PERFORMANCE PORTABILITY FOR LATTICE QCD TOWARDS EXASCALE

Meifeng Lin
Computational Science Initiative
Brookhaven National Laboratory

The Ninth International Workshop on Numerical Analysis and Lattice QFT (QCDNA),
University of Edinburgh, August 1-3, 2016

BROOKHIVEN

NATIONAL LABORATORY

OUTLINE

1. Introduction

2. Source-to-Source Compiler
3. OpenMP and OpenACC

4. Summary and Outlook

INTRODUCTION

WHAT IS PERFORMANCE PORTABILITY?

» Performance » What is considered portable?

» High performance code achieved > Inaway, Lattice QCD as an
through platform-specific application is already performance
optimizations (the hero codes). portable: high-level application

> BAGEL (Bluegenes), QUDA (NVIDIA codes built on top of platform
GPUs), MDWF (Intel CPUs), QPhiX specific optimized lower-level APIs
(Intel MICS), ... on current architectures.

- » Chroma, CPS, FUEL, MILC, QLUA, ..
» Portability g

> The ability to have a single version

of the software/algorithm across el @5 | @ | ooe | eum

platforms
» Performance portability? inverter MDWF QOPGDP QUDA
L ENENEN
reasonable/acceptable
performance with a portable code? QLA QamP QmT

> What is acceptable performance? Figuro 1: Tho SGIDAC Layers and the sofware modu archcture.

WHY DO WE CARE ABOUT PERFORMANCE PORTABILITY?

» Asingle version of portable code is easier to maintain.

» Less time spent on integrating the low-level APIs with the application layer, and
more time on physics and algorithm development.

» Question: how much performance are we willing to lose in exchange for
portability?

» The answer may be "0". But looking towards the future, with potentially more
diverse architectures, are we able to continue our current approach?

» Performance portability is also one of the requirements for the US DOE exascale
project.

DOE Centers of Excellence Performance Portability
Meeting

April 19-21, 2016
Glendale, Arizona

Source: https://asc.llnl.gov/DOE-COE-Mtg-2016/

WAYS TO PERFORMANCE PORTABILITY?

Various tools are under development for performance’ portability.

» High-level programming abstractions:
> RAJA (LLNL)

Kokkos (Sandia)

SYCL (Kronos)

C++ AMP (Microsoft)

vyvyvyy

» Source-to-source compilers/code generators:
> JIT: QDP-JIT (JLab/Frank Winter)
> Nim: QEX (ANL/James Osborn)
> R-Stream compiler (Reservoir Labs)
» High-level programming directives
> OpenMP
> OpenACC

Question: should we design our new software with portability in mind first and then
optimize for performance later, or the other way around? Can we design our software
with performance portability in mind from the beginning?

TYour performance mileage may vary.

SOURCE-TO-SOURCE COMPILER

PARALLELIZATION AND OPTIMIZATION OF THE DOMAIN WALL DSLASH WITH THE

R-STREAM SOURCE-TO-SOURCE COMPILER

DOE SBIR project. Work done with:

» Stony Brook University
> Eric Papenhausen (CS PhD Student)

» Reservoir Labs Inc.

> M. Harper Langston
» Benoit Meister
» Muthu Baskaran

» BNL

» Chulwoo Jung
> Taku Izubuchi

» In Lattice QCD (LQCD) simulations, the most computation intensive part is the
inversion of the fermion Dirac matrix, M.

» In quark propagator calculation, need to solve M¢ = b.
> In gauge ensemble generation, need to solve MT My = n.
» The recurring component of the matrix inversions is the application of the Dirac
matrix on a fermion vector.

» For Wilson fermions, the Dirac matrix can be written as
M=1-kD, M

up to a normalization factor, where « is the hopping parameter, and D is the
derivative part of the fermion matrix, the Dslash operator.

» The matrix-vector multiplication in LQCD essentially reduces to the application of
the Dslash operator on a fermion vector.
» The motivations for this work are
> to see if source-to-source code generators can produce reasonably performant code if
only given a naive implementation of the Dslash operator as an input;

> to investigate optimization strategies in terms of SIMD vectorization, OpenMP
multithreading and multinode scaling with MPI.

