The Anatomy of a Calculation of ε^{\prime}

The Ninth International
Workshop on Numerical
Analysis and Lattice QFT
(QCDNA)
August 2, 2016
Norman H. Christ
Columbia University
RBC and UKQCD Collaborations

Outline

- Overview of CP violation and $K \rightarrow \pi \pi$ decay
- Lattice calculation of $K \rightarrow \pi \pi$:
- Lellouch-Luscher method
- Exploit boundary conditions
- Choice of $\pi \pi$ operator
- Non-perturbative renormalization
- Result for ε^{\prime}
- Outlook

UKQCD Collaboration

- Edinburgh
- Peter Boyle
- Guido Cossu
- Luigi Del Debbio
- Julien Frison (KEK)
- Julia Kettle
- Richard Kenway
- Ava Khamseh
- Brian Pendleton
- Antonin Portelli
- Oliver Witzel
- Azusa Yamaguchi
- Plymouth
- Nicolas Garron
- York (Toronto)
- Renwick Hudspith
- Southampton
- Jonathan Flynn
- Vera Guelpers
- James Harrison
- Andreas Juttner
- Andrew Lawson
- Edwin Lizarazo
- Chris Sachrajda
- Francesco Sanfilippo
- Matthew Spraggs
- Tobias Tsang
- CERN
- Marina Marinkovic

RBC Collaboration

- BNL
- Mattia Bruno
- Chulwoo Jung
- Taku Izubuchi (RBRC)
- Christoph Lehner
- Meifeng Lin
- Amarjit Soni
- RBRC
- Chris Kelly (Columbia)
- Tomomi Ishikawa
- Taichi Kawanai
- Hiroshi Ohki
- Shigemi Ohta (KEK)
- Sergey Syritsyn (SUSB)
- Columbia
- Ziyuan Bai
- Xu Feng
- Norman Christ
- Luchang Jin
- Robert Mawhinney
- Greg McGlynn
- David Murphy
- Jiqun Tu
- Daiqian Zhang
- Connecticut
- Tom Blum

CP violation and

$K \rightarrow \pi \pi$ decay

$K \rightarrow \pi \pi$ and CP violation

- Final $\pi \pi$ states can have $I=0$ or 2 .

$$
\begin{aligned}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle & =A_{2} e^{i \delta_{2}} & \Delta I=3 / 2 \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle & =A_{0} e^{i \delta_{0}} & \Delta I=1 / 2
\end{aligned}
$$

- CP symmetry requires A_{0} and A_{2} be real.
- Direct CP violation in this decay is characterized by:

$$
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right) \quad \begin{array}{|c|}
\begin{array}{c}
\text { Direct CP } \\
\text { violation }
\end{array} \\
\hline
\end{array}
$$

$K^{0}-K^{0}$ mixing

- $\Delta S=1$ weak decays allow K^{0} and K^{0} to decay to the same $\pi \pi$ state.
- Resulting mixing described by WignerWeisskopf:

$$
i \frac{d}{d t}\binom{K^{0}}{\bar{K}_{0}^{0}}=\left\{\left(\begin{array}{cc}
M_{00} & M_{0 \overline{0}} \\
M_{\overline{\overline{0} 0}} & M_{\overline{00}}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{cc}
\Gamma_{00} & \Gamma_{\overline{0}} \\
I_{\overline{0} 0} & \Gamma_{\overline{0} 0}
\end{array}\right)\right\}\binom{K^{0}}{\bar{K}^{0}}
$$

- Decaying states are mixtures of K^{0} and K^{\ominus}

$$
\begin{array}{lc}
\left|K_{S}\right\rangle=\frac{K_{+}+\bar{\epsilon} K_{-}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \bar{\epsilon}=\frac{i}{2}\left\{\frac{\operatorname{Im} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Im} \Gamma_{0 \overline{0}}}{\operatorname{Re} M_{0 \overline{0}}-\frac{i}{2} \operatorname{Re} \Gamma_{0 \overline{0}}}\right\} \\
\left|K_{L}\right\rangle=\frac{K_{-}+\bar{\epsilon} K_{+}}{\sqrt{1+|\bar{\epsilon}|^{2}}} & \begin{array}{c}
\text { Indirect CP } \\
\text { violation }
\end{array}
\end{array}
$$

CP violation

- CP violating, experimental amplitudes:

$$
\begin{aligned}
\eta_{+-} & \equiv \frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & \equiv \frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

