# The Anatomy of a Calculation of $\varepsilon'$

The Ninth International Workshop on Numerical Analysis and Lattice QFT (QCDNA)

August 2, 2016 Norman H. Christ Columbia University RBC and UKQCD Collaborations

# Outline

- Overview of CP violation and  $K \rightarrow \pi \pi \operatorname{decay}$
- Lattice calculation of  $K \rightarrow \pi \pi$ :
  - Lellouch-Luscher method
  - Exploit boundary conditions
  - Choice of  $\pi \pi$  operator
  - Non-perturbative renormalization
- Result for  $\varepsilon'$
- Outlook

## **UKQCD** Collaboration

- Edinburgh
  - Peter Boyle
  - Guido Cossu
  - Luigi Del Debbio
  - Julien Frison (KEK)
  - Julia Kettle
  - Richard Kenway
  - Ava Khamseh
  - Brian Pendleton
  - Antonin Portelli
  - Oliver Witzel
  - Azusa Yamaguchi
- Plymouth

   Nicolas Garron
- York (Toronto)
  - Renwick Hudspith

- Southampton
  - Jonathan Flynn
  - Vera Guelpers
  - James Harrison
  - Andreas Juttner
  - Andrew Lawson
  - Edwin Lizarazo
  - Chris Sachrajda
  - Francesco Sanfilippo
  - Matthew Spraggs
  - Tobias Tsang
- CERN – Marina Marinkovic

## **RBC Collaboration**

#### • BNL

- Mattia Bruno
- Chulwoo Jung
- Taku Izubuchi (RBRC)
- Christoph Lehner
- Meifeng Lin
- Amarjit Soni
- RBRC
  - Chris Kelly (Columbia)
  - Tomomi Ishikawa
  - Taichi Kawanai
  - Hiroshi Ohki
  - Shigemi Ohta (KEK)
  - Sergey Syritsyn (SÚSB)

- Columbia
  - Ziyuan Bai
  - Xu Feng
  - Norman Christ
  - Luchang Jin
  - Robert Mawhinney
  - Greg McGlynn
  - David Murphy
  - Jiqun Tu
  - Daiqian Zhang
- Connecticut – Tom Blum

# **CP** violation and

# $K \rightarrow \pi \pi decay$

QCDNA -- August 2, 2016 (5)

#### $K \rightarrow \pi \pi$ and CP violation

• Final  $\pi\pi$  states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires  $A_0$  and  $A_2$  be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left( \frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \qquad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

QCDNA -- August 2, 2016 (6)

 $K^0 - K^0$  mixing

- $\Delta$  S=1 weak decays allow  $K^0$  and  $K^0$  to decay to the same  $\pi \pi$  state.
- Resulting mixing described by Wigner-Weisskopf:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

• Decaying states are mixtures of  $K^0$  and  $K^0$ 

$$|K_{S}\rangle = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$$
$$|K_{L}\rangle = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \text{Indirect CP}$$
violation  
$$QCDNA - \operatorname{August 2, 2016} \qquad (7)$$

#### **CP** violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$
  
$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where:  $\epsilon = \overline{\epsilon} + i \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$ 

Indirect:  $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ Direct:  $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.23) \times 10^{-3}$ 

# $K \rightarrow \pi \pi$ decay from lattice QCD

QCDNA -- August 2, 2016 (9)

## **Low Energy Effective Theory**

 Represent weak interactions by local four-quark Lagrangian

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[ z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}$$

• 
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = (1.543 + 0.635i) \times 10^{-3}$$

- $V_{qq'}$  CKM matrix elements
- $z_i$  and  $y_i$  Wilson Coefficients
- $Q_i$  four-quark operators



#### Four quark operators

#### Currentcurrent



- $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$  $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$ **QCD Penguins** u,c,t( )u,c,t  $Q_3 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum (\bar{q}_{\beta} q_{\beta})_{V-A}$ q = u, d, s $Q_4 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum (\bar{q}_{\beta} q_{\alpha})_{V-A}$ q = u, d, s $Q_5 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum (\bar{q}_{\beta} q_{\beta})_{V+A}$ q = u, d, s $Q_6 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum (\bar{q}_{\beta} q_{\alpha})_{V+A}$ q = u.d.s
- Electro-Weak Penguins
  - $Q_{7} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V+A}$   $Q_{8} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V+A}$   $Q_{9} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\beta})_{V-A}$   $Q_{10} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q} (\bar{q}_{\beta} q_{\alpha})_{V-A}$

QCDNA -- August 2, 2016 (11)

## **Physical** $\pi \pi$ states – Lellouch-Luscher

- Euclidean  $e^{-Ht}$  projects onto  $|\pi\pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so 1<sup>st</sup> or 2<sup>nd</sup> excited state has correct *p*.



