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Evolution of USQCD SciDAC “C” software

● Shared base (in C): QMP, QIO

● C/C++ data parallel:
QDP+QLA, QDP++

● QOPQDP: solvers, forces, etc.
built on QDP

● Lua application scripting layers on 
QDP/QOPQDP: QLUA, FUEL

● Lua scripting provides

– Ease of use

– Rapid development & testing

– Speed of C underneath

● QLA/QDP

– Array of structures

– Originally no threading (now 
has OpenMP)

– Needs modern update
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Evolution of USQCD SciDAC C/Lua software

● Started new framework to experiment with threading and vectorization (QLL) 

● Hand written + Lua generated C code

● Well tuned staggered + Naik CG gets 23% of peak on BG/Q

● Started looking for high-level language

– Transform natural expressions into well optimized code

– Have ability to perform optimizations across multiple expressions 
(i.e. loop fusion)

● Discovered (nearly*) perfect language for the job: Nim

* “not perfect yet”
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Nim (nim-lang.org)

● Modern language started in 2008

● Designed to be “efficient, expressive, and elegant”

● Borrows heavily from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

● Statically typed, but has extensive type-inference, so feels like 
dynamically-typed scripting language

● Efficient garbage collection (optional)

● Extensive meta-programming support (nearly full language 
available at compile time)

● Still young for language

– Current version 0.14.2

– Strong desire to work towards 1.0 (backward stability)

– Small, but growing community (users and developers)



5

Nim

● Nim compiles to C/C++ (also JS, PHP): “one level up” from C/C++

C++ → (clang) → IR → (LLVM) → ASM → (as) → obj → (ld) → binary

Nim

● C/C++ backend provides

– Portability

– Easy integration with C/C++ libraries, intrinsics (simd), 
pragmas (OpenMP, OpenACC), OpenCL, CUDA(?)

● integrated build system tracks dependencies, compiles and links:

– no Makefile necessary: copy main program, modify, compile

nim c myProject1.nim
nim c myProject2.nim
…
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Generic and meta-programming features

C++ Nim

preprocessor
macros

templates:
inline code substitutions
also allows overloading, completely hygenic (if desired) 

templates generics:
applies to type definitions, procedures, templates and macros
also allows typeclasses, concepts

??? macros:
similar to lisp: syntax tree of arguments passed to macro at 
compile time to allow arbitrary manipulation



7

Simple macro example

● Transform loops

● Standard for loop:

for i in 0..2:
  foo(i)

● macro:

macro forStatic(index:untyped; slice:Slice[int]; body:untyped):stmt = ...

forStatic i, 0..2:
  foo(i)

→

foo(0)
foo(1)
foo(2)
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Macros for low level optimization

● optimize:
  var t: array[3, tuple[re: vector4double, im: vector4double]]
  …
  t[0].re = ...
  t[0].im = ...
  ...

→

  var t0re: vector4double
  var t0im: vector4double
  …
  foo(t0re)
  foo(t0im)
  …



9

Tensor operations (Xiao-Yong Jin)

● General tensor support in development:

    tensorOps:
    v2 = 0
    v2 += v1 + 0.1
    v3 += m1 * v2

(above code block transforms to the pseudocode)

  for j in 0..2:
    v2[j] = 0
    v2[j] += v1[j] + 0.1
    for k in 0..2:
      v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):

  v1[a] = p[mu,mu,a,b] * v2[b]
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New lattice framework in Nim: QEX (Quantum EXpressions)

● Using layout/communications framework from QLL 
(will eventually convert to Nim, not urgent: Nim works great with C)

● Working example of staggered solver (plain & Naik) & simple meson analysis

● Plan to work on link smearings + HMC soon

● Linear algebra undergoing reorganization

– Optimizations and tensor support

● Once more code is running, will shift focus to improving high-level interface

● Code available on github
https://github.com/jcosborn/qex
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QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
  m1 := 1
  v1 := 2
  v2 := m1 * v1
  shift(v1, dir=3, len=1, v2)  # len=+1: from forward
  single:
    if myRank==0:
      echo v2[0][0]  # vector “site” 0, color 0
qexFinalize()
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QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
  let tidOld = tid
  let nidOld = nid
  proc tproc =
    {.emit:"#pragma omp parallel".}
    block:
      setupForeignThreadGc()
      tid = ompGetThreadNum()
      nid = ompGetNumThreads()
      body
  tproc()
  tid = tidOld
  nid = nidOld
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QEX/Nim scripting

