
performance portability for lattice qcd towards exascale

Meifeng Lin
Computational Science Initiative
Brookhaven National Laboratory

The Ninth International Workshop on Numerical Analysis and Lattice QFT (QCDNA),
University of Edinburgh, August 1-3, 2016

outline

1. Introduction

2. Source-to-Source Compiler

3. OpenMP and OpenACC

4. Summary and Outlook

2

introduction

what is performance portability?

I Performance
I High performance code achieved

through platform-specific
optimizations (the hero codes).

I BAGEL (Bluegenes), QUDA (NVIDIA
GPUs), MDWF (Intel CPUs), QPhiX
(Intel MICs), ...

I Portability
I The ability to have a single version

of the software/algorithm across
platforms

I Performance portability?
I Is it possible to achieve

reasonable/acceptable
performance with a portable code?

I What is acceptable performance?

I What is considered portable?
I In a way, Lattice QCD as an

application is already performance
portable: high-level application
codes built on top of platform
specific optimized lower-level APIs
on current architectures.

I Chroma, CPS, FUEL, MILC, QLUA, ...

4

why do we care about performance portability?

I A single version of portable code is easier to maintain.
I Less time spent on integrating the low-level APIs with the application layer, and
more time on physics and algorithm development.

I Question: how much performance are we willing to lose in exchange for
portability?

I The answer may be ”0”. But looking towards the future, with potentially more
diverse architectures, are we able to continue our current approach?

I Performance portability is also one of the requirements for the US DOE exascale
project.

Source: https://asc.llnl.gov/DOE-COE-Mtg-2016/

5

ways to performance portability?

Various tools are under development for performance1 portability.

I High-level programming abstractions:
I RAJA (LLNL)
I Kokkos (Sandia)
I SYCL (Kronos)
I C++ AMP (Microsoft)
I ...

I Source-to-source compilers/code generators:
I JIT: QDP-JIT (JLab/Frank Winter)
I Nim: QEX (ANL/James Osborn)
I R-Stream compiler (Reservoir Labs)

I High-level programming directives
I OpenMP
I OpenACC

Question: should we design our new software with portability in mind first and then
optimize for performance later, or the other way around? Can we design our software
with performance portability in mind from the beginning?

1Your performance mileage may vary.

6

source-to-source compiler

parallelization and optimization of the domain wall dslash with the
r-stream source-to-source compiler

DOE SBIR project. Work done with:

I Stony Brook University
I Eric Papenhausen (CS PhD Student)

I Reservoir Labs Inc.
I M. Harper Langston
I Benoit Meister
I Muthu Baskaran

I BNL
I Chulwoo Jung
I Taku Izubuchi

8

motivation

I In Lattice QCD (LQCD) simulations, the most computation intensive part is the
inversion of the fermion Dirac matrix, M .

I In quark propagator calculation, need to solve Mφ = b.
I In gauge ensemble generation, need to solve M†Mχ = η.

I The recurring component of the matrix inversions is the application of the Dirac
matrix on a fermion vector.

I For Wilson fermions, the Dirac matrix can be written as

M = 1 − κD, (1)

up to a normalization factor, where κ is the hopping parameter, and D is the
derivative part of the fermion matrix, the Dslash operator.

I The matrix-vector multiplication in LQCD essentially reduces to the application of
the Dslash operator on a fermion vector.

I The motivations for this work are
I to see if source-to-source code generators can produce reasonably performant code if

only given a naive implementation of the Dslash operator as an input;
I to investigate optimization strategies in terms of SIMD vectorization, OpenMP

multithreading and multinode scaling with MPI.

9

the domain wall dslash operator

I The Domain Wall (DW) fermion matrix can be written as

MDW
x,s;x′,s′ = (4 − m5)δx,x′δs,s′ −

1
2

DW
x,x′δs,s′ + D5

s,s′δx,x′ , (2)

where m5 is the domain wall height, DW
x,x′ is the Wilson Dslash operator, and D5

ss′
is the fermion mass term that couples the two boundaries in the 5th dimension,

D5
ss′ = −

1
2
[
(1 − γ5)δs+1,s′ + (1 + γ5)δs−1,s′ − 2δs,s′

]
+

mf

2
[
(1 − γ5)δs,Ls−1δ0,s′ + (1 + γ5)δs,0δLs−1,s′

]
. (3)

I Most FLOPs are in the 4D derivative term (DWF 4D Dslash) in Eq.(2): 1320 flops per
site.

I ↪→ focus of our optimizations.

10

r-stream source-to-source compiler

I The R-Stream source-to-source compiler developed by Reservoir Labs Inc. takes
serial C programs as inputs and can perform optimizations in terms of
parallelization, memory management, data locality etc. to target a range of
different architectures.

Serial
C code

Static Single Assignment Formparsing

raising lowering

Generalized Dependence Graph
(Polyhedral representation)

Code
Generators

OpenMP

Tilera

STI Cell

ClearSpeed

CUDA

Machine
Model

Inputs Outputs

polyhedral
mapper

multiple
mappings

scalar
optimizations

multiple
optimizations

scalar
optimizations

multiple
optimizations

MPA

Forward in time

Figure 1: R-Stream workflow. Image from Papenhausen et al., VISSOFT15 Proceedings.

