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Introduction

Numerical stochastic perturbation theory (NSPT)

• Already led to some spectacular results, e.g.

〈 〉 =

N∑
n=0

cnα
n
0 + . . .

• But the coefficients of physical quantities are
more difficult to obtain

Di Renzo et al. ’94

Horsley et al. ’12 (N=20)

Bali et al. ’14 (N=35)
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Reference case

Pure SU(3) gauge theory

L4 lattice with SF boundary conditions

“Gradient-flow coupling”

α(q) = const× t2 〈E(t, x)〉x0=L/2 at
√

8t = 0.3× L ≡ 1/q

E(t, x) : YM action density at gradient-flow time t

In perturbation theory

α(q) = αs(q) + k1αs(q)
2 + k2αs(q)

3 + . . . , αs = αMS

Fritzsch & Ramos ’13
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Taking the continuum limit

L/a→∞, t/a2 →∞ such that t/L2 = fixed

Potential obstacles

• Autocorrelations ∝ (L/a)2

• Power-divergent variances

• Complicated dependence on a/L

⇒ Need O(a)-improvement and large lattices

⇒ Rapidly ends up being a large-scale project!
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Outline

1 NSPT recap & recent developments

2 Algorithm-dependence of the variances

3 Integration errors?

4 Extrapolation to the continuum limit
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NSPT

For simplicity consider standard lattice φ4 theory

Generate a sequence of stochastic fields

φ(t, x) =

N∑
k=0

gk0φk(t, x), t = 0,∆t, 2∆t, . . . ,

such that

〈ϕ(x1) . . . ϕ(xn)〉 =
∆t

T

T∑
t=0

φ(t, x1) . . . φ(t, xn) + O(T−1/2)

up to order gN0
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Algorithms used for the generation of φ0, φ1, . . .

Langevin equation Di Renzo et al. ’94

∂tφ = −δS
δφ

+ η

〈η(t, x)η(s, y)〉 = 2δ(t− s)δxy

In perturbation theory

∂tφ0 = (∆−m2)φ0 + η

∂tφ1 = (∆−m2)φ1 − (δm2)(1)φ0 − 1
3!φ

3
0

etc.

Integrated with 2nd order Runge-Kutta integrator
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Algorithms ... (cont.)

Stochastic molecular dynamics (SMD) Horowitz ’85, . . .

∂tφ = π

∂tπ = −δS
δφ
− 2µ0π + η

〈η(t, x)η(s, y)〉 = 4µ0δ(t− s)δxy

• May use standard symplectic integrators

• Langevin limit: t→ 2µ0t, µ0 →∞

• HMC limit: µ0 → 0 plus periodic regeneration of π

On the lattice, the adjustable parameter is γ = 2µ0a
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Algorithms ... (cont.)

Instantaneous stochastic perturbation theory (ISPT) ML ’14

Fourier-accelerated Langevin equation Davies et al. ’86

Expected scaling of the autocorrelation times

Langevin SMD ISPT F.-a. Langevin

a−2 a−2 . . . a−? n/a a−0
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Statistical errors

In NSPT the statistical variances depend on the algorithm used!

In general

〈O〉 = c0 + c1g0 + c2g
2
0 + . . . , ck = 〈Ok〉

where

O[φ] = O0[φ0] + g0O1[φ0, φ1] + . . .

But the variances

〈OkOk〉 − 〈Ok〉2

are not the order-2k coefficients of any observables!
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Example: Langevin NSPT vs ISPT
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Example: Langevin NSPT vs ISPT

4 8 12 16 20 24
L/a
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Langevin
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Standard deviation of t2E2

~1/a p,  p≥2

Similar behaviour observed in the φ4 theory Dalla Brida, Kennedy & Garofalo ’15
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Theorem:

To all orders of Langevin NSPT, the standard deviations of physical
quantities grow at most logarithmically as a→ 0

However, Fourier-accelerated Langevin NSPT is as bad as ISPT!

SMD at fixed L/a=16
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The studies conducted so far show that

• Autocorrelations ↘ ⇒ standard deviations ↗

• The SMD algorithm with γ = 2 . . . 5 currently yields
the smallest τint(Ek)× var(Ek)

• The molecular dynamics evolution becomes unstable
when expanded in PT!
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Integration errors?

Use 4th order OMF integrator for the SMD algorithm Omelyan et al. ’03

t2〈E〉 = k0αs

{
1 + k1αs + k2α

2
s + . . .

}
k

0

k
1

Run no

k
2

0.100 0.119 0.141 0.168 0.200 0.238

L/a = 24, γ = 3.3

Step size 0.10 . . . 0.24

104 measurements/run

2nd order integrator for the Langevin equation does equally well Bali et al. ’13
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Extrapolation to the continuum limit

O(a) effects can be canceled by adding a
counterterm

∝ cG
∫

d3x tr{F0k(x)2} at x0 = 0, T

cG = 1− 0.08900× g20 − 0.0294× g40 + . . .

to the action

ML et al. ’92

Bode, Weisz & Wolff ’99f

With O(a)-improvement in place, we have

k1 =
a→0

a0 + {a1 + b1 ln(a/L)} (a/L)2 + . . .
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⇒ k1 = 1.101(6)(6) [preliminary]
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The two-loop coefficient k2 is more difficult . . .

• Statistical errors 10× larger

• Must include O(a)-counterterms in simulation

• More complicated a-dependence

k2 =
a→0

a0 +
{
a1 + b1 ln(a/L)+c1[ln(a/L)]2

}
(a/L)2 + . . .
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⇒ need further points at L/a > 32 !
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Conclusions

In NSPT we are not simulating a functional integral

⇒ Variances are algorithm-dependent!

⇒ Must optimize for minimal τint × var rather than τint

Currently the best choice is the SMD algorithm with

γ = 2 . . . 5 and 4th order OMF integrator

Taking the continuum limit is challenging!

⇒ In practice may be impossible to go beyond 2-loop order
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