- Where: $\epsilon=\bar{\epsilon}+i \frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}$

Indirect: $|\varepsilon|=(2.228 \pm 0.011) \times 10^{-3}$
Direct: $\operatorname{Re}\left(\varepsilon^{\prime} / \varepsilon\right)=(1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ decay from lattice QCD

Low Energy Effective Theory

- Represent weak interactions by local four-quark
Lagrangian
$\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)+\tau y_{i}(\mu)\right] Q_{i}\right\}$
- $\tau=-\frac{V_{t d} V_{t s}^{*}}{V_{u d} V_{u s}^{*}}=(1.543+0.635 i) \times 10^{-3}$
- $V_{q q^{\prime}}$ CKM matrix elements
- z_{i} and $y_{i}-$ Wilson Coefficients
- Q_{i} - four-quark operators

Four quark operators

- Currentcurrent

$Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A}$
$Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}$
- Electro-Weak Penguins

$$
Q_{7} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

$Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, S}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}$

$Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}$
$Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}$

- QCD Penguins

$$
Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

$Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}$

$$
Q_{8} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
$$

$$
Q_{9} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}
$$

$Q_{10} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}$

Physical $\pi \pi$ states - Lellouch-Luscher

- Euclidean $e^{-H t}$ projects onto $\mid \pi \pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so $1^{\text {st }}$ or $2^{\text {nd }}$
 excited state has correct p.
- Correctly include $\pi-\pi$ interactions, including leading $1 / L^{3}$ effects of finite volume.
- Requires extracting signal from non-leading large-t behavior:

$$
G(t) \sim c_{0} e^{-E_{0} t}+c_{1} e^{-E_{1} t}
$$

Exploit boundary conditions

- Remove $\pi \pi$ states with $E_{\pi \pi}<M_{K}$ by imposing anti-periodic boundary conditions:

$$
2 \sqrt{3\left(\frac{\pi}{L}\right)^{2}+M_{\pi}^{2}}=M_{K} \rightarrow \mathrm{~L}=5.2 \mathrm{fm}
$$

- $\quad I=2$, Repulsive, $L \rightarrow 5.7 \mathrm{fm}$
- Work with $\pi^{+} \pi^{+}$state, impose anti-periodic BC on d quark
- $\left|\pi^{+} \pi^{+}\right\rangle$unique, charge 2 state, does not mix
- $I=0$, Attractive, $L \rightarrow 4.5 \mathrm{fm}$
- Must distinguish $I=0$ state: $\left|\pi^{+} \pi^{\pi}\right\rangle-2\left|\pi^{0} \pi^{0}\right\rangle+\left|\pi^{\pi} \pi^{+}\right\rangle$
- Impose G-parity BC, G = C e $e^{i \pi l y} ;[G, \vec{I}]=0$

$\Delta I=3 / 2$

$\Delta I=3 / 2 K \rightarrow \pi \pi$

- Three operators contribute $\mathrm{O}^{(27,1)}, \mathrm{O}^{(8,8)}$ and $\mathrm{O}^{(8,8) \mathrm{m}}$.
- Calculated three times:

- $32^{3} \times 64$, DSDR $1 / \mathrm{a}=1.38 \mathrm{GeV}$
- $48^{3} \times 96$, Iwasaki, $1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128$ Iwasaki, $1 / \mathrm{a}=2.28 \mathrm{GeV}$

Operator Normalization (Rome-Southampton)

- Effective weak Hamiltonian H_{w} contains four-quark operators normalized in the $\overline{\mathrm{MS}}$ scheme.
- Impose non-perturbative RI scheme on lattice operators:
- Evaluate Landau-gauge, off-shell Green's functions:

$$
\left(\Gamma\left(p_{1}, p_{2}, p_{3}, p_{4}\right)_{j}\right)_{a b c d}^{\alpha \beta \gamma \delta}=\prod_{i=1}^{4}\left(\int d^{4} x_{i} e^{i p_{i} \cdot x_{i}}\right)\left\langle\bar{q}_{a}^{\alpha}\left(x_{1}\right) \bar{q}_{b}^{\beta}\left(x_{2}\right) O_{j} q_{c}^{\delta}\left(x_{3}\right) q_{d}^{\gamma}\left(x_{4}\right)\right\rangle
$$

