
Nim for LQCD

Tuning force-gradient
integrators for
8 flavor nHyp HMC

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn & Xiao-Yong Jin

Argonne Leadership Computing Facility

August 1
QCDNA 2016
Edinburgh, UK

2

Evolution of USQCD SciDAC “C” software

● Shared base (in C): QMP, QIO

● C/C++ data parallel:
QDP+QLA, QDP++

● QOPQDP: solvers, forces, etc.
built on QDP

● Lua application scripting layers on
QDP/QOPQDP: QLUA, FUEL

● Lua scripting provides

– Ease of use

– Rapid development & testing

– Speed of C underneath

● QLA/QDP

– Array of structures

– Originally no threading (now
has OpenMP)

– Needs modern update

3

Evolution of USQCD SciDAC C/Lua software

● Started new framework to experiment with threading and vectorization (QLL)

● Hand written + Lua generated C code

● Well tuned staggered + Naik CG gets 23% of peak on BG/Q

● Started looking for high-level language

– Transform natural expressions into well optimized code

– Have ability to perform optimizations across multiple expressions
(i.e. loop fusion)

● Discovered (nearly*) perfect language for the job: Nim

* “not perfect yet”

4

Nim (nim-lang.org)

● Modern language started in 2008

● Designed to be “efficient, expressive, and elegant”

● Borrows heavily from: Modula 3, Delphi, Ada, C++, Python, Lisp, Oberon

● Statically typed, but has extensive type-inference, so feels like
dynamically-typed scripting language

● Efficient garbage collection (optional)

● Extensive meta-programming support (nearly full language
available at compile time)

● Still young for language

– Current version 0.14.2

– Strong desire to work towards 1.0 (backward stability)

– Small, but growing community (users and developers)

5

Nim

● Nim compiles to C/C++ (also JS, PHP): “one level up” from C/C++

C++ → (clang) → IR → (LLVM) → ASM → (as) → obj → (ld) → binary

Nim

● C/C++ backend provides

– Portability

– Easy integration with C/C++ libraries, intrinsics (simd),
pragmas (OpenMP, OpenACC), OpenCL, CUDA(?)

● integrated build system tracks dependencies, compiles and links:

– no Makefile necessary: copy main program, modify, compile

nim c myProject1.nim
nim c myProject2.nim
…

6

Generic and meta-programming features

C++ Nim

preprocessor
macros

templates:
inline code substitutions
also allows overloading, completely hygenic (if desired)

templates generics:
applies to type definitions, procedures, templates and macros
also allows typeclasses, concepts

??? macros:
similar to lisp: syntax tree of arguments passed to macro at
compile time to allow arbitrary manipulation

7

Simple macro example

● Transform loops

● Standard for loop:

for i in 0..2:
 foo(i)

● macro:

macro forStatic(index:untyped; slice:Slice[int]; body:untyped):stmt = ...

forStatic i, 0..2:
 foo(i)

→

foo(0)
foo(1)
foo(2)

8

Macros for low level optimization

● optimize:
 var t: array[3, tuple[re: vector4double, im: vector4double]]
 …
 t[0].re = ...
 t[0].im = ...
 ...

→

 var t0re: vector4double
 var t0im: vector4double
 …
 foo(t0re)
 foo(t0im)
 …

9

Tensor operations (Xiao-Yong Jin)

● General tensor support in development:

 tensorOps:
 v2 = 0
 v2 += v1 + 0.1
 v3 += m1 * v2

(above code block transforms to the pseudocode)

 for j in 0..2:
 v2[j] = 0
 v2[j] += v1[j] + 0.1
 for k in 0..2:
 v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):

 v1[a] = p[mu,mu,a,b] * v2[b]

10

New lattice framework in Nim: QEX (Quantum EXpressions)

● Using layout/communications framework from QLL
(will eventually convert to Nim, not urgent: Nim works great with C)

● Working example of staggered solver (plain & Naik) & simple meson analysis

● Plan to work on link smearings + HMC soon

● Linear algebra undergoing reorganization

– Optimizations and tensor support

● Once more code is running, will shift focus to improving high-level interface

● Code available on github
https://github.com/jcosborn/qex

11

QEX: QCD (or Quantum) Expressions

import qex
import qcdTypes

qexInit()
var lat = [4,4,4,4]
var lo = newLayout(lat)
var v1 = lo.ColorVector()
var v2 = lo.ColorVector()
var m1 = lo.ColorMatrix()
threads:
 m1 := 1
 v1 := 2
 v2 := m1 * v1
 shift(v1, dir=3, len=1, v2) # len=+1: from forward
 single:
 if myRank==0:
 echo v2[0][0] # vector “site” 0, color 0
qexFinalize()