● Having scripting interface to application provides:

– Flexible, procedural, interface to set up parameters

– Avoids recompiling for simple changes in workflow or need
to maintain Makefiles for new codes

– Enables rapid testing and development by providing 
high level interface to routines

● Nim provides most of this, except for the actual compiling
(so far compile times are a few seconds)

● Could plug in Lua

● Nim provides its own scripting interface (Nimscript)

– Used in compiler for compile-time evaluation

– Available to plug in to application and can interface with rest of application
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Benchmarks

● Single node KNL Developer Platform

● Intel Xeon Phi CPU 7210

– 64 cores, 4 hardware threads/core

– 16 GB high bandwidth memory

● Benchmark staggered CG (with and without Naik term)

● Volumes L^3 x T
L in {8, 12, 16, 24, 32}
T in {8, 12, 16, 24, 32, 48, 64}
with 64, 128 and 256 threads

● Compiled with gcc 6.1

● Plot solver Gflops versus (volume)^(1/4)
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Plain (one-link) staggered CG, single precision
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Naik (one-link + three-link) staggered CG, single precision
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Plain (one-link) staggered CG, double precision
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Naik (one-link + three-link) staggered CG, double precision
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Summary

● Nim offers extremely useful set of features

– Extensive metaprogramming

– Integrated build system (modules)

– Simple, high-level “script-like” syntax

– Seamless integration with C/C++ code, intrinsics, pragmas, etc.

● New QEX framework written in Nim

– Staggered CG running with good performance on x86 (BG/Q in progress)

– Working on general optimization framework
goal: performance portability across compilers & architectures

– Find more ways to exploit metaprogramming to create easy to use input 
“languages” for specific operations: smearing, operator contraction, ...
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Tuning force-gradient integrators for 
8 flavor nHyp HMC
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HMC in lattice QCD

● 2 flavor partition function

● Introduce pseudofermions
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Hybrid Monte Carlo (HMC) 
[S. Duane, A.D. Kennedy, B. Pendleton, D. Roweth 1987]

● Starting configuration U

● Choose random phi, p 

● Evolve U,p according to H from exp(-H(p,U))

● Accept with probability exp(-H(p',U')+H(p,U))
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Mass preconditioning [Hasenbusch 2001]

● Introduce extra ratios of determinants
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Choice of integrators

● Perform 'n' steps of a symmetric symplectic integrator

● Leapfrog (XPX)  step sizes: ( ½, 1, ½ )ε

● 2force (XPXPX) step sizes: ( λ, ½, 1-2λ, ½, λ )ε

– minimal RMS error coefficients: λ ~ 0.1932
[I.P. Omelyan, I.M. Mryglod and R. Folk 2003]
[LQCD: T. Takaishi, P. de Forcrand 2006]

● Force-gradient:

– Include error term in step

– 2 force, 1 gradient (PXGXP) step sizes: ( 1/6, ½, 2/3, ½, 1/6 )
[M. Suzuki 1995; S.A. Chin 1997]
[LQCD: A.D. Kennedy, M.A. Clark 2007]

– 3 force, 1 gradient (XPXGXPX) step sizes: ( a0, …, a0 )
a0 = 1/6 [S.A. Chin 1997]
a0 ~ 0.089 [I.P. Omelyan, I.M. Mryglod and R. Folk 2002]
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8 flavor nHyp simulation setup

● Using LSD collaboration 8 flavor nHyp ensembles as test of integrators

● 24^3 x 48

● m = 0.00889

● Using 9 Hasenbusch mass preconditioners

● Fermion integrator using 24 force steps per trajectory

● Using FUEL (very flexible integrator framework)

● Test integrators using “seconds / accepted trajectory” as metric
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2 force (XPXPX) integrator
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2 force, 1 gradient (PXGXP)
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3 force, 1 gradient (XPXGXPX)
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0.88 0.72
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Summary

● Lots of possibilities for integrator patterns

● Longer patterns can give improvement when tuned well
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