- Correctly include  $\pi \pi$  interactions, including leading  $1/L^3$  effects of finite volume.
- Requires extracting signal from non-leading large-*t* behavior:

$$G(t) \sim c_0 e^{-E_0 t} + c_1 e^{-E_1 t}$$

#### **Exploit boundary conditions**

• Remove  $\pi\pi$  states with  $E_{\pi\pi} < M_{K}$ by imposing anti-periodic boundary conditions:

$$2\sqrt{3\left(\frac{\pi}{L}\right)^2 + M_\pi^2} = M_K \quad \Rightarrow L = 5.2 \text{ fm}$$



- I = 2, Repulsive,  $L \rightarrow 5.7$  fm
  - Work with  $\pi^+\pi^+$  state, impose anti-periodic BC on *d* quark
  - $|\pi^+\pi^+\rangle$  unique, charge 2 state, does not mix
- I = 0, Attractive,  $L \rightarrow 4.5$  fm
  - Must distinguish I = 0 state:  $|\pi^+\pi^- > -2|\pi^0\pi^0 > + |\pi^-\pi^+ >$
  - Impose *G*-parity BC,  $G = C e^{i\pi I y}$ ;  $[G, \vec{I}] = 0$

# $\Delta I = 3/2$

QCDNA -- August 2, 2016 (14)

#### $\Delta \mathbf{I} = \mathbf{3/2} \quad \mathbf{K} \rightarrow \pi \, \pi$

- Three operators contribute  $O^{(27,1)}$ ,  $O^{(8,8)}$  and  $O^{(8,8)m}$ .
- Calculated three times:
  - 32<sup>3</sup> x 64, DSDR 1/a=1.38 GeV
  - 48<sup>3</sup> x 96, Iwasaki, 1/a=1.73 GeV
  - 64<sup>3</sup> x 128 Iwasaki, 1/a=2.28 GeV







QCDNA -- August 2, 2016 (15)

#### **Operator Normalization** (Rome-Southampton)

- Effective weak Hamiltonian  $H_W$  contains four-quark operators normalized in the  $\overline{\text{MS}}$  scheme.
- Impose non-perturbative RI scheme on lattice operators:
  - Evaluate Landau-gauge, off-shell Green's functions:



 $\left(\Gamma(p_1, p_2, p_3, p_4)_j\right)_{abcd}^{\alpha\beta\gamma\delta} = \prod_{i=1}^4 \left(\int d^4 x_i e^{ip_i \cdot x_i}\right) \left\langle \overline{q}_a^{\alpha}(x_1) \overline{q}_b^{\beta}(x_2) O_j q_c^{\delta}(x_3) q_d^{\gamma}(x_4) \right\rangle$ 

- Impose normalization conditions:  $tr\{P_i\Gamma_j\} = F_{ij}$
- Use continuum perturbation theory to convert RI to  $\overline{\text{MS}}$

#### **Operator Normalization** (Refinements)

- Use chiral fermions (DWF): good short-distance chiral symmetry controls operator mixing (Mobius with  $L_s=12$ )
- Impose normalization conditions  $\operatorname{tr}\{P_i\Gamma_j\} = F_{ij}$ at infrared-safe, non-exceptional momenta, at a large, Euclidean energy scale  $\mu$ .
- Use a series of finer lattice ensembles to nonperturbatively run  $\mu$  up to 3 GeV (or higher) before converting RI to  $\overline{MS}$ .
- Use twisted boundary conditions to allow matching between ensembles at equal physical momenta without varying momentum direction – freeze O(4)  $a^2$  artifacts.