11

r-stream transformation example

Input Code Example

#pragma rstream map
void matmult_c(real_t Ai[NSIZE][NSIZE],

real_t Bi[NSIZE][NSIZE],
real_t Ci[NSIZE][NSIZE]) {

int i, j, k;
for (i = 0; i < NSIZE; i++) {
for (j = 0; j < NSIZE; j++) {

for (k = 0; k < NSIZE; k++) {
Ci[i][j] += Ai[i][k] * Bi[k][j];

} } }
}

I Matrix multiplication example
written in C; not parallelized.

I Generated code has loop tiling and
OpenMP multithreading.

R-Stream OpenMP Output

void matmult_c(real_t (* Ai)[1024],
real_t (* Bi)[1024], real_t (* Ci)
[1024]) {

int i;
#pragma omp parallel for private(i)
for (i = 0; i <= 15; i++) {

int _t1;
int j;
_t1 = - i + 15 >> 4;
for (j = - i + 15 >> 4; j <= _t1; j

++) {
int k;
for (k = 0; k <= 1; k++) {
int i1;

for (i1 = 0; i1 <= 511; i1++) {
int j1;
for (j1 = 0; j1 <= 1023; j1++) {
int k1;
for (k1 = 0; k1 <= 63; k1++) {
Ci[512 * k + i1][64 * i + (1024 *
j + k1)] = Ci[512 * k +
i1][64 * i + (1024 * j + k1)] +

Ai[512 * k + i1][j1] *
Bi[j1][64 * i + (1024 * j + k1)

];
} }} }} }

}

12

r-stream transformation of the dw 4d dslash

I The input code we used is the unoptimized noarch implementation of the
Dslash in CPS.

I Most straightforward implementation, direct transcription of the Dslash
definition.

I Some manual code transformation was needed to get R-Stream to parse the
code:

I Delinearized array access: 1D array→ multidimensional array
I Removal of the modulo statements: introduced boundary padding.

I With these changes, R-Stream was able to produce generated code. However, the
resulting code did not give very good performance. Some hand tuning was
required.

13

single instruction multiple data (simd)

I Modern CPUs, both by Intel and AMD, support vector instructions.
I SSE: 128-bit vector register, capable of 2 DP/4 SP flops per cycle.
I AVX: 256-bit vector register, capable of 4 DP/8 SP flops per cycle.
I AVX2: AVX with fused multiply-add (FMA).
I AVX512: Intel KNL, Skylake, ...

I Data layout is the key: Data in one SIMD operation need to fit into the same
vector register. With AVX, the following instructions should be able to execute in
one clock cycle.
double a[4], b[4], c[4];
for (int n=0; n<4; n++) c[n] = a[n] + b[n];

a[0] a[1] a[2] a[3]

b[0] b[1] b[2] b[3]

+

I There also cannot be any data dependencies among the SIMD data.
I In DWF 4D Dslash, the s coordinates are completely independent. ↪→ Good place
to vectorize.

14

dwf data layout

I We chose the following data layout to enable us to vectorize in the fifth (s)
dimension.

chi[NX*NY*NZ*NT/2][2][3][4][NS/2][2]

4D even-odd checkerboard

real/complexs even/odd

color/spin

I In one AVX register, with single precision, the data mapping goes

s=0, Re s=0, Im s=2, Re s=2, Im s=4, Re s=4, Im s=6, Re s=6, Im AVX Register

I SIMD intrinsics were used to implement the vectorized DWF Dslash.

I Caveat: Ls is restricted to be multiples of 8 in single precision, and multiples of 4
in double precision.

15

other optimizations

I FMA: AVX2 provides intrinsics to perform fused multiply-add. However, we found
that simply turning on -mfma compiler option for gcc gave us the same
performance boost as using intrinsics.

I Improved data locality:
I We studied tiling to increase memory reuse, but didn’t gain any performance.
I We also explored using a space-filling curve, implemented as the Z-curve, to improve

data locality, but the performance boost was minimal.

I Prefetching: Before the computation of each stencil operation, prefetch data
needed for the next stencil. Led to 10% performance improvement.

I On Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz processor (Haswell), with 84 × 8
lattice, we achieved 34% peak single-core performance in single precision.

Optimization AVX2 Tiling Z-Curve Prefetching
time [ms] 0.86 0.92 1.0 0.76
Gflops 25.1 23.5 21.6 28.5

16

multithreading with openmp

I Within the node, we use OpenMP for multithreading.
I Three strategies have been explored:

I Simple Pragma: Thread the outer loop, usually the t loop.
↪→ Parallelism is limited by the t dimension size, won’t scale well in many-core systems.

I Compressed Loop: Compress the nested loops into one single loop.
I Explicit Work Distribution: Similar to Compressed Loop, but explicitly assign work to

each thread.

#pragma omp parallel
{
int nthreads = omp_get_num_threads();
int tid = omp_get_thread_num();
int work = NT*NZ*NY*(NX/2)/nthreads;
int start = tid * work;
int end = (tid+1) * work;
for(lat_idx = start; lat_idx < end; lat_idx++)
......