THE DOMAIN WALL DSLASH OPERATOR

» The Domain Wall (DW) fermion matrix can be written as
ZT,s;x",s8

1
MDW/) = (4 - WL5)5T,7I/§S’S/ - ngf;,(sS’S/ + Dis’émﬂll’ (2)

where ms is the domain wall height, DW, is the Wilson Dslash operator, and D
is the fermion mass term that couples the two boundaries in the 5th d|men5|on

1
D?e’ = 75 [(1 - 75)5S+1,S’ + (1 + 75)55‘—1,3’ - 253,3’}
o
+7f [(1 = 75)8s,0,—180,5 + (1 +75)05,001,—1,5] - 3)

» Most FLOPs are in the 4D derivative term (DWF 4D Dslash) in Eq.(2): 1320 flops per
site.

» < focus of our optimizations.

R-STREAM SOURCE-TO-SOURCE COMPILER

» The R-Stream source-to-source compiler developed by Reservoir Labs Inc. takes
serial C programs as inputs and can perform optimizations in terms of

parallelization, memory management, data locality etc. to target a range of
different architectures.

Inputs Outputs
Forward in time 5

polyhedral
mapper
multiple

mappings

Generalized Dependence Graph

Machine
Model

OpenMP

(Poly
Tilera
ralsmg \owerlng
3 0 Code
Serial Static Single Assignment Form STI Cell
m Y Y Generators|
C code
multiple multiple
optimizations optimizations

T scalar A

optimizations

scalar
optimizations

Clearspeed

Figure 1: R-Stream workflow. Image from Papenhausen et al,, VISSOFT15 Proceedings.

#pragma rstream map
void matmult_c(real_t Ai[NSIZE]J[NSIZE],
real_t Bi[NSIZE][NSIZE],
real_t Ci[NSIZE][NSIZE]) {
int i, j, k;
for (i = 0; i < NSIZE; i++) {
for (j = 0; j < NSIZE; j++) {
for (k = 0; k < NSIZE; k++) {
Cili1[j] += Ai[il[k] * Bi[k][j];
P}
}

» Matrix multiplication example
written in C; not parallelized.

» Generated code has loop tiling and
OpenMP multithreading.

tream OpenMP Output

void matmult_c(real_t (+ Ai)[1024],
real_t (* Bi)[1024], real_t (* Ci)
[1024]) {
int i;
#pragma omp parallel for private(i)
for (i = 0; i <= 15; i++) {

int _t1;

int j;

_tl = -1+ 15 >> 4;

for (3 = - i+ 15 >> 4; j <= _tl; j
++) {
int k;
for (k = 0; k <= 1; k++) {

int i1;
for (i1 = 0; il <= 511; il++) {

int j1;

for (j1 = 0; j1 <= 1023; ji++) {
int ki1;

for (k1 = 0; k1 <= 63; kl++) {
Ci[512 » k + i1][64 » i + (1024 =*
j o+ k1)1 = ci[512 = k +

111064 * i + (1024 * j + k1)] +
Ai[512 = k + i1]1[j1] =

Bi[j11[64 * i + (1024 * j + k1)

1;
P}
}

R-STREAM TRANSFORMATION EXAMPLE
Input Code Example

R-STREAM TRANSFORMATION OF THE DW 4D DSLASH

» The input code we used is the unoptimized noarch implementation of the
Dslash in CPS.

» Most straightforward implementation, direct transcription of the Dslash
definition.

» Some manual code transformation was needed to get R-Stream to parse the
code:

> Delinearized array access: 1D array — multidimensional array
> Removal of the modulo statements: introduced boundary padding.

» With these changes, R-Stream was able to produce generated code. However, the
resulting code did not give very good performance. Some hand tuning was
required.

SINGLE INSTRUCTION MULTIPLE DATA (SIMD)

» Modern CPUs, both by Intel and AMD, support vector instructions.
SSE: 128-bit vector register, capable of 2 DP/4 SP flops per cycle.