#### Relate lattice and continuum operators

- Normalize off-shell, gaugefixed 4-quark Greens functions.
- Calculation is performed on 1/a=1.37 GeV lattice.
- Converting to perturbative  $\overline{\text{MS}}$ scheme is unreliable at scale  $\mu \sim 1/a$  !
- Carry out sequence of NP RI matching steps:

$$Z_{(\cancel{q},\cancel{q})}^{\overline{\text{MS}},(\text{latt})}(\mu) = \begin{pmatrix} 0.424(4)(4) & 0 & 0\\ 0 & 0.472(6)(8) & -0.020(5)(21)\\ 0 & -0.067(23)(30) & 0.572(28)(20) \end{pmatrix}$$

 $1.36 \,\text{GeV} < \mu < 3.0 \,\text{GeV}$ 1/a=1.37 GeV  $\mu = 1.136 \text{ GeV}$ 1.37 GeV 1/a=1.73 GeV  $\wedge$ 1/a 1/a=2.28 GeVΛ 8  $1/a = \infty$  $\mu = 3.0 \text{ GeV}$ MS

#### ∆ I = 3/2 – Continuum Results (Tadeusz Janowski)

- Use two new large ensembles to remove a<sup>2</sup> error (m<sub>π</sub>=135 MeV, L=5.4 fm)
  - 48<sup>3</sup> x 96, 1/*a*=1.73 GeV
  - 64<sup>3</sup> x 128, 1/*a*=2.28 GeV
- Continuum results:
  - $\operatorname{Re}(A_2) = 1.50(0.04_{\text{stat}}) (0.14_{\text{syst}}) \times 10^{-8} \text{ GeV}$
  - $\operatorname{Im}(A_2) = -6.99(0.20)_{\text{stat}} (0.84)_{\text{syst}} \times 10^{-13} \text{ GeV}$
- Experiment:  $\operatorname{Re}(A_2) = 1.479(4) \ 10^{-8} \text{ GeV}$
- $E_{\pi\pi} \rightarrow \delta_2 = -11.6(2.5)(1.2)^{\circ}$
- Phys.Rev. **D91**, 074502 (2015)



# $\Delta I = 1/2$

QCDNA -- August 2, 2016 (20)

#### $\Delta I = 1/2 \quad K \to \pi \pi$

• Made much more difficult by disconnected diagrams:



• Many more diagrams (48) than  $\Delta I = 3/2$ :



#### $\Delta I = 1/2 \quad K \Rightarrow \pi \pi$ at threshold (Qi Liu)

- Initial threshold decay calculation successful
  - Re  $(A_0)$ : 25% statistical errors
  - Im  $(A_0)$ : 50% statistical errors



# $\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi - \text{suppress vacuum}$ (Qi Liu & Daiqian Zhang)

• Separate two pion operators in time.



# $\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi - \text{suppress vacuum}$ (Qi Liu & Daiqian Zhang)

Obtain 2x decrease in errors





QCDNA -- August 2, 2016 (24)

# $\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi - \text{suppress vacuum}$ (Qi Liu & Daiqian Zhang)

- Use all-2-all propagators (Trinity/KEK)
  - Use localized sources further suppress vacuum coupling
  - Sum over source location to fix momentum



$$\begin{split} \langle q(x)\overline{q}(y)\rangle &= \langle x|\frac{1}{D_{\text{DWF}}}|y\rangle = \sum_{n=1}^{N_{\text{modes}}} \phi_n(x)\frac{1}{\lambda_n}\phi_n(y)^{\dagger} + \sum_{k=1}^{N_{\text{noise}}} \langle x|\frac{1}{D}\left(I - P_{n \le N_{\text{modes}}}\right)|\eta_k\rangle\eta_k(y)^{\dagger} \\ &= \sum_{l=1}^{N_{\text{modes}}+N_{\text{noise}}} v_l(x)w_l(y)^{\dagger} \\ &\pi_{\text{op}}^{(lj)} = \int d^3x d^3y \ v_l(\vec{y},t)^{\dagger}\psi_{\pi}(\vec{x},\vec{y})w_j(\vec{x},t) \\ y_{\ell-}(\vec{x},\vec{y}) = e^{i\vec{p}q_1\cdot\vec{x}}e^{-|\vec{x}-\vec{y}|/r}e^{i\vec{p}q_2\cdot\vec{y}} \end{split}$$

QCDNA -- August 2, 2016 (25)

#### $\Delta I = \frac{1}{2}$ $K \rightarrow \pi \pi - \text{suppress vacuum}$ (Qi Liu & Daiqian Zhang)



#### $\Delta I = \frac{1}{2} K \rightarrow \pi \pi - A2A$ propagators

- Use  $\gamma^5$  hermiticity to locate few A2A sources at  $H_W$ .
- Avoid (noise)<sup>2</sup> ~  $V^2$





#### $\Delta I = \frac{1}{2} \quad K \Rightarrow \pi \pi - \text{above threshold}$ (Chris Kelly & Daiqian Zhang)

- Use **G-parity** BC to obtain  $p_{\pi} = 205$ MeV (Changhoan Kim, hep-lat/0210003)
  - $G = C e^{i\pi ly}$
  - Non-trivial:

$$\left(\begin{array}{c} u\\ d\end{array}\right) \rightarrow \left(\begin{array}{c} \overline{d}\\ -\overline{u}\end{array}\right)$$

- Gauge fields obey CBC
- Extra I = 1/2, s' quark adds  $e^{-m_{\kappa}L}$  error.
- Must take non-local square root of s-s' determinant
- Tests:  $f_K$  and  $B_K$  agree with no G-parity results.