- Impose normalization conditions: $\operatorname{tr}\left\{P_{i} \Gamma_{j}\right\}=F_{i j}$
- Use continuum perturbation theory to convert RI to $\overline{\mathrm{MS}}$

Operator Normalization (Refinements)

- Use chiral fermions (DWF): good short-distance chiral symmetry controls operator mixing (Mobius with $L_{s}=12$)
- Impose normalization conditions $\operatorname{tr}\left\{P_{i} \Gamma_{j}\right\}=F_{i j}$ at infrared-safe, non-exceptional momenta, at a large, Euclidean energy scale μ.
- Use a series of finer lattice ensembles to nonperturbatively run μ up to 3 GeV (or higher) before converting RI to $\overline{\mathrm{MS}}$.
- Use twisted boundary conditions to allow matching between ensembles at equal physical momenta without varying momentum direction - freeze $O_{(4)} a^{2}$ artifacts.

Relate lattice and continuum operators

- Normalize off-shell, gaugefixed 4-quark Greens functions.

- Calculation is performed on $1 / a=1.37 \mathrm{GeV}$ lattice.
- Converting to perturbative $\overline{\mathrm{MS}}$ scheme is unreliable at scale $\mu \sim 1 / a!$
- Carry out sequence of NP RI matching steps:
$Z_{(d, 4)}^{\overline{\mathrm{MS}},(\text { latt })}(\mu)=\left(\begin{array}{ccc}0.424(4)(4) & 0 & 0 \\ 0 & 0.472(6)(8) & -0.020(5)(21) \\ 0 & -0.067(23)(30) & 0.572(28)(20)\end{array}\right)$

$\Delta \mathrm{I}=3 / 2$ - Continuum Results

(Tadeusz Janowski)

- Use two new large ensembles to remove a^{2} error ($m_{\pi}=135 \mathrm{MeV}$, $\mathrm{L}=5.4 \mathrm{fm}$)
- $48^{3} \times 96,1 / a=1.73 \mathrm{GeV}$
- $64^{3} \times 128,1 / a=2.28 \mathrm{GeV}$
- Continuum results:

- $\operatorname{Re}\left(A_{2}\right)=1.50\left(0.04_{\text {stat }}\right)\left(0.14_{\text {syst }}\right) \times 10^{-8} \mathrm{GeV}$
- $\operatorname{Im}\left(A_{2}\right)=-6.99(0.20)_{\text {stat }}(0.84)_{\text {syst }} \times 10^{-13} \mathrm{GeV}$
- Experiment: $\operatorname{Re}\left(A_{2}\right)=1.479(4) 10^{-8} \mathrm{GeV}$
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)(1.2)^{0}$
- Phys.Rev. D91, 074502 (2015)

$\Delta I=1 / 2$

$\Delta I=1 / 2 K \rightarrow \pi \pi$

- Made much more difficult by disconnected diagrams:

- Many more diagrams (48) than $\Delta I=3 / 2$:

$\Delta I=1 / 2 K \rightarrow \pi \pi$ at threshold (Qi Liu)

- Initial threshold decay calculation successful
$-\operatorname{Re}\left(A_{0}\right): 25 \%$ statistical errors
- Im $\left(A_{0}\right): 50 \%$ statistical errors

Q2 - largest part of $\operatorname{Re}\left(A_{0}\right)$

$\Delta I=1 / 2 K \rightarrow \pi \pi$ - suppress vacuum
 (Qi Liu \& Daiqian Zhang)

- Separate two pion operators in time.

$\Delta I=1 / 2 K \rightarrow \pi \pi$ - suppress vacuum (Qi Liu \& Daiqian Zhang)

- Obtain $2 x$ decrease in errors

$$
\delta=0
$$

$\delta=2$

$$
\delta=4
$$

$$
m_{\pi \pi}=0.3922(126)
$$

$$
m_{\pi \pi}=0.3720(62)
$$

$$
m_{\pi \pi}=0.3639(55)
$$

$\Delta I=1 / 2 K \rightarrow \pi \pi$ - suppress vacuum (Qi Liu \& Daiqian Zhang)