12

QEX/Nim examples

● threads: implementation

template threads*(body:untyped):untyped =
 let tidOld = tid
 let nidOld = nid
 proc tproc =
 {.emit:"#pragma omp parallel".}
 block:
 setupForeignThreadGc()
 tid = ompGetThreadNum()
 nid = ompGetNumThreads()
 body
 tproc()
 tid = tidOld
 nid = nidOld

13

QEX/Nim scripting

● Having scripting interface to application provides:

– Flexible, procedural, interface to set up parameters

– Avoids recompiling for simple changes in workflow or need
to maintain Makefiles for new codes

– Enables rapid testing and development by providing
high level interface to routines

● Nim provides most of this, except for the actual compiling
(so far compile times are a few seconds)

● Could plug in Lua

● Nim provides its own scripting interface (Nimscript)

– Used in compiler for compile-time evaluation

– Available to plug in to application and can interface with rest of application

14

Benchmarks

● Single node KNL Developer Platform

● Intel Xeon Phi CPU 7210

– 64 cores, 4 hardware threads/core

– 16 GB high bandwidth memory

● Benchmark staggered CG (with and without Naik term)

● Volumes L^3 x T
L in {8, 12, 16, 24, 32}
T in {8, 12, 16, 24, 32, 48, 64}
with 64, 128 and 256 threads

● Compiled with gcc 6.1

● Plot solver Gflops versus (volume)^(1/4)

15

Plain (one-link) staggered CG, single precision

16

Naik (one-link + three-link) staggered CG, single precision

17

Plain (one-link) staggered CG, double precision

18

Naik (one-link + three-link) staggered CG, double precision

19

Summary

● Nim offers extremely useful set of features

– Extensive metaprogramming

– Integrated build system (modules)

– Simple, high-level “script-like” syntax

– Seamless integration with C/C++ code, intrinsics, pragmas, etc.

● New QEX framework written in Nim

– Staggered CG running with good performance on x86 (BG/Q in progress)

– Working on general optimization framework
goal: performance portability across compilers & architectures

– Find more ways to exploit metaprogramming to create easy to use input
“languages” for specific operations: smearing, operator contraction, ...

20

Tuning force-gradient integrators for
8 flavor nHyp HMC

21

HMC in lattice QCD

● 2 flavor partition function

● Introduce pseudofermions

22

Hybrid Monte Carlo (HMC)
[S. Duane, A.D. Kennedy, B. Pendleton, D. Roweth 1987]

● Starting configuration U

● Choose random phi, p

● Evolve U,p according to H from exp(-H(p,U))

● Accept with probability exp(-H(p',U')+H(p,U))

23

Mass preconditioning [Hasenbusch 2001]

● Introduce extra ratios of determinants

24

Choice of integrators

● Perform 'n' steps of a symmetric symplectic integrator

● Leapfrog (XPX) step sizes: (½, 1, ½)ε

● 2force (XPXPX) step sizes: (λ, ½, 1-2λ, ½, λ)ε

– minimal RMS error coefficients: λ ~ 0.1932
[I.P. Omelyan, I.M. Mryglod and R. Folk 2003]
[LQCD: T. Takaishi, P. de Forcrand 2006]

● Force-gradient:

– Include error term in step

– 2 force, 1 gradient (PXGXP) step sizes: (1/6, ½, 2/3, ½, 1/6)
[M. Suzuki 1995; S.A. Chin 1997]
[LQCD: A.D. Kennedy, M.A. Clark 2007]

– 3 force, 1 gradient (XPXGXPX) step sizes: (a0, …, a0)
a0 = 1/6 [S.A. Chin 1997]
a0 ~ 0.089 [I.P. Omelyan, I.M. Mryglod and R. Folk 2002]

25

8 flavor nHyp simulation setup

● Using LSD collaboration 8 flavor nHyp ensembles as test of integrators

● 24^3 x 48

● m = 0.00889

● Using 9 Hasenbusch mass preconditioners

● Fermion integrator using 24 force steps per trajectory

● Using FUEL (very flexible integrator framework)

● Test integrators using “seconds / accepted trajectory” as metric

26

2 force (XPXPX) integrator

27

2 force, 1 gradient (PXGXP)

28

3 force, 1 gradient (XPXGXPX)

29

0.88 0.72

30

Summary

● Lots of possibilities for integrator patterns

● Longer patterns can give improvement when tuned well

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

