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Introduction

Numerical stochastic perturbation theory (NSPT)

e Already led to some spectacular results, e.g.
N
() :chag—i—...
n=0

e But the coefficients of physical quantities are
more difficult to obtain

Di Renzo et al. '94

Horsley et al. '12 (IN=20)
Bali et al. '14 (N=35)



Reference case

Pure SU(3) gauge theory

L* lattice with SF boundary conditions

“Gradient-flow coupling”
a(q) = const x t* (E(t,®))y0—r/2 at V8t=03xL=1/q
E(t,x) : YM action density at gradient-flow time ¢

In perturbation theory

a(q) = as(q) + kros(q)? + kaas(g)® + .. ., s = O35

Fritzsch & Ramos '13



Taking the continuum limit

L/a — oo, t/a* — oo such that t/L? = fixed
Potential obstacles

e Autocorrelations o< (L/a)?
e Power-divergent variances

e Complicated dependence on a/L

= Need O(a)-improvement and large lattices

=> Rapidly ends up being a large-scale project!



Outline

1 NSPT recap & recent developments
2 Algorithm-dependence of the variances
3 Integration errors?

4 Extrapolation to the continuum limit



NSPT

For simplicity consider standard lattice ¢* theory

Generate a sequence of stochastic fields

N
G(t,x) = ghdn(t,),  t=0,At2AL,. ..,
k=0

such that

At &

(p(e1) . p(za)) = 7 D (t,21) ... d(t, 2) + O(T71/3)

T t=0

up to order g{¥



Algorithms used for the generation of ¢g, ¢1,. ..

Langevin equation Di Renzo et al. '94
05
Oy = — 2
iz 56 +n

(n(t,2)n(s,y)) = 20(t — 5)0zy

In perturbation theory
Qo = (A —m?)¢o +1
D1 = (A = m*) gy — (6m*) Dy — 56
etc.

Integrated with 2nd order Runge-Kutta integrator



Algorithms ... (cont.)

Stochastic molecular dynamics (SMD) Horowitz '85, . . .
8,5(25 =T
6
oy = 75 —2uom+ 1

<77(t7 ‘T)n(sv y)> = 4“05(t - s)(szy

e May use standard symplectic integrators
e Langevin limit: ¢t — 2ugt, po — o0

e HMC limit: uo — 0 plus periodic regeneration of m

On the lattice, the adjustable parameter is v = 2upa



Algorithms ... (cont.)
Instantaneous stochastic perturbation theory (ISPT) ML '14

Fourier-accelerated Langevin equation Davies et al. '86

Expected scaling of the autocorrelation times

Langevin SMD ISPT F.-a. Langevin

— p—4 —
a a?. . .a" n/a a™°




Statistical errors
In NSPT the statistical variances depend on the algorithm used!

In general

(O) =co+c1g0 + cagg + - - -, ek = (Ok)
where

O[¢] = Oolpo] + 90010, P1] + . ..
But the variances

(0kOk) — (O)?

are not the order-2k coefficients of any observables!
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Example: Langevin NSPT vs ISPT
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Example: Langevin NSPT vs ISPT
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Example: Langevin NSPT vs ISPT
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Similar behaviour observed in the ¢* theory  Dalla Brida, Kennedy & Garofalo '15



Theorem:

To all orders of Langevin NSPT, the standard deviations of physical
quantities grow at most logarithmically as a — 0

However, Fourier-accelerated Langevin NSPT is as bad as ISPT!
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The studies conducted so far show that
e Autocorrelations \, =- standard deviations "

e The SMD algorithm with v = 2...5 currently yields
the smallest 7in (Ey) X var(Ey)

e The molecular dynamics evolution becomes unstable
when expanded in PT!

13



Integration errors?
Use 4th order OMF integrator for the SMD algorithm Omelyan et al. '03

t2<E> = koas {]. +k1as +k2a§ +}

0.100  0.119 0.141 0.168 0.200 0.238
T T T T T T

Lja=24,v=233 k + +
S TR S
Step size 0.10...0.24
10* measurements/run ky L L
t T i T
kZ
+—+ . S
t
Run no

2nd order integrator for the Langevin equation does equally well Bali et al. '13
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Extrapolation to the continuum limit

O(a) effects can be canceled by adding a
counterterm

o cg/d3xtr{F0k(x)2} at 70=0,T

ca =1—0.08900 x g2 — 0.0294 x g5 + ...

to the action

With O(a)-improvement in place, we have

ki = ao+{a1+biln(a/L)} (a/0)* + ...

a

ML et al. '92

Bode, Weisz & Wolff '99f
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The two-loop coefficient ko is more difficult . ..

e Statistical errors 10x larger

e Must include O(a)-counterterms in simulation

e More complicated a-dependence

ko S0t {ay + by In(a/L)+c1[In(a/L)]*} (a/L)* +

17



y=ao+ {a1+b 1nx+c1(1naz)2}w

1 I 1 I 1 I 1
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= need further points at L/a > 32!
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Conclusions

In NSPT we are not simulating a functional integral
=> Variances are algorithm-dependent!

= Must optimize for minimal Tint X var rather than 7int

Currently the best choice is the SMD algorithm with
v =2...5 and 4th order OMF integrator

Taking the continuum limit is challenging!

=> In practice may be impossible to go beyond 2-loop order

19
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