- Use all-2-all propagators (Trinity/KEK)
- Use localized sources - further suppress vacuum coupling
- Sum over source location to fix momentum

$$
\begin{aligned}
&\langle q(x) \bar{q}(y)\rangle=\langle x| \frac{1}{D_{\mathrm{DWF}}}|y\rangle=\sum_{n=1}^{N_{\text {modes }}} \phi_{n}(x) \frac{1}{\lambda_{n}} \phi_{n}(y)^{\dagger}+\sum_{k=1}^{N_{\text {noise }}}\langle x| \frac{1}{D}\left(I-P_{n \leq N_{\text {modes }}}\right)\left|\eta_{k}\right\rangle \eta_{k}(y)^{\dagger} \\
&=\sum_{l=1}^{N_{\text {modes }}+N_{\text {noise }}} v_{l}(x) w_{l}(y)^{\dagger} \\
& \pi_{\mathrm{op}}^{(l j)}=\int d^{3} x d^{3} y v_{l}(\vec{y}, t)^{\dagger} \psi_{\pi}(\vec{x}, \vec{y}) w_{j}(\vec{x}, t) \\
& \psi_{\pi}(\vec{x}, \vec{y})=e^{i \vec{p}_{q_{1}} \cdot \vec{x}} e^{-|\vec{x}-\vec{y}| / r} e^{i \vec{p}_{q_{2}} \cdot \vec{y}}
\end{aligned} \quad \text { QCDNA -- August 2,2016 } \quad \text { (25) }
$$

$\Delta I=1 / 2 K \rightarrow \pi \pi$ - suppress vacuum (Qi Liu \& Daiqian Zhang)

- See more than $2 x$ reduction in statistical error:

$16^{3} \times 32,1 / a=1.73 \mathrm{GeV}$

$\Delta I=1 / 2 K \rightarrow \pi \pi-$ A2A propagators

- Use γ^{5} hermiticity to locate few A2A sources at H_{w}.
- Avoid (noise) ${ }^{2} \sim V^{2}$

$\Delta I=1 / 2 K \rightarrow \pi \pi-$ above threshold

 (Chris Kelly \& Daiqian Zhang)- Use G-parity BC to obtain $p_{\pi}=205$ MeV (Changhoan Kim, hep-lat/0210003)
$-G=C e^{i \pi / y}$
- Non-trivial: $\binom{u}{d} \rightarrow\binom{\bar{d}}{-\bar{u}}$
- Gauge fields obey C BC
- Extra $I=1 / 2, s^{\prime}$ quark adds $e^{-m_{K} L}$ error.
- Must take non-local square root of $s-s^{\prime}$
 determinant
- Tests: f_{K} and B_{K} agree with no G-parity results.

Lattice symmetries - rotation

- Our 2π state has 8 possible non-zero relative spatial momenta: $\pi / L(\pm 1, \pm 1, \pm 1)$.
- Project onto the s-wave, A_{1} rep., remove T_{2}.
- Splitting of A_{1} and T_{2} states is caused by finite-volume
- Results from difference between $\delta_{l=2}(I=0)$ and $\delta_{l=0}(I=0)$
- Too small to distinguished numerically, $\Delta E=51 \mathrm{MeV}$

$$
\begin{aligned}
& \text { s-wave }\left(A_{1}\right) \\
& E_{\pi \pi}-2 E_{\pi}=-0.0371 \pm 0.0075 \\
& d \text {-wave }\left(T_{2}\right) \\
& E_{\pi \pi}-2 E_{\pi}=-0.0019 \pm 0.0006
\end{aligned}
$$

Lattice symmetries - translation

- Essential to exploit momentum conservation to avoid nearby states: $\Delta E=\left((2 \pi / \mathrm{L})^{2}+m_{\pi}^{2}\right)^{1 / 2}-m_{\pi}^{2}=165 \mathrm{MeV}$
- Must work with momentum eigenstates:

$$
\chi(l-1)=e^{-i p a} \chi(l)
$$

where $\quad \chi(L)=i \sigma_{y} \chi(0) \quad \chi=\left(\frac{u}{d}\right) \quad 0 \leq l<L$

- Solved by

$$
\chi(l)=e^{\frac{2 \pi}{L} i\left(n \pm \frac{1}{4}\right) l}\left(1 \pm \sigma_{y}\right)\binom{a}{b} \quad p=\frac{2 \pi}{L}\left(n \pm \frac{1}{4}\right)
$$

Cubic rotation symmetry broken!

