoother with $v=k$, with starting guess 0
4 setup of restriction and coarse-grid operator (Alg. 5)
5 normalize the test vectors
// Iterative refinement:
6 for $i=1$ to $N_{\text {setup }}$ do
7 update each test vector by applying V-cycle (Alg. 1) setup of restriction and coarse-grid operator (Alg. 5)

Algorithm 5: Setup of restriction and coarse-grid operator

Input: test vectors $\left\{v_{j}\right\}$
Output: restriction operator R and coarse-grid operator D_{c}
// Setup of restriction operator:
1 for $i=1$ to $N_{\text {block }}$ do
foreach $h=\ell, r$ do
set R_{i}^{h} to $N_{\mathrm{tv}} \times 6 V_{\text {block }}$ matrix having in its rows the vectors v_{j}^{\dagger} restricted to aggregate A_{i}^{h}
run Gram-Schmidt on the rows of R_{i}^{h}
// Setup of coarse-grid operator:
5 compute

$$
D_{c}=R D R^{\dagger}
$$

(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG

4 Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS

6 From KNC to KNL
(7) Conclusions

- select most suitable algorithm for given hardware
- adapt data layout to make optimal use of hardware (cache and vector units) and to minimize data movement (memory and network)
- identify main contributors to wall-clock time and optimize them
- vectorization
- cache management and prefetching
- intra-core threading
- inter-core parallelization
- multi-node implementation
- some extra tricks
- half-precision storage (for some objects)
- multiple RHS
- communication latency hiding
- software prefetching
- SIMD implementation
- originally based on intrinsics for Intel compiler
- now same API for intrinsics and auto-vectorization by compiler
- real and imaginary parts are not mixed in same register
- threading
- lattice is decomposed into pieces that are assigned to individual threads
- done with OpenMP
- we use persistent threads with synchronization points (better performance than fork-join)
- multi-node communication
- originally based on Intel MPI
- now being replaced by high-performance comms library pMR (Peter Georg)
- before working on DD- α AMG, Simon Heybrock developed optimized DD-based solver for 512-bit SIMD/KNC
- used as smoother on fine grid in DD- α AMG
- vectorization by site-fusing (combine several lattice sites in SIMD unit)
- SOA data layout (domain boundary data also in AOS)
- https://rqcd.ur.de:8443/hes10653/mic-qcd-solver
- remaining parts of DD- $\alpha \mathrm{AMG}$ are easier to vectorize:
- number of components that can be treated on same footing contains factor of N_{tv} (on fine grid) or $2 N_{\mathrm{tv}}$ (on coarse grid)
- choose this factor to be an integer multiple of SIMD length $N_{\text {SIMD }}$ \rightarrow perfect use of SIMD unit
- if not an integer multiple, part of SIMD unit is wasted in last iteration
- when multiple RHS are present: better to vectorize over RHS (requires change in data layout)
- 2-level DD- α AMG fully vectorized
- most optimizations completed
- multiple RHS implemented in iterative setup phase (coarse grid)
- several improvements in comms
- threading of copying from/to comm buffers
- MRHS implementation leads to fewer and larger messages
- MPI replaced by pMR for halo exchange on coarse grid
- DD-preconditioning of FGMRES on coarse levels
- multiple RHS for smoother in setup phase
- vectorization over test vectors
- multiple RHS for smoother on fine grid (for analysis)
- vectorization over RHS
- optimized DD-based smoother on coarse levels (for multi-level algorithm)
- SRHS: vectorization over test vectors
- MRHS: vectorization over RHS
- further optimization of comms
- pMR also for global sums
- replace all performance-relevant MPI calls by pMR calls (MPI could be still be used as a provider within pMR)
- How to optimally map coarse grid(s) to machine partition?

Outline

Introduction

(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG
4) Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions

Outline

Introduction

(2) Xeon Phi and QPACE 2
(3) Main elements of DD- $\alpha \mathrm{AMG}$
(4) Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions

- main idea:

Schwarz (1870), Lüscher hep-lat/0310048

- subdivide lattice into domains and reorder indices \rightarrow block-diagonal + rest
- inversion only on domains (no communication required, ideally from cache)
- rest (application of R) needs comms but does not occur frequently
\rightarrow less communication, better latency tolerance, more cache reuse
- goals:
- avoid loading cache lines that are only partially needed
- use all SIMD elements
- avoid instruction overhead due to permutations (for complex arithmetic)
- our solution:
- structure-of-array (SOA) format, i.e., all 24 floating-point components of a spinor are stored in 24 separate registers and cache lines
- this leads to "site fusing": 16 lattice sites in one 512-bit register (for SP) in our case: 4×4 sites per register in x and y direction
- computation of hopping terms:
- straightforward in z and t direction
- in x and y, use permute/mask \rightarrow wastes $12.5 \%(25 \%)$ of SIMD units in $x(y)$
- in site-fused dimensions, hopping terms between domains would give large overhead:
- need to load cache line with neighbor's boundary data
- but this cache line contains extra data that are not needed
\rightarrow additionally store boundary data in array-of-structure (AOS) format
- permuting/masking:

- repacking of boundary data:

- one domain per core since L2 is not shared
- cache size ($512 \mathrm{kB} /$ core) restricts domain size to 8×4^{3} (in SP)
- KNC can do up/down-conversion between half/single on load/store
\rightarrow store (some) domain data in half precision
\rightarrow reduced working set and reduced bandwidth requirements
- to ensure stability, spinors are kept in single precision
- gauge links and clover matrices in half precision
- no noticeable impact on iteration count of outer solver
- prefetching:
- no L1 hardware prefetcher
- L2 hardware prefetcher only for streaming access
- compiler-generated software prefetches often not good enough
- manual L1 and L2 prefetches essential (using intrinsics)
- fine-tuning of prefetches rather time-consuming
- need at least two threads per core for full pipeline utilization
- we assign threads to alternating time slices within domain
- we see no significant differences between two or four threads per core:
- two threads: more stalls due to latency of L1 or L2 misses
- four threads: working set exhausts L1 size
\rightarrow threads evict each other's data more frequently
- using OpenMP
- recall: one domain per core
- synchronization between cores only necessary after MR block solve (MR = inversion on domains)
\rightarrow cost of barrier has no significant impact
- load-balancing issues with standard lattice sizes $\left(2^{n}\right)$ on 60 cores (some cores would be unused)
- simple issue but significant impact on performance
- possible workarounds:
- use prime factors of 3 and 5 in lattice sizes (for new lattices)
- non-uniform partitioning of the lattice example: processors with 6 cores each, 4×16 lattice