#### Lattice symmetries – rotation

- Our  $2\pi$  state has 8 possible non-zero relative spatial momenta:  $\pi/L$  (±1, ±1, ±1).
- Project onto the s-wave,  $A_1$  rep., remove  $T_2$ .
  - Splitting of  $A_1$  and  $T_2$  states is caused by finite-volume
  - Results from difference between  $\delta_{l=2}(I=0)$  and  $\delta_{l=0}(I=0)$

- Too small to distinguished numerically,  $\Delta E$ =51 MeV



s-wave ( $A_1$ )  $E_{\pi\pi} - 2E_{\pi} = -0.0371 \pm 0.0075$ 

*d*-wave  $(T_2)$  $E_{\pi\pi} - 2E_{\pi} = -0.0019 \pm 0.0006$ 

QCDNA -- August 2, 2016 (29)

#### Lattice symmetries – translation

- Essential to exploit momentum conservation to avoid nearby states:  $\Delta E = ((2\pi/L)^2 + m_{\pi}^2)^{1/2} m_{\pi}^2 = 165 \text{ MeV}$
- Must work with momentum eigenstates:

$$\chi(l-1) = e^{-ipa}\chi(l)$$
  
where  $\chi(L) = i\sigma_y\chi(0)$   $\chi = \left(\frac{u}{d}\right)$   $0 \le l < L$ 

• Solved by

$$\chi(l) = e^{\frac{2\pi}{L}i(n\pm\frac{1}{4})l} \left(1\pm\sigma_y\right) \begin{pmatrix} a\\b \end{pmatrix} \qquad p = \frac{2\pi}{L}(n\pm\frac{1}{4})l$$

#### **Cubic rotation symmetry broken!**





quark: 0 twists





quark: 2 twists





 Allowed momenta with G-parity links x and y

- Diagonal structure results
- Breaks cubic symmetry

#### **Cubic rotation symmetry broken**

- Will appear only when quarks are separated.
- Use symmetrical  $\pi$  wave function, add two  $\vec{p}_q$  choices

$$(-\frac{\pi}{L}, \frac{\pi}{L}, \frac{\pi}{L}) = (\frac{\pi}{2L}, \frac{\pi}{2L}, \frac{\pi}{2L}) + (\frac{-3\pi}{2L}, \frac{\pi}{2L}, \frac{\pi}{2L}) = (\frac{-\pi}{2L}, \frac{-\pi}{2L}, \frac{-\pi}{2L}) + (\frac{-\pi}{2L}, \frac{3\pi}{2L}, \frac{3\pi}{2L})$$

• Symmetry violation is highly : suppressed for our *r* = 2.



|           | p=(2,2,2)     | p = (-2, 2, 2) | p=(2,-2,2)    | p=(2,2,-2)    |
|-----------|---------------|----------------|---------------|---------------|
| $E_{\pi}$ | 0.19852(85)   | 0.19823(82)    | 0.19839(72)   | 0.19866(88)   |
| $Z_{\pi}$ | 6.167(69)e+06 | 6.081(63)e+06  | 6.183(50)e+06 | 6.170(61)e+06 |

# Calculation of $A_0$ and $\varepsilon'$

QCDNA -- August 2, 2016 (33)

# **Overview of calculation**

- Use 32<sup>3</sup> x 64 ensemble
  - 1/a = 1.3784(68) GeV, L = 4.53 fm.
  - G-parity boundary condition in 3 directions
    - Usual *u d* iso-doublet
    - Unusual s s' with rooted determinant.
  - 216 configurations separated by 4 time units
  - 300 time units discarded for equilibration
  - 900 low modes for all-to-all propagators
  - Solve for  $\pi\pi$  and kaon sources on each of 64 time slices
- Computer resources
  - 6 hours/trajectory BG/Q <sup>1</sup>/<sub>2</sub> rack
  - 20 hours/trajectory BG/Q <sup>1</sup>/<sub>2</sub> rack
  - One year to generate configurations, one year for measurements.