$\left(2 \pi n_{x} / L, 2 \pi n_{x} / L\right)$

quark: 0 twists
$\left(2 \pi\left(n_{x} \pm 1 / 2\right) / L, 2 \pi\left(n_{y} \pm 1 / 2\right) / L\right)$

meson: 2 twists

$$
\left(2 \pi\left(n_{x} \pm 1 / 4\right) / L, 2 \pi n_{x} / L\right) \quad\left(2 \pi\left(n_{x} \pm 1 / 4\right) / L, 2 \pi\left(n_{y} \pm 1 / 4\right) / L\right)
$$

quark: 1 twists

quark: 2 twists

- Allowed momenta with G-parity links x and y
- Diagonal structure results
- Breaks cubic symmetry

Cubic rotation symmetry broken

- Will appear only when quarks are separated.
- Use symmetrical π wave function, add two \vec{p}_{q} choices

$$
\begin{aligned}
\left(-\frac{\pi}{L}, \frac{\pi}{L}, \frac{\pi}{L}\right) & =\left(\frac{\pi}{2 L}, \frac{\pi}{2 L}, \frac{\pi}{2 L}\right)+\left(\frac{-3 \pi}{2 L}, \frac{\pi}{2}, \frac{\pi}{2 L}\right) \\
& =\left(\frac{-\pi}{2 L}, \frac{-\pi}{2 L}, \frac{-\pi}{2 L}\right)+\left(\frac{-\pi}{2 L}, \frac{3 \pi}{2 L}, \frac{3 \pi}{2 L}\right)
\end{aligned}
$$

- Symmetry violation is highly :
 suppressed for our $r=2$.

	$p=(2,2,2)$	$p=(-2,2,2)$	$p=(2,-2,2)$	$p=(2,2,-2)$
E_{π}	$0.19852(85)$	$0.19823(82)$	$0.19839(72)$	$0.19866(88)$
Z_{π}	$6.167(69) \mathrm{e}+06$	$6.081(63) \mathrm{e}+06$	$6.183(50) \mathrm{e}+06$	$6.170(61) \mathrm{e}+06$

Calculation of A_{0} and ε^{\prime}

Overview of calculation

- Use $32^{3} \times 64$ ensemble
$-1 / a=1.3784(68) \mathrm{GeV}, L=4.53 \mathrm{fm}$.
- G-parity boundary condition in 3 directions
- Usual $u-d$ iso-doublet
- Unusual $s-s^{\prime}$ with rooted determinant.
- 216 configurations separated by 4 time units
- 300 time units discarded for equilibration
- 900 low modes for all-to-all propagators
- Solve for $\pi \pi$ and kaon sources on each of 64 time slices
- Computer resources
- 6 hours/trajectory - BG/Q $1 ⁄ 2$ rack
- 20 hours/trajectory - BG/Q ½ rack
- One year to generate configurations, one year for measurements.

Overview of calculation

- Evolution runs $4 x$ slower than without G-parity
- Now two distinct flavors (2x)
- Must use RHMC for both light and strange quarks:

$$
\operatorname{det}\left\{M_{l} M_{l}^{\dagger}\right\} \rightarrow\left[\operatorname{det}\left\{M_{u} M_{u}^{\dagger}\right\}\right]^{\frac{1}{2}}\left[\operatorname{det}\left\{M_{d} M_{d}^{\dagger}\right\}\right]^{\frac{1}{2}}
$$

- Breakdown of BG/Q measurement

Lanczos (900 eigen vectors)	3.6 h
Light quark CG (900 modes deflation)	4.6 h
Strange quark CG	2.9 h
Gauge fixing	0.33 h
Computing meson field(900 low modes)	3.0 h
Pion(s),Kaon spectrum	1.1 h
Type1 contraction	0.79 h
Type2 contraction	0.54 h
Type3 contraction	1.97 h
Type4 contraction	0.50 h
Total	$\sim 19.5 \mathrm{~h}$

Overview of calculation

- Achieve essentially physical kinematics:
$-M_{\pi}=143.1(2.0)$
$-M_{K}=490.6(2.2) \mathrm{MeV}$
$-E_{\pi \pi}=498(11) \mathrm{MeV}$
$-m_{\text {res }}=0.001842(7)$ (90\% of physical light quark mass)

$I=0, \pi \pi-\pi \pi$ correlator

- Determine normalization of $\pi \pi$ interpolating operator.
- Determine energy of finite volume, $I=0, \pi \pi$ state: $E_{\pi \pi}=498(11) \mathrm{MeV}$.
- Determine $I=0 \pi \pi$ phase shift: $\delta_{0}=23.8(4.9)(2.2)^{\circ}$.