- could have each thread issue its own MPI calls, but:
- typically high overhead for MPI calls from several threads
- message sizes too small for efficient network utilization
- better:
- combine surface data of all domains and communicate them using a single thread
- needs explicit on-chip synchronization
- hiding communication behind computation is important (even for DD)
- standard method (divide local volume into interior and surface) does not work for us since most domains would be on the surface
- instead, send boundary data when half of them are ready
- boxes represent domains, numbers represent order of execution, small letters represent order of communication
- bad:

good:

- linear representation:

- theoretical performance model predicts 56% of peak $=20$ GFlop/s/core
- actual MR performance ~ 12 GFlop/s on single core main culprit (VTune): stalls due to outstanding L1 prefetches
- optimal number of MR iterations (for minimal time-to-solution) is only $4 \sim 5$
\rightarrow other parts of Schwarz method contribute significantly
$\rightarrow \sim 8$ GFlop/s/core
- single-core performance in GFlop/s:

	MR iteration		DD method	
	single	half	single	half
no software prefetching	5.4	7.9	4.1	5.9
L1 prefetches	9.2	11.8	5.8	7.7
L1+L2 prefetches	9.1	11.8	6.3	8.4

- almost perfect scaling (except for load imbalance):
- cores can work independently during MR inversion
- almost no competition for memory access since MR runs from cache

- $m_{\pi}=290 \mathrm{MeV}, 150 \mathrm{MeV}$ (QCDSF), SU(3) point ($\sim 800 \mathrm{MeV}$) (USQCD)
- results normalized to minimum time-to-solution for non-DD solver (BiCGstab)
- DD strong-scales to more nodes (also better for equal number of nodes)
- performance drop for large number of nodes:
- overlapping communication with computation becomes harder/impossible
- message sizes are smaller \rightarrow less efficient network communication
- max. number of nodes is determined by local volume:
- if domains too small \rightarrow DD less efficient
- we don't split domains over cores (no shared L2)

Introduction

(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG
4) Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
- compute $y_{c}=R y$ with $R=\operatorname{diag}\left(R_{1}^{\ell}, R_{1}^{r}, \ldots, R_{N_{\text {block }}}^{\ell}, R_{N_{\text {block }}}^{r}\right)$
- $\operatorname{dim}\left(R_{i}^{\ell, r}\right)=N_{\mathrm{tv}} \times 6 V_{\text {block }} \rightarrow$ vectorize over row index:

Algorithm 6: SIMD implementation of $R y$
1 for $i=1$ to $N_{\text {block }}$ do
$2 \quad$ foreach $h=\ell, r$ do
set $\left(y_{c}\right)_{i}^{h}=0$ in SIMD vectors (real and imaginary part) $/ / \operatorname{dim}\left(y_{c}\right)_{i}^{h}=N_{\mathrm{tv}}$ for $n=1$ to $6 V_{\text {block }}$ do
// work on aggregate A_{i}^{h}
load real and imaginary part of column n of R_{i}^{h} into SIMD vectors broadcast real and imaginary part of corresponding element of y into SIMD vectors increase $\left(y_{c}\right)_{i}^{h}$ by complex fused multiply-add (corresponding to 4 real SIMD fmadds)
write $\left(y_{c}\right)_{i}^{h}$ to memory

- row index of R_{i}^{h} runs in SIMD vector (latter contains column of R_{i}^{h} if $N_{\text {tv }}=N_{\text {SIMD }}$)

$$
\left(\left(y_{c}\right)_{i}^{h}\right)_{m}=\sum_{n}\left(R_{i}^{h}\right)_{m n}\left(y_{i}^{h}\right)_{n} \quad\left\{\begin{array}{l}
h=\ell, r \\
i=1, \ldots, N_{\text {block }} \\
m=1, \ldots, N_{\text {tv }} \\
n=1, \ldots, 6 V_{\text {block }}
\end{array}\right.
$$

SIMD FMA:

| $\left(\left(y_{c}\right)_{i}^{h}\right)_{1}$ | |
| :---: | :---: | :---: |
| $\left.\left(y_{c}\right)_{i}^{h}\right)_{2}$ | |
| $\left.\left(y_{c}\right)_{i}^{h}\right)_{3}$ | |
| | $\left.+=\begin{array}{\|c\|c\|}\left(R_{i}^{h}\right)_{1 n} \\ \hline & \left(R_{i}^{h}\right)_{2 n} \\ \hline & \left(R_{i}^{h}\right)_{3 n} \\ \hline & \\ \hline & \\ \hline & \\ \hline\end{array} y_{i}^{h}\right)_{n}$ |

- similar to restriction but with $R \rightarrow P=R^{\dagger}$
- aspect ratio of rectangular matrix is reversed \rightarrow now column index of $P_{i}^{\ell / r}$ (= row index of R) runs in SIMD vector
- at the end, require additional sum over elements in SIMD vector \rightarrow prolongation somewhat less efficient than restriction
- $D_{c}=R D P$ in detail:

$$
\left(\begin{array}{ll}
D_{c}^{\ell \ell} & D_{c}^{\ell r} \\
D_{c}^{r \ell} & D_{c}^{r r}
\end{array}\right)_{i j}=\left(\begin{array}{cc}
R_{i}^{\ell} & 0 \\
0 & R_{i}^{r}
\end{array}\right)\left(\begin{array}{cc}
D_{i j}^{\ell \ell} & D_{i j}^{\ell r} \\
D_{i j}^{r \ell} & D_{i j}^{r r}
\end{array}\right)\left(\begin{array}{cc}
P_{j}^{\ell} & 0 \\
0 & P_{j}^{r}
\end{array}\right)
$$

- i and j are equal or nearest neighbors, and run from 1 to $N_{\text {block }}$
- $\left(D_{c}\right)_{i j}$ computed for $i=j$ and forward neighbors
- for backward neighbors use $\left(D_{c}\right)_{j i}^{h h}=\left(D_{c}\right)_{i j}^{h h \dagger}$ and $\left(D_{c}\right)_{j i}^{h h^{\prime}}=-\left(D_{c}\right)_{i j}^{h^{\prime} h \dagger}\left(h \neq h^{\prime}\right)$
- D_{c} is stored in half precision (reduces memory capacity and bandwidth requirements, no impact on algorithmic performance)
- we also store $\left(D_{c}\right)_{j i}$ since transpose is expensive in SIMD
- first compute $D_{i j}^{h h^{\prime}} P_{j}^{h^{\prime}}$, i.e., sparse matrix applied to multiple vectors (the N_{tv} columns of $P_{j}^{h^{\prime}}$) \rightarrow vectorize over column index (Alg. 7)
- application of R to result $=$ restriction with multiple RHS $\left(\# \mathrm{RHS}=N_{\mathrm{tv}}\right)$ \rightarrow vectorize over RHS