AVX: 256-bit vector register, capable of 4 DP/8 SP flops per cycle.
AVX2: AVX with fused multiply-add (FMA).

AVX512: Intel KNL, Skylake, ...

v

vyvyy

» Data layout is the key: Data in one SIMD operation need to fit into the same
vector register. With AVX, the following instructions should be able to execute in
one clock cycle.

double a[4], b[4], c[4];
for (int n=0; n<4; n++) c[n] = a[n] + b[n];

[a0] [a] | a@ | a@] |

+

[ool | bl | bl | b@E |

» There also cannot be any data dependencies among the SIMD data.

» In DWF 4D Dslash, the s coordinates are completely independent. < Good place
to vectorize.

DWF DATA LAYOUT

» We chose the following data layout to enable us to vectorize in the fifth (s)
dimension.

| 4D even-odd checkerboardl | |

I\
1[31[41INS/2][2]

T/

» [n one AVX register, with single precision, the data mapping goes

ChifNX*NY*NZ*NT/2][

‘ s=0, Re | s=0, Im | s=2, Re | s=2,Im | s=4, Re | s=4,Im | s=6, Re | $=6, Im ‘ AVX Register

» SIMD intrinsics were used to implement the vectorized DWF Dslash.

» Caveat: Ls is restricted to be multiples of 8 in single precision, and multiples of 4
in double precision.

OTHER OPTIMIZATIONS

» FMA: AVX2 provides intrinsics to perform fused multiply-add. However, we found
that simply turning on -mfma compiler option for gcc gave us the same
performance boost as using intrinsics.

» Improved data locality:

> We studied tiling to increase memory reuse, but didn’t gain any performance.
> We also explored using a space-filling curve, implemented as the Z-curve, to improve
data locality, but the performance boost was minimal.

» Prefetching: Before the computation of each stencil operation, prefetch data
needed for the next stencil. Led to 10% performance improvement.

» On Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz processor (Haswell), with 8* x 8
lattice, we achieved 34% peak single-core performance in single precision.

Optimization | AVX2 Tiling Z-Curve Prefetching
time [ms] 0.86 0.92 1.0 0.76
Gflops 25.1 23.5 21.6 28.5

MULTITHREADING WITH OPENMP

» Within the node, we use OpenMP for multithreading.
» Three strategies have been explored:

>

Simple Pragma: Thread the outer loop, usually the ¢ loop.

— Parallelism is limited by the ¢ dimension size, won't scale well in many-core systems.
Compressed Loop: Compress the nested loops into one single loop.

Explicit Work Distribution: Similar to Compressed Loop, but explicitly assign work to
each thread.

#pragma omp parallel

int
int
int
int
int

nthreads = omp_get_num_threads();
tid = omp_get_thread_num();

work = NT=NZxNYx(NX/2)/nthreads;
start = tid * work;

end = (tid+1) * work;

for(lat_idx = start; lat_idx < end; lat_idx++)

Performance was measured on LIRED, with dual-socket Haswell per node @ 2.6 GHz
(24 cores).

» 84 x8

Num. Threads Simple Pragma Compressed Loop Explicit Dist.

1 28.4 GF/s 28.0 GF/s 28.0 GF/s
2 51.5 GF/s 54.1 GF/s 54.1 GF/s
4 90.1 GF/s 90.1 GF/s 90.1 GF/s
8 135.2 GF/s 135.2 GF/s 144.2 GF/s
16 127.2 GF/s 180.2 GF/s 154.4 GF/s

> 163 x 32 x 8

Num. Threads Simple Pragma Compressed Loop Explicit Dist.

1 26.9 GF/s 26.5 GF/s 26.8 GF/s
2 54.5 GF/s 52.0 GF/s 52.8 GF/s
4 100.3 GF/s 96.1 GF/s 100.3 GF/s
8 168.8 GF/s 160.9 GF/s 168.8 GF/s

16 197.7 GF/s 182.1 GF/s 192.2 GF/s

» Three threading approaches result in similar performances, except when the
problem size is small, Simple Pragma doesn'’t scale as well.

» Surprisingly, the performance does not deteriorate with a much larger lattice size
< possible indication of poor cache reuse.