- $E_{\pi \pi}$ from a correlated 1-state fit, $6 \leq t \leq 25$, $\chi^{2} / \mathrm{dof}=1.56(68)$
- Consistent result obtained from 2-state fit, $3 \leq t \leq 25$.
- Leading-term amplitude changes by 5\% between these two fits.

$\Delta l=1 / 2 K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_{w} and $\pi \pi$ operator.
- Show data for all $K-H_{W}$ separations $t_{Q}-t_{K} \geq 6$ and $t_{\pi \pi}-t_{K}=10,12,14,16$ and 18.
- Fit correlators with $t_{\pi \pi}-t_{Q} \geq 4$
- Obtain consistent results for $t_{\pi \pi}-t_{Q} \geq 3$ or 5

QCDNA -- August 2, 2016

Lattice matrix elements

Chiral basis	Conventional 10 operators		Chiral basis
	i	$\mathcal{M}_{\text {lat }}^{(i)}(\mathrm{GeV})^{3}$	$\mathcal{M}_{\text {lat }}^{\prime \prime}(\mathrm{GeV})^{3}$
	1	-0.247(62)	$-0.147(242)\}$ (27,1)
	2	0.266(72)	-0.218(54)
$\mathrm{Q}_{1}^{\prime}=3 \mathrm{Q}_{1}+2 \mathrm{Q}_{2}-\mathrm{Q}_{3}$	3	-0.064(183)	$0.295(59)$
$\mathrm{Q}_{2}^{\prime}=\left(2 \mathrm{Q}_{1}-2 \mathrm{Q}_{2}+\mathrm{Q}_{3}\right) / 5$	4	$\begin{gathered} 0.444(189) \\ -0.601(146) \end{gathered}$	${ }_{-0.601(146)}-(8,1)$
$\mathrm{Q}^{\prime}=\left(3 \mathrm{Q}_{1}-3 \mathrm{Q}_{2}+\mathrm{Q}_{3}\right) / 5$	6	-1.188(287)	-1.188(287)
	7	1.33(8)	$1.33(8)$
	8	4.65(14)	$4.65(15) \int^{(8,8)}$
	9	-0.345(97)	-
	10	$0.176(100)$	-

RI/SMOM normalization of chiral operators

- For $(8,1)$ operators must include disconnected diagrams.
- Use $p_{1}=2 \pi(4,4,0,0) / L$ and $p_{2}=2 \pi(0,4,4,0) / L$
- $p_{1}{ }^{2}=p_{2}{ }^{2}=\left(p_{1}-p_{2}\right)^{2}=1.531 \mathrm{GeV}^{2}$
- Use 100 configurations

RI/SMOM normalization of chiral operators

- For $(8,1)$ operators must include disconnected diagrams.

Physical matrix elements

i	$\mathcal{M}_{\text {SMOM }}^{\prime(i)}(\mathrm{GeV})^{3}$	$\mathcal{M}_{\text {MS }}^{(i)}(\mathrm{GeV})^{3}$
1	$-0.0675(1109)(128)$	$-0.151(29)(36)$
2	$-0.156(27)(30)$	$0.169(42)(41)$
3	$0.212(52)(40)$	$-0.0492(652)(118)$
4	-	$0.271(93)(65)$
5	$-0.193(62)(37)$	$-0.191(48)(46)$
6	$-0.366(103)(70)$	$-0.379(97)(91)$
7	$0.225(37)(43)$	$0.219(37)(53)$
8	$1.65(5)(31)$	$1.72(6)(41)$
9	-	$-0.202(54)(49)$
10	-	$0.118(42)(28)$