Algorithm 7: SIMD implementation of $D_{i j}^{h h^{\prime}} P_{j}^{h^{\prime}}$
1 for $x \in$ block i do
set output $=0$ in SIMD vectors (real and imaginary parts)
foreach $\mu \in\{ \pm 1, \pm 2, \pm 3, \pm 4\}$ do
if $x+\hat{\mu} \in$ block j then
load real and imag. parts of the 6 rows of $P_{j}^{h^{\prime}}$ corresponding to $x+\hat{\mu}$ into SIMD vectors broadcast real and imag. parts of the 9 elements of $\operatorname{SU}(3)$ link $U_{\mu}(x)$ into SIMD vectors increase output by complex fmadd $\left(1+\gamma_{\mu}\right)^{h h^{\prime}} U_{\mu}(x)^{\dagger} P_{j}^{h^{\prime}}(x+\hat{\mu})$
if $i=j$ and $h=h^{\prime}$ then
load real and imaginary parts of the 6 rows of P_{i}^{h} corresponding to x into SIMD vectors
broadcast real and imaginary parts of the clover matrix elements $C^{h h}(x)$ into SIMD vectors increase output by complex fmadd $C^{h h}(x) P_{i}^{h}(x)$

$$
\left(\left(y_{c}\right)_{i}^{h}\right)_{m}^{(j)}=\sum_{n}\left(R_{i}^{h}\right)_{m n}\left(y_{i}^{h}\right)_{n}^{(j)} \quad\left\{\begin{array}{l}
h=\ell, r \\
i=1, \ldots, N_{\text {block }} \\
m=1, \ldots, N_{\text {tv }} \\
n=1, \ldots, 6 V_{\text {block }} \\
j=1, \ldots, \text { RHS }
\end{array}\right.
$$

SIMD FMA:

- $\left(D_{c}\right)_{i j} \neq 0$ only if i and j are equal or nearest neighbors then $\left(D_{c}\right)_{i j}$ is dense and stored in memory
- $\operatorname{dim}\left(D_{C}\right)_{i j}=2 N_{\text {tv }}$
- vectorization can be done as in the restriction (but different approach/ data layout depending on whether we have SRHS or MRHS)
- needed to orthonormalize rows of R_{i}^{h}
- we do not use modified Gram-Schmidt:
- classical Gram-Schmidt easier to vectorize, and needs fewer globals sums
- stability of Gram-Schmidt process not an issue in preconditioner
- we use block Gram-Schmidt method
- obtains better cache reuse and thus saves memory bandwidth
- vectorization done as before: merge same components of the N_{tv} test vectors in the SIMD vectors
- disadvantage: axpy operations and dot products waste parts (on average one half) of the SIMD vectors
- needed for FGMRES on coarse grid
- SRHS:
- data layout change on coarse grid would be needed to utilize SIMD unit
- this change would propagate to other parts of code
\rightarrow not done since impact on performance is not dominant
- temporary workaround: de-interleave real and imaginary parts on the fly to do SIMD computation
- MRHS: no such issues
- speedup factor w.r.t. original Wuppertal code:

MG component	Restrict.	Prolong.	D_{c} setup	$\left(D_{c}\right)_{i \neq j}$	$\left(D_{c}\right)_{i i}$	GS on aggr.
SIMD speedup	14.1	8.6	19.7	20.2	19.5	10.8

- single core on a single KNC, lattice size $=8^{4}$ (does not fit in cache)

Strong scaling of DD- α AMG (single RHS implementation)

- CLS lattice: $48^{3} \times 96, \beta=3.4, m_{\pi}=220 \mathrm{MeV}, a=0.086 \mathrm{fm}$ (small lattice size chosen intentionally to see breakdown of strong scaling)
- after optimizations, off-chip communication now dominant

Outline

Introduction

(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG
4) Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
- small message sizes imply inefficient network utilization \rightarrow alleviated by multiple RHS (fewer and larger messages)
- so far: V-cycle applied to test vectors in setup sequentially (SRHS)
\rightarrow message size on coarse grid:

$$
S_{\mu}=\prod_{v=0, v \neq \mu}^{3} \frac{(\text { local lattice })_{v}}{(\text { domain size })_{v}} \cdot \frac{2 N_{\mathrm{tv}}}{2} \cdot 8 \text { Byte }
$$

- now: apply V-cycle to $N_{\text {SIMD }}$ test vectors simultaneously (MRHS)
\rightarrow message size increases by factor of $N_{\text {SIMD }}=16$

network bandwidth between two KNCs in QPACE 2 via FDR InfiniBand
- change in data layout:

- yields more natural mapping to SIMD and performance gains
- BLAS-like linear algebra (e.g., vector adds) vectorized trivially
- de-interleaving overhead eliminated
- no data dependencies of individual entries in registers
\rightarrow reduction operations over elements in register no longer needed
- arithmetic intensity of dense complex matrix-vector multiplication
- SRHS: ~ 32 Byte/cycle per core $\rightarrow 2377$ GB/s on KNC
- MRHS: ~ 2 Byte/cycle per core $\rightarrow 149$ GB/s on KNC

KNC memory bandwidth is about $170 \mathrm{~GB} / \mathrm{s}$
\rightarrow MRHS no longer memory-bandwidth bound

- fewer calls to barriers \rightarrow less synchronization overhead

projection operators	2.9 x
coarse-grid computation	2.4 x
on-chip synchronization	2.7 x
halo exchange	4.7 x
global sums	10.3 x
coarse-grid total	2.9 x

- so far, MHRS implemented in coarse-grid solve and projection operators
- MRHS implementation of smoother in progress
- results on 64 KNCs (with parameters tuned for SRHS setup):

- here, copy operations to/from comm. buffers were not threaded yet

- switch from MPI to high-performance communications library pMR for performance-relevant parts
- for details see poster
- persistent, one-sided communication (RDMA)
- written in C++11
- separate code for supported network providers (IB verbs, Linux CMA)
- supports exotic network topologies
- so far only implemented for halo exchange on coarse grid
- check out now from https://rqcd.ur.de:8443/gep21271/pmr will be put on github for contributions

4d halo exchange on 224 KNCs

- red: pMR
- blue: Intel MPI (DAPL, port 1)
- cyan: Intel MPI (DAPL, port 2)
- green: Intel MPI (OFA, one port)
- yellow: Intel MPI (OFA, two ports)

global sum
- red: pMR
- blue: Intel MPI

- CLS lattice: $48^{3} \times 96, \beta=3.4, m_{\pi}=220 \mathrm{MeV}, a=0.086 \mathrm{fm}$ (small lattice size chosen intentionally to see breakdown of strong scaling)
(1) Introduction
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG

4. Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
- porting has started very recently, so no real results yet (only synthetic benchmarks)
- KNL supports different memory and cluster modes
- MCDRAM: flat, cache, hybrid
- cluster: quadrant, SNC-4 (and others)
- two vector units per core (instead of one)
- memory bandwidth went up by about $2.5 x$
- but only 16GB fast memory (MCDRAM)
- barriers still slow: $\mathrm{O}(10,000)$ cycles for 64 cores with two threads each
- cores can now do hardware prefetching
\rightarrow software prefetching efforts should be eliminated (or reduced?)
- half precision:
- Xeon Phi does not have HP arithmetic instructions, but storing some objects in HP is still beneficial (memory capacity/bandwidth)
- KNC ISA has up/down conversion on load/store, no longer present on KNL
- instead, use combination of AVX-512 intrinsics
(1) Introduction
(2) Xeon Phi and QPACE 2
(3) Main elements of DD- α AMG

4. Overview of implementation and optimizations
(5) Details and benchmarks

- DD-based smoother on fine grid
- Coarse-grid correction
- Communications and multiple RHS
(6) From KNC to KNL
(7) Conclusions
- DD- α AMG is a good target for SIMD architectures
- optimized 2-level implementation on QPACE 2/KNC mostly completed
- most important missing piece: MRHS for smoother
- high-performance comms library pMR
- TBD:
- optimize multi-level implementation
- port to QPACE 3/KNL
- optimal mapping of coarse level(s) to machine partitions

Induced QCD with two bosonic flavors

Tilo Wettig
in collaboration with Bastian Brandt and Robert Lohmayer

Department of Physics
University of Regensburg

QCDNA 2016, Edinburgh
arXiv:1411.3350, arXiv:1511.08374

Outline

(9) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Outline

(1) Introduction

(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual renresentation

6 Summary and outlook

Strong-coupling expansion

- action of lattice QCD (sum over colors and flavors implied):

$$
\begin{aligned}
S & =S_{\mathrm{YM}}+S_{f} \\
& =-\frac{\beta}{N_{c}} \sum_{p} \operatorname{Retr} U_{p}+\sum_{x}\left[\bar{\psi}_{x} \psi_{x}-\kappa \sum_{ \pm \mu} \bar{\psi}_{x+\mu}\left(1+\gamma_{\mu}\right) U_{x \mu} \psi_{x}\right]
\end{aligned}
$$

with $\beta=2 N_{c} / g^{2}$ and $\kappa=1 /(2 m+8)$

- lattice perturbation theory is an expansion about the $g=0$ limit
- there is another limit about which perturbation theory can be set up:
$g=\infty$ or, equivalently, $\beta=0$

\rightarrow strong-coupling expansion

- can be done to almost arbitrary orders by computing group integrals (doable since at $\beta=0$ gauge fields appear only linearly, while $U_{p} \sim U^{4}$)
- leads to novel simulation algorithms
- known since the 1970s
- still of interest in cases where standard Monte Carlo simulations are not possible (e.g., sign problem at $\mu \neq 0$)

Induced QCD

- to use the strong-coupling techniques also away from $\beta=0$, one should linearize the plaquette action
- this can be done, e.g., by rewriting the plaquette term as an integral over suitable auxiliary fields to which U couples linearly ("induced QCD")
- several ways to do this have been proposed in the 1980s and 1990s:
- Bander 1983 (auxiliary scalar fields)
- Hamber 1983 (auxiliary Wilson fermions)
- Hasenfratz-Hasenfratz 1992 (like Hamber + 4-fermion interaction)
- Kazakov-Migdal 1993 (adjoint scalars, no YM limit but useful for large N_{c})
- in the cases that reproduce YM theory in the continuum limit, this requires taking the combined limit $N_{f} \rightarrow \infty$ and $\kappa \rightarrow 0$ such that $N_{f} \kappa^{4}=$ const $\propto \beta$ (with $N_{f}=$ number of auxiliary flavors)
\rightarrow inconvenient (need many auxiliary flavors and extrapolation)
- new idea by Budczies-Zirnbauer (2003) requires only small number of auxiliary bosons and no extrapolation

Outline

(1) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4) Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual renresentation

6 Summary and outlook

Outline

(1) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $U\left(N N_{C}\right)$ and $\operatorname{SU}\left(N_{C}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation
(6) Summary and outlook

Budczies-Zirnbauer action

- Budczies-Zirnbauer (math-ph/0305058) propose a "designer action"

$$
\begin{aligned}
S_{\mathrm{BZ}}[\varphi, \bar{\varphi}, U]=\sum_{b=1}^{N_{b}} \sum_{ \pm \mathbf{p}} \sum_{j=1}^{4} & {\left[\begin{array}{l}
\mathrm{BZ} \bar{\varphi}_{b, \mathbf{p}}\left(x_{j}^{\mathrm{p}}\right) \varphi_{b, \mathbf{p}}\left(x_{j}^{\mathbf{p}}\right) \\
\\
\left.-\bar{\varphi}_{b, \mathbf{p}}\left(x_{j+1}^{\mathrm{p}}\right) U\left(x_{j+1}^{\mathbf{p}}, x_{j}^{\mathbf{p}}\right) \varphi_{b, \mathbf{p}}\left(x_{j}^{\mathbf{p}}\right)\right]
\end{array} ~\right.}
\end{aligned}
$$

- the φ are auxiliary boson fields and carry an (oriented) plaquette index
- j labels the points of the plaquette
- the second term corresponds to the hopping of the φ around the plaquette

- integrating out the φ yields the weight factor

$$
\omega_{\mathrm{BZ}}[U]=\prod_{p}\left|\operatorname{det}\left(m_{\mathrm{BZ}}^{4}-U_{p}\right)\right|^{-2 N_{b}}
$$

- product is over unoriented plaquettes
- $U_{p} \sim U^{4}$ is the usual product of the four links around the plaquette

Conventional pure gauge limit

- write weight factor as

$$
\omega_{\mathrm{BZ}}[U] \sim \exp \left\{-2 N_{b} \operatorname{Re} \sum_{p} \operatorname{tr} \log \left(1-\alpha_{\mathrm{BZ}} U_{p}\right)\right\}
$$

with $\alpha_{\mathrm{BZ}}=m_{\mathrm{BZ}}^{-4}$ (allowed range is $m_{\mathrm{BZ}}>1$ and thus $0<\alpha_{\mathrm{BZ}}<1$)