» Volume comparison:
Left - Compressed Loop. Right - Explicit Work Distribution.

200 200 5
180 a 180
a
160 o 160 8
v v
140 e 140 o
2 120 2 120
o °
& 100 M & 100 4
o o]
80 §3x8x8 o 80 §3x8x8 o
8x16x8 v 8x16x8 v
60 a , 8°x32x8 60 8 , 8°x32x8
| 8°x16x32x8 e 8°x16x32x8
40 8x16x32x8 40 8x162x32x8
8 a 8 a
20 LE 16°x32x8 20 L8 16°x32x8
0 5 10 15 20 0 5 10 15 20
Num. of OpenMP Threads Num. of OpenMP Threads

We also found that that binding OpenMP threads to the processors can improve the
OpenMP performance a lot. With gcc, this is done through
export OMP_PROC_BIND=true 19

INTERNODE COMMUNICATION

» We use QMP for communications between nodes.

» The communication pattern is illustrated in the following. There is blocking for
each transfer sequence.

» The best performance is obtained with 2 MPI processes per node (1 MPI process
per socket, improved data locality).

» With each MPI process, a number of threads equal to the number of compute
cores are used.

» We dedicate one thread (the master thread) to do the communications, and the
rest of the threads for computation.

» Do bulk computation first while waiting for the communication to complete, then
do the boundary computation.

MULTINODE PERFORMANCE

>

Strong scaling study of a

323 x 64 x 8 calculation was
performed on LIRED, with
dual-socket Intel Haswell CPUs and
Mellanox 56 Gigabit FDR
interconnect.

The performance scales well up to 4
nodes, and scales sublinearly from 8
to 16 nodes.

After 4 nodes, the total time is
dominated by the communication
time.

Bulk computation itself scales well
with the number of nodes.

Rediscovered the old truth:
Communication is the bottleneck for
strong scaling!

Total GFlops

Time [ms]

3500

3000

2500

2000

1500

1000

500

45

Strong Scalin ,32°x64x8 O
Perfect Scaling ©

2 4 6 8 10 12 14 16
Num. of Nodes

40
35
30
25
20
15
10

Bulk Time —8—
Boundary Time —&
Comm. Time

2 4 6 8 10 12 14 16
Num. of Nodes

SOURCE-TO-SOURCE COMPILER SUMMARY

» |t is difficult to produce portable high-performing code with one input code.

» With manual optimizations, we have gained good performance but lost
portability (intrinsics).

22

OPENMP AND OPENACC

» Compiler directives provide another way to achieve (performance) portability.

» OpenMP and OpenACC are two programming directive standards that have
introduced support for both CPUs and GPUs.

» OpenMP supports offloading calculations to accelerators through a target
clause.

» OpenACC does this through a compiler target option (-ta=tesla, -ta=multicore,
etc.).

» Prescriptive vs. Descriptive:

» OpenMP is prescriptive: you tell the compilers exactly what to do.
» OpenACC is descriptive: you tell the compiler what you want to do and the compiler
does the optimization for you. Example, kernels.

» Data movement:

» Both support data clauses to move data between host and devices.
» OpenACC also supports unstructured data movement: enter data, exit data.

24

OPENMP VS OPENACC

extern void init(float#, float*, int);
extern void output(floats, int);

void vec_mult(int N)

{

int i;

float p[N], vi[N], v2[N];

init(vl, v2, N);

#pragma omp target data map(to:vi[@:N],
v2[0:N]) map(from:p[0:N])
#pragma omp parallel for private(i)

for (i=0; i<N; i++)
plil = vi[i] = v2[i];
output(p, N);

Listing 1: OpenMP example.

extern void init(floatw, floatw, int);

extern void output(floatw, int);

void vec_mult(int N)

{

int i;

float p[N], vi[N], v2[N];

init(vl, v2, N);

#pragma acc data copyin(vi[@:N],v2[0:N
1) copyout(p[0:N])

#pragma acc kernels

for (i=0; i<N; i++)

plil = vi[i] = v2[i];
output(p, N);

Listing 2: OpenACC example.