# **Overview of calculation**

- Evolution runs 4x slower than without G-parity
  - Now two distinct flavors (2x)
  - Must use RHMC for both light and strange quarks:

$$\det\{M_{l}M_{l}^{\dagger}\} \rightarrow \left[\det\{M_{u}M_{u}^{\dagger}\}\right]^{\frac{1}{2}} \left[\det\{M_{d}M_{d}^{\dagger}\}\right]^{\frac{1}{2}}$$

• Breakdown of BG/Q measurement

| Lanczos (900 eigen vectors)           | 3.6h                        |
|---------------------------------------|-----------------------------|
| Light quark CG (900 modes deflation)  | 4.6h                        |
| Strange quark CG                      | 2.9h                        |
| Gauge fixing                          | 0.33h                       |
| Computing meson field (900 low modes) | 3.0h                        |
| Pion(s),Kaon spectrum                 | 1.1h                        |
| Type1 contraction                     | 0.79h                       |
| Type2 contraction                     | 0.54h                       |
| Type3 contraction                     | 1.97h                       |
| Type4 contraction                     | 0.50h                       |
| Total                                 | $\sim \!\! 19.5 \mathrm{h}$ |

QCDNA -- August 2, 2016 (35)

# **Overview of calculation**

- Achieve essentially physical kinematics:
  - $M_{\pi} = 143.1(2.0)$
  - $M_{K} = 490.6(2.2) \text{ MeV}$
  - $E_{\pi\pi} = 498(11) \text{ MeV}$
  - $m_{res} = 0.001842(7)$  (90% of physical light quark mass)

# $I = 0, \pi \pi - \pi \pi$ correlator

- Determine normalization of  $\pi\pi$  interpolating operator.
- Determine energy of finite volume, *I*=0,  $\pi\pi$  state:  $E_{\pi\pi}$  = 498(11) MeV.
- Determine *I* = 0 ππ phase shift: δ<sub>0</sub> = 23.8(4.9)(2.2)°.



- $E_{\pi\pi}$  from a correlated 1-state fit,  $6 \le t \le 25$ ,  $\chi^2/dof=1.56(68)$
- Consistent result obtained from 2-state fit,  $3 \le t \le 25$ .
- Leading-term amplitude changes by 5% between these two fits.

# $\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi \text{ matrix}$ elements

- Vary time separation between  $H_W$  and  $\pi\pi$  operator.
- Show data for all  $K H_W$  separations  $t_Q t_K \ge 6$  and  $t_{\pi\pi} t_K = 10, 12, 14, 16$  and 18.
- Fit correlators with  $t_{\pi\pi}$   $t_Q \ge 4$
- Obtain consistent results for  $t_{\pi\pi}$   $t_Q \ge 3$  or 5



## Lattice matrix elements

|                                                   | Conventional |                                                  |                                                      |
|---------------------------------------------------|--------------|--------------------------------------------------|------------------------------------------------------|
|                                                   |              | <b>10 operators</b>                              | Chiral basis                                         |
|                                                   | i            | $\mathcal{M}_{	ext{lat}}^{(i)} 	ext{ (GeV)}^{3}$ | $\mathcal{M}_{ m lat}^{\prime \ (i)} \ ({ m GeV})^3$ |
| Chiral basis                                      | 1            | -0.247(62)                                       | -0.147(242) -( <b>27,1</b> )                         |
|                                                   | 2            | 0.266(72)                                        | -0.218(54)                                           |
| $Q'_1 = 3Q_1 + 2Q_2 - Q_3$                        | 3            | -0.064(183)                                      | 0.295(59)                                            |
| $O' = (2O = 2O \pm O)/5$                          | 4            | 0.444(189)                                       |                                                      |
| $\alpha_2 - (2\alpha_1 - 2\alpha_2 + \alpha_3)/3$ | 5            | -0.601(146)                                      | -0.601(146)                                          |
| $Q'_3 = (3Q_1 - 3Q_2 + Q_3)/5$                    | 6            | -1.188(287)                                      | -1.188(287)                                          |
|                                                   | 7            | 1.33(8)                                          | 1.33(8)                                              |
|                                                   | 8            | 4.65(14)                                         | 4.65(15)                                             |
|                                                   | 9            | -0.345(97)                                       |                                                      |
|                                                   | 10           | 0.176(100)                                       | 1                                                    |

## **RI/SMOM normalization of chiral** operators

- For (8,1) operators must include disconnected diagrams.
- Use  $p_1 = 2\pi (4,4,0,0)/L$  and  $p_2 = 2\pi (0,4,4,0)/L$
- $p_1^2 = p_2^2 = (p_1 p_2)^2 = 1.531 \text{ GeV}^2$
- Use 100 configurations



 $p_2$ 

 $p_2$ 

## **RI/SMOM normalization of chiral** operators

• For (8,1) operators must include disconnected diagrams.