- expand in small $\alpha_{B Z}$:

$$
S_{\mathrm{BZ}}^{\mathrm{eff}}[U]=-2 N_{b} \alpha_{\mathrm{BZ}} \sum_{p} \operatorname{Re} \operatorname{tr} U_{p}+O\left(\alpha_{\mathrm{BZ}}^{2}\right)
$$

- this gives the usual Wilson plaquette action if

$$
\alpha_{\mathrm{BZ}} \rightarrow 0, N_{b} \rightarrow \infty \text { such that } \beta=2 N_{c} N_{b} \alpha_{\mathrm{BZ}} \text { fixed }
$$

- however, they can do better

Nontrivial pure gauge limit for $\mathrm{U}\left(N_{c}\right)$

- first consider $d=2$ and gauge group $U\left(N_{c}\right)$
- then one can prove that in the limit

$$
\alpha_{\mathrm{BZ}} \rightarrow 1
$$

the $B Z$ theory has a continuum limit that coincides with $Y M$ theory, provided that $N_{b}>N_{c}$

Outline

(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4. Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Proof of continumm limit

- for $N_{b} \geq N_{c}$, weight factor approaches δ-function for $\alpha_{\mathrm{BZ}} \rightarrow 1$

$$
\lim _{\alpha_{\mathrm{BZ}} \rightarrow 1} \frac{\langle f\rangle}{\langle 1\rangle}=f(\mathbb{1}), \quad\langle f\rangle=\int_{G} d U_{p} f\left(U_{p}\right)\left|\operatorname{det}\left(1-\alpha_{\mathrm{BZ}} U_{p}\right)\right|^{-2 N_{b}}
$$

proof by group theory (character expansion) and some algebra

- thus fluctuations from unity are strongly suppressed
\rightarrow diverging correlation length
\rightarrow continuum limit (same reasoning as for Wilson action)
- the key was the minus sign in the exponent (resulting from bosons)
- BZ say that the bound $N_{b} \geq N_{c}$ is optimal:
- δ-function is obtained if all irreps r of the group occur in the character expansion with coefficient $c_{r}=d_{r}$ (Peter-Weyl theorem)
- for $N_{b}<N_{c}$ BZ say some irreps are missing \rightarrow no δ-function
- we will later relax this bound for non-integer N_{b} (we find that irreps are not missing but $c_{r} \neq d_{r}$)

Equivalence of continuum limit with YM

- proof by character expansion of the weight function (a class function):

$$
\omega(U)=\sum_{r} c_{r} \chi_{r}(U) \text { with } \quad c_{r}=\int d U \omega(U) \chi_{r}\left(U^{-1}\right)
$$

- for $N_{b} \geq N_{c}+1$, the expansion coefficients have a Taylor expansion in $\left(1-\alpha_{B Z}\right)^{2}$
- in the limit $\alpha_{\mathrm{BZ}} \rightarrow 1$, first nontrivial term leads to boundary-value partition function for a 2-dim. area

$$
\Gamma(\mathcal{U})=\sum_{r} d_{r} \chi_{r}(\mathcal{U}) \exp \left\{-\frac{\mu}{2}\left[\operatorname{Cas}_{2}(r)+\frac{B_{1}}{B_{2}} q(r)^{2}\right]\right\}
$$

with $\mu \sim\left(1-\alpha_{\mathrm{BZ}}\right)^{2}$

- this was the starting point of Witten's combinatorial treatment of 2d YM \rightarrow equivalence established
- $N_{b}=N_{c}$ is a special case (non-renormalizable theory with Cauchy distribution), which does not persist for $d>2$

From $d=2$ to $d>2$

- proof becomes a conjecture
- increasing the number of dimensions also increases the collective behavior of the link variables (more transverse gluons)
- this enhances the universal properties of the microscopic theory
- thus, if we start with a microscopic theory in the YM universality class for $d=2$, this theory should remain in the YM universality class for $d>2$

Outline

(1) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4. Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(3) Dual representation

6 Summary and outlook

Spurious sign problem

- the weight factor $\prod_{p}\left|\operatorname{det}\left(m_{\mathrm{BZ}}^{4}-U_{p}\right)\right|^{-2 N_{b}}$ has no sign problem
- however, the action with auxiliary bosons does: S_{BZ} is generically complex since in

$$
\sum_{b=1}^{N_{b}} \sum_{ \pm \mathbf{p}} \sum_{j=1}^{4} \bar{\varphi}_{b, \mathbf{p}}\left(x_{j+1}^{\mathbf{p}}\right) U\left(x_{j+1}^{\mathbf{p}}, x_{j}^{\mathbf{p}}\right) \varphi_{b, \mathbf{p}}\left(x_{j}^{\mathbf{p}}\right)
$$

the imaginary parts of the terms containing the positively and negatively oriented links do not cancel per configuration, but only after integration

- this can be fixed easily by noting

$$
\begin{aligned}
\left|\operatorname{det}\left(m_{\mathrm{BZ}}^{4}-U_{p}\right)\right|^{2} & =\operatorname{det}\left(m_{\mathrm{BZ}}^{4}-U_{p}\right)\left(m_{\mathrm{BZ}}^{4}-U_{p}^{\dagger}\right) \\
& \sim \operatorname{det}\left(\bar{m}-\left(U_{p}+U_{p}^{\dagger}\right)\right)
\end{aligned}
$$

with $\bar{m}=m_{\mathrm{BZ}}^{4}+m_{\mathrm{BZ}}^{-4}$

Modified designer action

- a modified action without sign problem is thus

$$
\begin{gathered}
S_{B}[\varphi, \bar{\varphi}, U]=\sum_{b=1}^{N_{b}} \sum_{p} \sum_{j=1}^{4}\left[m \bar{\varphi}_{b, p}\left(x_{j}^{p}\right) \varphi_{b, p}\left(x_{j}^{p}\right)-\bar{\varphi}_{b, p}\left(x_{j+1}^{p}\right) U\left(x_{j+1}^{p}, x_{j}^{p}\right) \varphi_{b, p}\left(x_{j}^{p}\right)\right. \\
\left.-\bar{\varphi}_{b, p}\left(x_{j}^{p}\right) U\left(x_{j}^{p}, x_{j+1}^{p}\right) \varphi_{b, p}\left(x_{j+1}^{p}\right)\right]
\end{gathered}
$$

with $\bar{m}=m^{4}-4 m^{2}+2$

- now p labels unoriented plaquettes, and we have only half the number of bosons compared to BZ
- the resulting weight function is

$$
\omega[U]=\prod_{p}\left[\operatorname{det}\left(1-\frac{\alpha}{2}\left(U_{p}+U_{p}^{\dagger}\right)\right)\right]^{-N_{b}}
$$

with $\alpha=2 / \bar{m}$ (allowed range is $0<\alpha<1$)