25

OFFLOAD COMPILER SUPPORT

» OpenMP:
» GCC: v61 has full C/C++ support for OpenMP 4.5.
> Intel: v16 has support for OpenMP 4.0.
» (Cray: supports OpenMP 4.0

> Clang/LLVM: v3.8 supports some OpenMP 4.0 and 4.5
>

» OpenACC:
» PGl (NVIDIA)
» Cray
» GCC61
> Research compilers: OpenUH (U of Houston), OpenARC (ORNL)
» Targets/Architectures (to be) supported:
» AMD and NVIDIA GPUs
Intel MICs and Xeons
IBM Power
ARM
FPGA

vyvyVvYyy

26

RECENT HACKATHON EXPERIENCE

» Goal: to make Grid? portable to GPUs
» Approach: use OpenACC

» Venue: University of Delaware

» Team: Chulwoo Jung, Zhihua Dong,

Chris Kelly, ML, Mathias Wagner
(NVIDIA), Mathew Colgrove (PGI)

Courtesy: University of Delaware

UDEL HACKTHON

5DSpeedsters

e Higgs Boson is the origin of mass in the Universe? WRONG! It's mainly QCD.

e QCD, Quantum Chromodynamics, is the theory of the strong force; as the name suggests, it's strong,
much stronger than electromagnetism, gravity and the weak force.

e The QCD binding energy comprises over 99% of the mass to the proton and neutron (and basically
every other composite particle).

2p Boyle, A. Yamaguchi, A. Portelli, G. Cossu, arXiv:1512.03487

» Grid makes use of a lot of C++11 features, which caused some problems with the
PGI compiler, even for CPUs.
» std random number generator hangs. < boost:random
» std:thread not supported. < Got rid of it.
» Intrinsics not supported. < Replaced with generic vector types.
» Offloading to GPUs is complicated by the user-defined data types. Any lattice
wide operations (offloadable) will involve Spin Color Vectors.
> axpy example:

template<class sobj,class vobj> strong_inline
void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){

const vobj *xdata = x._odata.data();
const vobj *ydata = y._odata.data();
vobj *retdata = ret._odata.data();

#pragma acc data \
copyin(a,xdata[0:size],ydata[0:size]) \
copyout(retdata[@:size])

{

#tpragma acc kernels

for(int ss=0;ss<sites;ss++) retdatal[ss] = a*xdatal[ss]+ydatalss];
}

» [t runs on GPUs but gives the incorrect results. < Issues with deep copy?

a=-1
xdata[size-1]S {V<4>{v<3>{<(-143.009,-141.73),(-121.144,-128.706)>,<(-131.458,-117.319),...}}}
ydata[size-1]S {V<4>{V<3>{<(-29.8989,-48.3114),(-57.2752,-29.1623)>,<(-43.3413,-41.3039),...}}}

retdata[size-1]S {V<4>{V<3>{<(141.046,90.0025),(91.2382,113.036)>,<(110.604,72.2897),...}}}

» Current OpenACC standard does not support deep copy.
» For user-defined data types (arrays of structures), simple copy will result in

incorrect pointer dereferencing.

struct {

int *x; // dynamic size 2
} oA // dynamic size 2
#pragma acc data copy (A[0:2])

===y
\

Y, 18
- N\ pa

|
4

——
[[x]
Z

—
=i)
T

(a) Shallow copy

Source: Www.0penacc.org

» Work around: PGl compiler provides
the "managed” option to use NVIDIA
unified memory.

» Pre-Pascal: The maximum size of the
unified memory space is limited by the
GPU memory.

» Pascal: Allows oversubscription of GPU
memory. Unified memory can be as big
as host memory.

struct {

int *x; // dynamic size 2
) o*A; // dynamic size 2
#pragma acc data copy (A[0:2])

oevcaron| [0 (1] [moroor] [0 [
: ;
[(Deep copy |

(b) Deep copy

29

MAYBE WE JUST WORKED ON THE WRONG APPLICATION!