QCDNA -- August 2, 2016 (41)

# **Physical matrix elements**

| 24       |                                                                 | 50                                                                        |
|----------|-----------------------------------------------------------------|---------------------------------------------------------------------------|
| i        | $\mathcal{M}_{\mathrm{SMOM}}^{\prime \ (i)} \ (\mathrm{GeV})^3$ | $\left  -\mathcal{M}_{\overline{	ext{MS}}}^{(i)} 	ext{ (GeV)}^{3}  ight $ |
| 1        | -0.0675(1109)(128)                                              | -0.151(29)(36)                                                            |
| <b>2</b> | -0.156(27)(30)                                                  | 0.169(42)(41)                                                             |
| <b>3</b> | 0.212(52)(40)                                                   | -0.0492(652)(118)                                                         |
| 4        |                                                                 | 0.271(93)(65)                                                             |
| 5        | -0.193(62)(37)                                                  | -0.191(48)(46)                                                            |
| 6        | -0.366(103)(70)                                                 | -0.379(97)(91)                                                            |
| 7        | 0.225(37)(43)                                                   | 0.219(37)(53)                                                             |
| 8        | 1.65(5)(31)                                                     | 1.72(6)(41)                                                               |
| 9        | 37 103 145<br><del>3-3</del>                                    | -0.202(54)(49)                                                            |
| 10       |                                                                 | 0.118(42)(28)                                                             |
|          |                                                                 |                                                                           |

# **Contributions to** *A*<sub>0</sub>

|      | i                  | ${ m Re}(A_0)({ m GeV})$                               | $\operatorname{Im}(A_0)(\operatorname{GeV})$ |   |
|------|--------------------|--------------------------------------------------------|----------------------------------------------|---|
|      | 1                  | $1.02(0.20)(0.07)	imes 10^{-7}$                        | 0                                            |   |
|      | 2                  | $3.63(0.91)(0.28)	imes 10^{-7}$                        | 0                                            |   |
|      | 3                  | $-1.19(1.58)(1.12)	imes 10^{-10}$                      | $1.54(2.04)(1.45)	imes 10^{-12}$             |   |
|      | 4                  | $-1.86(0.63)(0.33)	imes 10^{-9}$                       | $1.82(0.62)(0.32)	imes 10^{-11}$             |   |
|      | 5                  | $-8.72(2.17)(1.80)	imes 10^{-10}$                      | $1.57(0.39)(0.32)	imes 10^{-12}$             |   |
|      | 6                  | $3.33(0.85)(0.22)	imes 10^{-9}$                        | $-3.57(0.91)(0.24)	imes10^{-11}$             |   |
|      | $\overline{7}$     | $2.40(0.41)(0.00)	imes 10^{-11}$                       | $8.55(1.45)(0.00)	imes 10^{-14}$             |   |
|      | 8                  | $-1.33(0.04)(0.00)	imes10^{-10}$                       | $-1.71(0.05)(0.00)	imes 10^{-12}$            |   |
|      | 9                  | $-7.12(1.90)(0.46)	imes10^{-12}$                       | $-2.43(0.65)(0.16)	imes 10^{-12}$            |   |
|      | 10                 | $7.57(2.72)(0.71)	imes 10^{-12}$                       | $-4.74(1.70)(0.44)	imes 10^{-13}$            |   |
|      | Tot                | $4.66(0.96)(0.27)	imes 10^{-7}$                        | $-1.90(1.19)(0.32)	imes 10^{-11}$            |   |
|      |                    |                                                        |                                              |   |
| Re(2 | 4 <sub>0</sub> ) = | $= 4.66(1.00)_{\text{stat}}(1.26)_{\text{sys}} \times$ | 10 <sup>-7</sup> GeV Stat. error NP          | R |
| Exp  | t:                 | 3.3201(0.0018) x 10 <sup>-7</sup>                      | GeV Stat. error ME                           |   |
| Im(/ | 4 <sub>0</sub> ) = | $= -1.90(1.23)_{\text{stat}}(1.08)_{\text{sys}}$ >     | < 10 <sup>-11</sup> GeV                      |   |