Outline

Introduction

(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\operatorname{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation
(6) Summary and outlook

Outline

Introduction(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Bounds on N_{b} : δ-function property

- in the formulation with auxiliary boson fields, N_{b} is integer
- however, in the weight function $\operatorname{det}\left[1-\frac{\alpha}{2}\left(U_{p}+U_{p}^{\dagger}\right)\right]^{-N_{b}}$ N_{b} can be non-integer
- we find that the weight function goes to a δ-function for $\alpha \rightarrow 1$ if

$$
\begin{array}{ll}
N_{b} \geq N_{c}-\frac{1}{2} & \text { for } U\left(N_{c}\right) \\
N_{b} \geq N_{c}-\frac{5}{4} & \text { for } \operatorname{SU}\left(N_{c}\right)
\end{array}
$$

- proof by character expansion: recall

$$
\omega(U)=\sum_{r} c_{r} \chi_{r}(U) \quad \text { with } \quad c_{r}=\int d U \omega(U) \chi_{r}\left(U^{-1}\right)
$$

- δ-function is obtained if $c_{r}=d_{r}$ for all r
- to compute the integrals for the expansion coefficients, we use an exponential parameterization $U=e^{i \sqrt{\gamma} H}$ with $\gamma=2(1-\alpha) / \alpha$
- details are lengthy (essentially, one needs to compute the LO terms in γ)
- we find $c_{r} \neq d_{r}$ if N_{b} is below the bound

Numerical checks

- for historical reasons, the following is for the BZ action (for which the refined bounds are the same)
- to check the δ-function property, consider an expectation value

$$
\langle f\rangle=\frac{1}{Z} \int d U \operatorname{det}\left|1-\alpha_{\mathrm{BZ}} U\right|^{-2 N_{b}} f(U)
$$

for some test function $f(U)$

- for $\alpha_{\mathrm{BZ}} \rightarrow 1$ we should have $\langle f\rangle \rightarrow f(\mathbb{1})$

One-link expectation value for $\operatorname{SU}(2)$

One-link expectation value SU2

theoretical bound on N_{b} is $N_{c}-\frac{5}{4}=\frac{3}{4}$

Zoom in on $\alpha_{B Z} \rightarrow 1$

One-link expectation value SU2

lines are analytical results for small $1-\alpha_{B Z}$ from character expansion

One-link expectation value for SU(3)

One-link expectation value SU3

theoretical bound on N_{b} is $N_{c}-\frac{5}{4}=\frac{7}{4}=1.75$

One-link expectation value for SU(4)

One-link expectation value SU 4

theoretical bound on N_{b} is $N_{c}-\frac{5}{4}=\frac{11}{4}=2.75$

Other test functions

- e.g., $F(U)=\operatorname{tr}\left(U+6 U^{2}-1.5 U^{3}\right)$

F expectation value SU 2

theoretical bound on N_{b} is $N_{c}-\frac{5}{4}=\frac{3}{4}$

Outline

Introduction(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4. Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(D) Dual representation

6 Summary and outlook

Bounds on N_{b} : Nature of continuum limit

- again use character expansion of the weight function
- now need to compute NLO terms in $\gamma \rightarrow 0$ expansion of c_{r}
- we get the correct boundary-value partition function $\Gamma(\mathcal{U})$ if

$$
\begin{array}{ll}
N_{b} \geq N_{c}+\frac{1}{2} & \text { for } \mathrm{U}\left(N_{c}\right) \\
N_{b} \geq N_{c}-\frac{3}{4} & \text { for } \operatorname{SU}\left(N_{c}\right)
\end{array}
$$

i.e., with these bounds the continuum limit of the induced theory is equivalent to YM (in $d=2$)

- for $d>2$ numerical evidence suggests that these bounds can be relaxed (but cannot be weaker than those for the δ-function)

Outline

Introduction(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6. Summary and outlook

Perturbation theory

- goal: connect parameters of standard theory (β) and induced theory (α)
- must be done numerically (i.e., non-perturbatively), but close to the continuum limit we should get some idea from perturbation theory
- normally one would expand in powers of $(1-\alpha)$ at fixed N_{b}, but there are two problems with the action

$$
S_{\text {eff }}=-N_{b} \sum_{p} \operatorname{tr} \log \left(1-\frac{\alpha}{2}\left(U_{p}+U_{p}^{\dagger}\right)\right)
$$

- expansion about $U_{p}=\mathbb{1}$ for $\alpha \rightarrow 1$ has zero radius of convergence (expansion of log about 0)
- even if we ignore this convergence issue, formal expansion does not allow for saddle-point analysis

Large $-N_{b}$ perturbation theory

instead, we approach the cont. limit by large $-N_{b}$ pert. theory for fixed α

- write $\log \left(1-\frac{\alpha}{2}\left(U_{p}+U_{p}^{\dagger}\right)\right)=\log \left(1-\frac{\alpha}{2(1-\alpha)}\left(U_{p}+U_{p}^{\dagger}-2\right)\right)+$ const leading-order expansion then gives definition of coupling in induced theory:

$$
\left.\frac{1}{g_{I}^{2}}=\frac{N_{b} \alpha}{2(1-\alpha)} \quad \text { (i.e., large } N_{b} \leftrightarrow \text { small } g_{I}\right)
$$

- an n-loop calculation yields

$$
\begin{equation*}
\frac{1}{g_{W}^{2}}=\frac{1}{g_{I}^{2}}\left[1+c_{1}(\alpha) g_{I}+c_{2}(\alpha) g_{I}^{2}+\ldots\right] \tag{*}
\end{equation*}
$$

- however: expansion of the log converges only for $\alpha \leq \frac{1}{3}$, thus ($*$) does not apply directly to continuum limit $\alpha \rightarrow 1$ with N_{b} fixed
- if we ignore this problem, $(*)$ can be rewritten as

$$
\beta=\frac{b_{-1}}{1-\alpha}+b_{0}+b_{1}(1-\alpha)+\ldots
$$

with coefficients b_{n} that depend on N_{b} (and on N_{c} and the dimension d)

Outline

Introduction

(2) Bud'czies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $U\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Outline

Introduction

(4) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(3) Dual representation

6 Summary and outlook

Basic setup

- consider first the cheapest nontrivial case: $\operatorname{SU}(2)$ in $d=3$
- do simulations in standard Wilson pure gauge theory (WPG) and in the induced pure gauge theory (IPG)
- use one observable to match the couplings β and α
- then compare other observables in both theories
- observables for our first tests:
- $T=0$: quantities connected with the $\bar{q} q$ potential
- $T \neq 0$: transition temperature and order of the transition
- simulation details:
- WPG: standard mixture of heatbath and overrelaxation updates
- IPG: local Metropolis with links evolving in ε-ball
- computation of $\bar{q} q$ potential: Lüscher-Weisz algorithm