Node 03 DiracOp::InvCg(V*,V*,F,F*): flops_per_site=11444

» Took an hour to get CPS to run on Node 0: Diraclp:: InvCa(V*,V*,F,F*): True Tresi / lsrcl = 7,977347e-08, iter = 70
Nods 0: HatIni(Ve, . F#) hatbcbats InvEa(): 0.0000006+00 Flops /1. 53881evo1 seco
H H nds = 0,000000e+00 MFlops
G PUS sim p I'y by usl ng ke rn el s an d Node 03 MatInv(¥*,v*, F') After InvCg(): 0,000000e+00 flops /4,66539%e-02 seconds
= 0,000000e+00 MFlops
-ta=tesla:managed. Node 0: 1attice:Comvert(): 0.0000006+00 Flops /3.99B871e-03 seconds = 0000000+
00 HFlops
==45000== Profiling result:
Tine(z) Time Calls fvg Hin Hax Nane
49,82¢ 2,787%4s 630 4,4253ms 4,3899ms 4,5032ms wilson_dslash_blk_dag
0.87_gpu
B f h f X 39,03 2.74364s 620 4,4252ns 4,3887ns 4.49%5ns uilson_dslash_blk_dag
> _85_gpu
ut of course the performance Is 0,717 39.635ms 2 LofTles 180T L0020 wilson s 175 ceu
o ; : 0217 12.00dws 5000 2.4000us 2.2080us 3.8080us [CUDA memcpy HtoD!
poor. Spen ds 99% of time doi ng data 0,207 11.022ns 5000 2,2040us 2.1120us 5.6000us [CUDA memcpy DtoH]
0,032 1,8704ns 1 1,8704ns 1,8704ns 1,870dms wilson_mdag_97_gpu
movement. ==45000== Unified Menory profiling result:
Device "Tesla K20kn (0
ount. fvg Size Hin Size Hax Size Total Size Total Tine Name
2338 701,21KB 4,0000KB 3,0000MB 1,563473GB 927,6438ms Host To Device
385859 4,0000KR 4,0000KR 4,0000KR 1,471935GR 4,828694s Jevice To Host
i i . i ==45000== API calls:
> Not a fair comparison: CPS is mostly Toe) e Gl he M e M
) 75,667 5.60025s 5044 1,1103ns 1,6610us 4,5472ns cuStreamSunchronize
C, and doesn’'t have the same 1483 1102465 1272 866.72us 13,23%us 14,306ms culaunchkernel
. 4,502 332,9%ms 1 332,%ms 332,96ms 332,96ms cuDevicePrimaryCtxRet
ain
challenges as Grid. 1,267 94,855ms 1 94.8%ns 94,85ms 94,8ms culevicePrinaryCtiRel
ase
0,93 68.858ms 1 68,85ns 68,858ns 68.858ms culfoduleLoadlata
0,597 43.809ms 110 39,%us 3L.21Bus 34.435ms cullendllochanaged
0,502 37,167ms 5000 7,4330us 3,8970us 449,9%us culemcpyDtoHAsync
0,462 33.712ns 1 33,712ms 33,712ns 33,712ms cuMemHostAlloc
0.45¢ 33.38lms 5000 6,6760us 4,i240us 80.54Bus cubemcpuHtolisunc

0,182 12,987ns 5000 2,5970us 1,7270us 73,035us cuEventRecord
0,172 12,458ns 17836 B%6ns 188ns 983.57us cuPointerGetAttribute

SUMMARY AND OUTLOOK

SUMMARY AND OUTLOOK

Summary

» Achieving performance portability is important for exascale.

» Ongoing efforts on using source-to-source compilers and programming directives
to make existing LQCD codes performance portable.

» Challenges still remain to use compiler directives in C++ applications.

Outlook
» With Unified Memory and/or support for deep copy, it is possible to get existing
C++ LQCD codes to run on GPUs.

» Should we design the next-generation of LQCD codes with performance
portability in mind from the get-go?

» We should try to influence the directive standards to better support our needs.
< BNL is now an OpenACC member organization.

32

	Introduction
	Source-to-Source Compiler
	OpenMP and OpenACC
	Summary and Outlook