# **Systematic errors**

| Description             | Error |
|-------------------------|-------|
| Operator                | 15%   |
| renormalization         |       |
| Wilson coefficients     | 12%   |
| Finite lattice spacing  | 12%   |
| Lellouch-Luscher factor | 11%   |
| Finite volume           | 7%    |
| Parametric errors       | 5%    |
| Excited states          | 5%    |
| Unphysical kinematics   | 3%    |
| Total                   | 27%   |

# **Testing Correctness**

- RHMC: G-parity and "doubled lattice" evolutions agree
- Results for  $f_{\kappa}$  and  $B_{\kappa}$  agree with earlier DSDR values
- Calculation of matrix elements done by two people with largely independent code
- G-parity code applied to △ I = 3/2 amplitudes and results agreed with earlier method
- G-parity and standard RBC/UKQCD code agreed for a free field calculation with large mass and large volume to remove effects of boundary (with anti-periodic time boundary to ensure that loop graphs are non-zero)

#### Error in ensemble generation

• Up and down quark forces computed from the same random numbers after shift by 12 in y-direction.



Correct ensemble 0.512239(3)(7) Incorrect ensemble 0.512239(6)

HQL16 5/24/2016 (46)

# Calculate $\operatorname{Re}(\varepsilon'/\varepsilon)$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_2}{\operatorname{Re}A_2} - \frac{\operatorname{Im}A_0}{\operatorname{Re}A_0}\right]\right\}$$

=  $(1.38 \pm 5.15_{stat} \pm 4.59_{sys}) \times 10^{-4}$ Expt: =  $(16.6 \pm 2.3) \times 10^{-4}$  [2.1  $\sigma$  difference]

- Im( $A_0$ ), Im( $A_2$ ),  $\delta_0$  and  $\delta_2$  from lattice QCD
- $\operatorname{Re}(A_2)$  and  $\operatorname{Re}(A_0)$  from measured decay rates
- $|\varepsilon| = 2.228(0.011) \times 10^{-3}$  from experiment
- $\arg(\varepsilon) = \arctan(2\Delta M_{K}/\Gamma_{S}) = 42.52^{\circ}$  (Bell-Steinberger relation)

## **Improve Operator Renormalization**

 Add 5<sup>th</sup>, dimension-6 (8,1) operator that had been dropped [still missing dimension-6 (8,1) operators which enter at two loops]: [McGlynn arXiv:1605.08807]

 $G_1(x) = \overline{s}(x) \left[ D^{\mu} F^{\mu\nu}(x) \gamma^{\nu} (1 - \gamma^5) \right] d(x)$ 

- $G_1$  vanishes by equations of motion; enters at one loop
- Effect of inclusion ~1%



## **Improve Operator Renormalization**

- Old:
  - Find  $Z_{RI}^{lat \rightarrow RI}$  on original lattice at 1.53 GeV
  - Use PT to find  $Z_{RI}^{RI \rightarrow MS}$  at 1.53 GeV
- New:
  - Find  $Z^{\text{lat} \rightarrow \text{RI}}$  on original lattice at 1.32 GeV
  - Find Z<sup>1.33 GeV→2.29 GeV</sup> on 24<sup>3</sup>x64, 1/a=1.73 GeV
     lattice
  - Use PT to find  $Z^{RI \rightarrow MS}$  at 2.29 GeV
- Test by comparing two RI schemes: gamma-gamma and g/g

## **Improve Operator Renormalization**

- Discard (33) element [large PT coefficient]
- Use ½ the largest difference for error estimate:
  - Old: 18%
  - New: 9%