JHEP 0109 (2001) 010

- scale setting: Sommer parameter r_{0}

First step: matching of α and β

- matching via Sommer scale r_{0} : for each α, find $\beta(\alpha)$ such that $r_{0}(\alpha)_{\mathrm{IPG}}=r_{0}(\beta)_{\mathrm{WPG}}$
- then fit coefficients in

$$
\beta(\alpha)=\frac{b_{-1}}{1-\alpha}+b_{0}+b_{1}(1-\alpha)+\ldots
$$

- numerical results:

N_{b}	b_{-1}	b_{0}	b_{1}
1	$0.623(4)$	$-1.78(11)$	$3.59(69)$
2	$2.453(14)$	$-2.76(38)$	$0.99(5)$
3	$4.399(29)$	$-4.43(16)$	$-0.17(21)$
4	$6.286(52)$	$-6.01(23)$	$-0.52(25)$
5	$8.54(11)$	$-8.99(41)$	$0.45(38)$

Comparison to large- N_{b} perturbation theory

- 2-loop result for $N_{c}=2$ in $d=3$:

$$
\frac{b_{-1}\left(N_{b}\right)}{N_{c} N_{b}}=1-\frac{5}{6 N_{b}}+\frac{0.0908283}{N_{b}^{2}}+O\left(N_{b}^{-3}\right)
$$

so $(*)$ seems to hold even outside its formal range of applicability

Outline

(1) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4. Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Second step: static potential at similar lattice spacings

- compare to high-precision results obtained with Wilson action Brandt, PoS EPS-HEP (2013)
- at large distances R, the energy levels of the $\bar{q} q$ bound state are well described by an effective string theory
Nambu, PLB 80 (1979) 372, Lüscher-Symanzik-Weisz, NPB 173 (1980) 365,
Polyakov, NPB 164 (1980) 171
- potential in effective string theory for the flux tube $(d=3)$:

Aharony et al. JHEP 0906 (2009), JHEP 1012 (2010), JHEP 1101 (2011), JHEP 1305 (2013)

$$
V(R)=\sigma R \sqrt{1-\frac{\pi}{12 \sigma R^{2}}}-\bar{b}_{2} \frac{\pi^{3}}{60 \sqrt{\sigma^{3}} R^{4}}
$$

two non-universal parameters: σ and \bar{b}_{2} (boundary coefficient)

- $\sqrt{\sigma} r_{0}$ is the same in both theories (by construction)
- agreement of \bar{b}_{2} means that the potential is identical up to $4-5$ significant digits

Results for \bar{b}_{2}

excellent agreement

Outline

(1) Introduction
(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory

4. Numerical tests of the BZ conjecture

- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Finite- T properties

- will look at finite- T transition
- $\operatorname{SU}(2)$ in $d=3$: second-order phase transition in the 2d Ising universality class
- first tests at $N_{t}=4$ (and some results at $N_{t}=6$)
- scale setting via r_{0} and the matching between α and β obtained at $T=0$

Phase transition at $N_{t}=4$

Polyakov loop expectation value:

Phase transition at $N_{t}=4$

Polyakov loop expectation value:

Phase transition at $N_{t}=4$

Polyakov loop expectation value:

Phase transition at $N_{t}=4$

Polyakov loop expectation value:

Phase transition at $N_{t}=4$

Polyakov loop susceptibility $\left.\left.\chi_{L} \sim\langle | L\right|^{2}\right\rangle-\langle | L| \rangle^{2}$:

Phase transition at $N_{t}=4$

Polyakov loop susceptibility:

Phase transition at $N_{t}=4$

Polyakov loop susceptibility:

Phase transition at $N_{t}=4$

Polyakov loop susceptibility:

Critical exponents at $N_{t}=4$

fit: $\ln \chi_{L}=C+\frac{\gamma}{v} \ln N_{s}$ (valid only at phase transition, deviations otherwise) phase transition identified by smallest $\chi^{2} /$ dof

black point (WPG): $\gamma / v=1.70(4)$
Engels et al. NPPS 53 (1997)
for IPG we obtain $\gamma / v=1.69(4)$ at $T_{c} r_{0}=1.34(2)$

Phase transition at $N_{t}=6$

Polyakov loop expectation value:

Phase transition at $N_{t}=6$

Polyakov loop expectation value:

Phase transition at $N_{t}=6$

Polyakov loop expectation value:

Phase transition at $N_{t}=6$

Polyakov loop susceptibility:

Phase transition at $N_{t}=6$

Polyakov loop susceptibility:

Phase transition at $N_{t}=6$

Polyakov loop susceptibility:

Outline

Introduction(2) Budczies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem
(3) Analytical results for $\mathrm{U}\left(N_{c}\right)$ and $\mathrm{SU}\left(N_{c}\right)$
- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Dual representation

- we have seen, by a combination of analytical and numerical arguments, that the induced pure gauge theory has the same continuum limit as the Wilson pure gauge theory
- now: instead of integrating out the auxiliary bosons, integrate out the gauge fields to arrive at a theory involving only auxiliary bosons (and later also fermions)
- goal: construction of new simulation algorithms, possibly solving some sign problems
- start from

$$
\begin{gathered}
S_{B}[\varphi, \bar{\varphi}, U]=\sum_{b=1}^{N_{b}} \sum_{p} \sum_{j=1}^{4}\left[m \bar{\varphi}_{b, p}\left(x_{j}^{p}\right) \varphi_{b, p}\left(x_{j}^{p}\right)-\bar{\varphi}_{b, p}\left(x_{j+1}^{p}\right) U\left(x_{j+1}^{p}, x_{j}^{p}\right) \varphi_{b, p}\left(x_{j}^{p}\right)\right. \\
\left.-\bar{\varphi}_{b, p}\left(x_{j}^{p}\right) U\left(x_{j}^{p}, x_{j+1}^{p}\right) \varphi_{b, p}\left(x_{j+1}^{p}\right)\right]
\end{gathered}
$$