Contributions to \boldsymbol{A}_{0}

i	$\operatorname{Re}\left(A_{0}\right)(\mathrm{GeV})$	$\operatorname{Im}\left(A_{0}\right)(\mathrm{GeV})$
1	$1.02(0.20)(0.07) \times 10^{-7}$	0
2	$3.63(0.91)(0.28) \times 10^{-7}$	0
3	$-1.19(1.58)(1.12) \times 10^{-10}$	$1.54(2.04)(1.45) \times 10^{-12}$
4	$-1.86(0.63)(0.33) \times 10^{-9}$	$1.82(0.62)(0.32) \times 10^{-11}$
5	$-8.72(2.17)(1.80) \times 10^{-10}$	$1.57(0.39)(0.32) \times 10^{-12}$
6	$3.33(0.85)(0.22) \times 10^{-9}$	$-3.57(0.91)(0.24) \times 10^{-11}$
7	$2.40(0.41)(0.00) \times 10^{-11}$	$8.55(1.45)(0.00) \times 10^{-14}$
8	$-1.33(0.04)(0.00) \times 10^{-10}$	$-1.71(0.05)(0.00) \times 10^{-12}$
9	$-7.12(1.90)(0.46) \times 10^{-12}$	$-2.43(0.65)(0.16) \times 10^{-12}$
10	$7.57(2.72)(0.71) \times 10^{-12}$	$-4.74(1.70)(0.44) \times 10^{-13}$
Tot	$4.66(0.96)(0.27) \times 10^{-7}$	$-1.90(1.19)(0.32) \times 10^{-11}$

$\operatorname{Re}\left(A_{0}\right)=4.66(1.00)_{\text {stat }}(1.26)_{\text {sys }} \times 10^{-7} \mathrm{GeV}$
Stat. error NPR
Expt: $\quad 3.3201(0.0018) \times 10^{-7} \mathrm{GeV}$
Stat. error ME
$\operatorname{Im}\left(A_{0}\right)=-1.90(1.23)_{\text {stat }}(1.08)_{\text {sys }} \times 10^{-11} \mathrm{GeV}$

Systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

Testing Correctness

- RHMC: G-parity and "doubled lattice" evolutions agree
- Results for f_{K} and B_{K} agree with earlier DSDR values
- Calculation of matrix elements done by two people with largely independent code
- G-parity code applied to $\Delta I=3 / 2$ amplitudes and results agreed with earlier method
- G-parity and standard RBC/UKQCD code agreed for a free field calculation with large mass and large volume to remove effects of boundary (with anti-periodic time boundary to ensure that loop graphs are non-zero)

Error in ensemble generation

- Up and down quark forces computed from the same random numbers after shift by 12 in y-direction.

Average plaquette:
Correct ensemble 0.512239(3)(7)
Incorrect ensemble 0.512239(6)

Calculate $\operatorname{Re}\left(\varepsilon^{\prime} \mid \varepsilon\right)$

$$
\begin{aligned}
\operatorname{Re}\left(\frac{\varepsilon^{\prime}}{\varepsilon}\right) & =\operatorname{Re}\left\{\frac{i \omega e^{i\left(\delta_{2}-\delta_{0}\right)}}{\sqrt{2} \varepsilon}\left[\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right]\right\} \\
& =\left(1.38 \pm 5.15_{\text {stat }} \pm 4.59_{\text {sys }}\right) \times 10^{-4} \\
\text { Expt: } & =(16.6 \pm 2.3) \times 10^{-4}[2.1 \sigma \text { difference }]
\end{aligned}
$$

- $\operatorname{Im}\left(A_{0}\right), \operatorname{Im}\left(A_{2}\right), \delta_{0}$ and δ_{2} from lattice QCD
- $\operatorname{Re}\left(A_{2}\right)$ and $\operatorname{Re}\left(A_{0}\right)$ from measured decay rates
- $|\varepsilon|=2.228(0.011) \times 10^{-3}$ from experiment
- $\arg (\varepsilon)=\arctan \left(2 \Delta M_{K} / \Gamma_{\mathrm{S}}\right)=42.52^{\circ}$ (Bell-Steinberger relation)

Improve Operator Renormalization

- Add $5^{\text {th }}$, dimension-6 $(8,1)$ operator that had been dropped [still missing dimension-6 $(8,1)$ operators which enter at two loops]: [McGlynn arXiv:1605.08807]

$$
G_{1}(x)=\bar{s}(x)\left[D^{\mu} F^{\mu v}(x) \gamma^{v}\left(1-\gamma^{5}\right)\right] d(x)
$$

- G_{1} vanishes by equations of motion; enters at one loop
- Effect of inclusion $\sim 1 \%$

$$
\frac{1}{Z_{q}^{2}} \Delta Z^{\mathrm{lat} \rightarrow \mathrm{RI}}=\left(\begin{array}{rrrrrr}
0 & & & & - & \\
& -0.00090(41) & -0.0025(12) & 0.00044(20) & -0.00090(42) & \\
& 0.00510(24) & 0.01423(65) & -0.00248(11) & 0.00512(23) & \\
& -0.0005(13) & -0.0013(36) & 0.00023(63) & -0.0005(13) & \\
& 0.01470(76) & 0.0410(20) & -0.00717(35) & 0.01476(73) & \\
& & & & 0 & 0 \\
& & & & 0 & 0
\end{array}\right)
$$