| $\mu = 1.53 \text{ GeV}$ | $\mu = 2.29 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                       | $\mu = 2.29 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32ID                     | steps<br>caled no ${\cal G}_1$                                                                                                                                                                                                                                                                                                                                                 | steps<br>caled with $G_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.05978(13)              | 0.03948(16)                                                                                                                                                                                                                                                                                                                                                                    | 0.03948(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.300(68)                | 0.080(33)                                                                                                                                                                                                                                                                                                                                                                      | 0.092(35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.363(76)                | 0.153(36)                                                                                                                                                                                                                                                                                                                                                                      | 0.161(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.030(22)                | 0.0083(89)                                                                                                                                                                                                                                                                                                                                                                     | 0.0086(93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.015(20)                | 0.0074(53)                                                                                                                                                                                                                                                                                                                                                                     | 0.0081(77)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.264(87)                | 0.143(23)                                                                                                                                                                                                                                                                                                                                                                      | 0.174(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.44(11)                 | 0.238(25)                                                                                                                                                                                                                                                                                                                                                                      | 0.297(32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.019(27)                | 0.0057(59)                                                                                                                                                                                                                                                                                                                                                                     | 0.0017(66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.008(27)                | 0.0247(46)                                                                                                                                                                                                                                                                                                                                                                     | 0.0090(68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.24(25)                 | 0.07(10)                                                                                                                                                                                                                                                                                                                                                                       | 0.06(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.26(30)                 | 0.08(11)                                                                                                                                                                                                                                                                                                                                                                       | 0.09(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.076(88)                | 0.024(30)                                                                                                                                                                                                                                                                                                                                                                      | 0.023(31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.046(79)                | 0.033(19)                                                                                                                                                                                                                                                                                                                                                                      | 0.027(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.19(17)                 | 0.048(63)                                                                                                                                                                                                                                                                                                                                                                      | 0.033(74)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.25(20)                 | 0.101(77)                                                                                                                                                                                                                                                                                                                                                                      | 0.075(99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.039(62)                | 0.044(20)                                                                                                                                                                                                                                                                                                                                                                      | 0.031(23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.016(56)                | 0.012(15)                                                                                                                                                                                                                                                                                                                                                                      | 0.062(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.006154(96)             | 0.00185(24)                                                                                                                                                                                                                                                                                                                                                                    | 0.00185(24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.002073(59)             | 0.002002(43)                                                                                                                                                                                                                                                                                                                                                                   | 0.002002(43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.024131(91)             | 0.02260(20)                                                                                                                                                                                                                                                                                                                                                                    | 0.02260(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.12284(25)              | 0.08705(11)                                                                                                                                                                                                                                                                                                                                                                    | 0.08705(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | $\begin{array}{l} \mu = 1.53 \; {\rm GeV} \\ 32 {\rm ID} \\ \hline 0.05978(13) \\ 0.300(68) \\ 0.363(76) \\ 0.030(22) \\ 0.015(20) \\ 0.264(87) \\ 0.264(87) \\ 0.264(87) \\ 0.264(87) \\ 0.26(30) \\ 0.26(30) \\ 0.26(30) \\ 0.26(30) \\ 0.076(88) \\ 0.046(79) \\ 0.19(17) \\ 0.25(20) \\ 0.039(62) \\ 0.016(56) \\ 0.002073(59) \\ 0.024131(91) \\ 0.12284(25) \end{array}$ | $\begin{array}{ll} \mu = 1.53 \ {\rm GeV} & \mu = 2.29 \ {\rm GeV} \\ 32 {\rm ID} & {\rm stepscaled \ no \ } G_1 \\ \hline 0.05978(13) & 0.03948(16) \\ 0.300(68) & 0.080(33) \\ 0.363(76) & 0.153(36) \\ 0.030(22) & 0.0083(89) \\ 0.015(20) & 0.0074(53) \\ 0.264(87) & 0.143(23) \\ 0.44(11) & 0.238(25) \\ 0.019(27) & 0.0057(59) \\ 0.008(27) & 0.0247(46) \\ 0.24(25) & 0.07(10) \\ 0.26(30) & 0.08(11) \\ 0.076(88) & 0.024(30) \\ 0.046(79) & 0.033(19) \\ 0.19(17) & 0.048(63) \\ 0.25(20) & 0.101(77) \\ 0.039(62) & 0.044(20) \\ 0.016(56) & 0.012(15) \\ 0.002073(59) & 0.002002(43) \\ 0.024131(91) & 0.02260(20) \\ 0.12284(25) & 0.08705(11) \\ \end{array}$ |

QCDNA -- August 2, 2016 (50)

# Outlook

- Present calculation of  $Im(A_0)$  and  $\varepsilon'$  can be improved with added statistics:
  - Reduce statistical error 2 x; gauge evolution running:
    - DIRAC Edinburgh
    - BNL/RBRC
    - KEK
    - Blue Waters (soon)
  - Step scale to higher energies and thru charm threshold
- Accurate NPR and theoretical control of rescattering effects allow many critical kaon quantities to be computed:

–  $K \rightarrow \pi \pi$  ,  $\varDelta I = 3/2$  and 1/2,  $\varepsilon'$ 

- $-m_{KL}-m_{KS}$
- Long-distance parts of  $\varepsilon$  and  $K^0 \rightarrow \pi^0 l \bar{l}$ ,  $K^+ \rightarrow \pi^+ v \bar{v}$