Integration over gauge fields

- write partition function as a product of integrals

$$
\begin{aligned}
Z & =\int D \varphi D \bar{\varphi} \mathcal{F}[\varphi, \bar{\varphi}] \prod_{x, \mu} \int d U_{\mu}(x) e^{\frac{1}{2} \operatorname{tr}\left\{U_{\mu}(x) A_{\mu}(x)[\varphi, \bar{\varphi}]+U_{\mu}^{\dagger}(x) A_{\mu}^{\dagger}(x)[\varphi, \bar{\varphi}]\right\}} \\
& =\int D \varphi D \bar{\varphi} \mathcal{F}[\varphi, \bar{\varphi}] \prod_{x, \mu} \mathcal{I}_{x, \mu}[\varphi, \bar{\varphi}]
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{F}[\varphi, \bar{\varphi}]= & \exp \left\{-\sum_{b=1}^{N_{b}} \sum_{p} \sum_{j=1}^{4} \bar{m} \bar{\varphi}_{b, p}\left(x_{j}\right) \varphi_{b, p}\left(x_{j}\right)\right\} \\
A_{\mu}(x)[\varphi, \bar{\varphi}]=2 \sum_{b=1}^{N_{b}} \sum_{\mu \neq \nu}[& \varphi_{b, \bar{p}(x, \mu, \nu)}\left(x_{\bar{j}(\mu, \nu, 0,1)}\right) \bar{\varphi}_{b, \bar{p}(x, \mu, \nu)}\left(x_{\bar{j}(\mu, v, 0,0)}\right) \\
& \left.\quad+\varphi_{b, \bar{p}(x-\hat{v}, \mu, \nu)}\left(x_{\bar{j}(\mu, v, 1,1)}\right) \bar{\varphi}_{b, \bar{p}(x-\hat{v}, \mu, \nu)}\left(x_{\bar{j}(\mu, v, 1,0)}\right)\right]
\end{aligned}
$$

Integration over gauge fields

- need to solve integral $\mathcal{I}=\int d U e^{\operatorname{tr}\left(U A+U^{\dagger} A^{\dagger}\right)}$
- some results known in literature for $\mathrm{U}\left(N_{c}\right)$ and $\operatorname{SU}\left(N_{c}\right)$ (sometimes restricted to special cases like small N_{c} or $A \propto \mathbb{1}$)
e.g., Brower-Rossi-Tan, PRD 23 (1981), Lenaghan-Wilke, Nucl.Phys. B 624 (2002)
- result for $\operatorname{SU}\left(N_{c}\right)$:

$$
\mathcal{I} \sim \sum_{v=0}^{\infty} \varepsilon_{v} \cos (v \theta) \frac{\operatorname{det}\left[\lambda_{i}^{j-1} I_{v+j-1}\left(\lambda_{i}\right)\right]}{\Delta\left(\lambda^{2}\right)}
$$

- ε_{ν} : Neumann's factor $\left(\varepsilon_{\nu=0}=1\right.$ and $\left.\varepsilon_{v>0}=2\right)$
- $\exp (i \theta)$: complex phase of $\operatorname{det}(A)$
- λ_{i}^{2} : eigenvalues of the $N_{c} \times N_{c}$ matrix $A A^{\dagger}$
- $\Delta\left(\lambda^{2}\right)$: Vandermonde determinant
- I : Bessel function of the first kind
- looks difficult, but sum over v converges very rapidly

Full QCD

now add fermionic fields, e.g., with a staggered-type action:

$$
S_{f}=\sum_{x} m_{q} \bar{\psi}(x) \psi(x)+\sum_{x, \mu}\left[\bar{\psi}(x) \alpha_{\mu}(x) U_{\mu}(x) \psi(x+\hat{\mu})+\bar{\psi}(x+\hat{\mu}) \tilde{\alpha}_{\mu}(x) U_{\mu}^{\dagger}(x) \psi(x)\right]
$$

and perform the following steps (first two as in Karsch-Mütter, NPB 313 (1989)):

- expand weight factor in the Grassmann variables
- integrate out Grassmann variables
\rightarrow constraints on the "dual variables" (occupation numbers)
- integrate out gauge fields
- possible since they still appear linearly in the exponent
- pre-exponential factors obtained as derivatives w.r.t. components of A

Full QCD

- result:

$$
Z=\sum_{\left\{n, k, \ell_{b}, \ell_{q}\right\}} \prod_{x} \omega_{x} \prod_{b} \omega_{b} \prod_{\ell_{b}} \omega_{\ell_{b}} \int D \bar{\varphi} D \varphi \prod_{\ell_{q}} \omega_{\ell_{q}}[\varphi, \bar{\varphi}] \mathcal{F}[\varphi, \bar{\varphi}] \prod_{b} \mathcal{I}_{b}[\varphi, \bar{\varphi}]
$$

- monomer terms: $\omega_{x}=\frac{N_{c}!}{n_{x}!}\left(2 a m_{q}\right)^{n_{x}}$ with $n_{x} \in\left\{0, \ldots, N_{c}\right\}$
- dimer terms: $\omega_{b}=\frac{\left(N_{c}-k_{b}\right)!}{N_{c}!k_{b}!}$ with $k_{b} \in\left\{0, \ldots, N_{c}\right\}$
- baryon loops $\ell_{b}: \omega_{\ell_{b}}$ depends on loop geometry
- quark loops $\ell_{q}: \omega_{\ell_{q}}[\bar{\varphi}, \varphi]$ depends on loop geometry NEW
- $\omega_{\ell_{b}}$ and $\omega_{\ell_{q}}$ are not positive definite \rightarrow sign problem (to be solved)
- future work: find a smarter way to do this (Howe duality à la BZ?)
- currently we would generate many configurations whose contribution to gauge-invariant quantities is zero after averaging over gauge fields
- should generate only configurations with nonzero contributions after averaging

Outline

Introduction(2) Bud'czies-Zirnbauer proposal

- Action
- Continuum limit in $d=2$ and $d>2$
- Elimination of a spurious sign problem

3. Analytical results for $U\left(N_{c}\right)$ and $\operatorname{SU}\left(N_{c}\right)$

- δ-function property
- Continuum limit
- Perturbation theory
(4) Numerical tests of the BZ conjecture
- Setup and matching of parameters
- $T=0$
- $T>0$
(5) Dual representation

6 Summary and outlook

Summary and outlook

- promising (and economical) new approach to induced QCD
- sign problem in original BZ proposal can be eliminated easily
- correct continuum limit (YM) can be shown analytically in $d=2$
- bounds on N_{b} vs N_{c} refined, also for $\operatorname{SU}\left(N_{c}\right)$
- perturbation theory to connect parameters of WPG and IPG
- numerical tests for $\operatorname{SU}(2)$ in $d=3$ show good agreement with Wilson gauge action for both $T=0$ and $T \neq 0$
- same conclusions from preliminary results for $\operatorname{SU}(3)$ in $d=4$
- dual representation via integration over gauge fields
- fermions can also be integrated out
- resulting theory contains only auxiliary boson fields
- partition function can be written in terms of monomers, dimers, baryon loops and quark loops
- dual representation currently has a sign problem (solvable?)
- if solvable: new simulation algorithms possible