Improve Operator Renormalization

- Old:
- Find $Z_{R I}{ }^{\text {lat }} \rightarrow \mathrm{RI}$ on original lattice at 1.53 GeV
- Use PT to find $Z_{\mathrm{RI}}{ }^{\mathrm{R} \rightarrow} \rightarrow \overline{\mathrm{MS}}$ at 1.53 GeV
- New:
- Find $Z^{\text {lat } \rightarrow \text { RI }}$ on original lattice at 1.32 GeV
- Find $Z^{1.33 ~ G e V ~} \rightarrow 2.29 \mathrm{GeV}$ on $24^{3} \times 64,1 / a=1.73 \mathrm{GeV}$ lattice
- Use PT to find $Z^{\text {RI } \rightarrow \text { MS }}$ at 2.29 GeV
- Test by comparing two RI schemes: gamma-gamma and $\not \alpha^{-}-\nmid$

Improve Operator Renormalization

- Examine
$1-Z^{\text {dq/ }} / Z^{\gamma \gamma}$
- Discard (33) element [large PT coefficient]
- Use $1 / 2$ the largest difference for error estimate:
- Old: 18\%
- New: 9\%

Op idx.	$\mu=1.53 \mathrm{GeV}$ 32 ID	$\mu=2.29 \mathrm{GeV}$ stepscaled no G_{1}	$\mu=2.29 \mathrm{GeV}$ stepscaled with G_{1}
$(1,1)$	$0.05978(13)$	$0.03948(16)$	$0.03948(16)$
$(2,2)$	$0.300(68)$	$0.080(33)$	$0.092(35)$
$(2,3)$	$0.363(76)$	$0.153(36)$	$0.161(42)$
$(2,5)$	$0.030(22)$	$0.0083(89)$	$0.0086(93)$
$(2,6)$	$0.015(20)$	$0.0074(53)$	$0.0081(77)$
$(3,2)$	$0.264(87)$	$0.143(23)$	$0.174(26)$
$(3,3)$	$0.44(11)$	$0.238(25)$	$0.297(32)$
$(3,5)$	$0.019(27)$	$0.0057(59)$	$0.0017(66)$
$(3,6)$	$0.008(27)$	$0.0247(46)$	$0.0090(68)$
$(5,2)$	$0.24(25)$	$0.07(10)$	$0.06(11)$
$(5,3)$	$0.26(30)$	$0.08(11)$	$0.09(13)$
$(5,5)$	$0.076(88)$	$0.024(30)$	$0.023(31)$
$(5,6)$	$0.046(79)$	$0.033(19)$	$0.027(26)$
$(6,2)$	$0.19(17)$	$0.048(63)$	$0.033(74)$
$(6,3)$	$0.25(20)$	$0.101(77)$	$0.075(99)$
$(6,5)$	$0.039(62)$	$0.044(20)$	$0.031(23)$
$(6,6)$	$0.016(56)$	$0.012(15)$	$0.062(21)$
$(7,7)$	$0.006154(96)$	$0.00185(24)$	$0.00185(24)$
$(7,8)$	$0.002073(59)$	$0.002002(43)$	$0.002002(43)$
$(8,7)$	$0.024131(91)$	$0.02260(20)$	$0.02260(20)$
$(8,8)$	$0.12284(25)$	$0.08705(11)$	$0.08705(11)$

Outlook

- Present calculation of $\operatorname{Im}\left(A_{0}\right)$ and ε^{\prime} can be improved with added statistics:
- Reduce statistical error 2 x; gauge evolution running:
- DIRAC Edinburgh
- BNL/RBRC
- KEK
- Blue Waters (soon)
- Step scale to higher energies and thru charm threshold
- Accurate NPR and theoretical control of rescattering effects allow many critical kaon quantities to be computed:
$-K \rightarrow \pi \pi, \Delta I=3 / 2$ and $1 / 2, \varepsilon^{\prime}$
- $m_{K_{L}}-m_{K S}$
- Long-distance parts of ε and $K^{0} \rightarrow \pi^{0} l \bar{l}, K^{+} \rightarrow \pi^{+} \nu \bar{v}$