}

17

openmp performance

Performance was measured on LIRED, with dual-socket Haswell per node @ 2.6 GHz
(24 cores).

I 84 × 8

Num. Threads Simple Pragma Compressed Loop Explicit Dist.
1 28.4 GF/s 28.0 GF/s 28.0 GF/s
2 51.5 GF/s 54.1 GF/s 54.1 GF/s
4 90.1 GF/s 90.1 GF/s 90.1 GF/s
8 135.2 GF/s 135.2 GF/s 144.2 GF/s
16 127.2 GF/s 180.2 GF/s 154.4 GF/s

I 163 × 32 × 8:

Num. Threads Simple Pragma Compressed Loop Explicit Dist.
1 26.9 GF/s 26.5 GF/s 26.8 GF/s
2 54.5 GF/s 52.0 GF/s 52.8 GF/s
4 100.3 GF/s 96.1 GF/s 100.3 GF/s
8 168.8 GF/s 160.9 GF/s 168.8 GF/s
16 197.7 GF/s 182.1 GF/s 192.2 GF/s

18

openmp summary

I Three threading approaches result in similar performances, except when the
problem size is small, Simple Pragma doesn’t scale as well.

I Surprisingly, the performance does not deteriorate with a much larger lattice size
↪→ possible indication of poor cache reuse.

I Volume comparison:
Left - Compressed Loop. Right - Explicit Work Distribution.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20

G
F

lo
ps

Num. of OpenMP Threads

83x8x8
83x16x8
83x32x8

82x16x32x8
8x162x32x8

163x32x8
 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20
G

F
lo

ps

Num. of OpenMP Threads

83x8x8
83x16x8
83x32x8

82x16x32x8
8x162x32x8

163x32x8

We also found that that binding OpenMP threads to the processors can improve the
OpenMP performance a lot. With gcc, this is done through
export OMP_PROC_BIND=true 19

internode communication

I We use QMP for communications between nodes.
I The communication pattern is illustrated in the following. There is blocking for
each transfer sequence.

1

2

34

2

1

4 3

I The best performance is obtained with 2 MPI processes per node (1 MPI process
per socket, improved data locality).

I With each MPI process, a number of threads equal to the number of compute
cores are used.

I We dedicate one thread (the master thread) to do the communications, and the
rest of the threads for computation.

I Do bulk computation first while waiting for the communication to complete, then
do the boundary computation.

20

multinode performance

I Strong scaling study of a
323 × 64 × 8 calculation was
performed on LIRED, with
dual-socket Intel Haswell CPUs and
Mellanox 56 Gigabit FDR
interconnect.

I The performance scales well up to 4
nodes, and scales sublinearly from 8
to 16 nodes.

I After 4 nodes, the total time is
dominated by the communication
time.

I Bulk computation itself scales well
with the number of nodes.

I Rediscovered the old truth:
Communication is the bottleneck for
strong scaling!

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12 14 16

T
ot

al
 G

F
lo

ps

Num. of Nodes

Strong Scaling, 323x64x8
Perfect Scaling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

T
im

e
[m

s]

Num. of Nodes

Bulk Time
Boundary Time

Comm. Time

21

source-to-source compiler summary

I It is difficult to produce portable high-performing code with one input code.
I With manual optimizations, we have gained good performance but lost
portability (intrinsics).

22

openmp and openacc

overview

I Compiler directives provide another way to achieve (performance) portability.
I OpenMP and OpenACC are two programming directive standards that have
introduced support for both CPUs and GPUs.

I OpenMP supports offloading calculations to accelerators through a target
clause.

I OpenACC does this through a compiler target option (-ta=tesla, -ta=multicore,
etc.).

I Prescriptive vs. Descriptive:
I OpenMP is prescriptive: you tell the compilers exactly what to do.
I OpenACC is descriptive: you tell the compiler what you want to do and the compiler

does the optimization for you. Example, kernels.
I Data movement:

I Both support data clauses to move data between host and devices.
I OpenACC also supports unstructured data movement: enter data, exit data.

24

openmp vs openacc

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(int N)
{
int i;
float p[N], v1[N], v2[N];
init(v1, v2, N);
#pragma omp target data map(to:v1[0:N],

v2[0:N]) map(from:p[0:N])
#pragma omp parallel for private(i)
for (i=0; i<N; i++)

p[i] = v1[i] * v2[i];
output(p, N);
}

Listing 1: OpenMP example.

extern void init(float*, float*, int);
extern void output(float*, int);
void vec_mult(int N)
{
int i;
float p[N], v1[N], v2[N];
init(v1, v2, N);
#pragma acc data copyin(v1[0:N],v2[0:N

]) copyout(p[0:N])
#pragma acc kernels
for (i=0; i<N; i++)
p[i] = v1[i] * v2[i];

output(p, N);
}

Listing 2: OpenACC example.

25

offload compiler support

I OpenMP:
I GCC: v6.1 has full C/C++ support for OpenMP 4.5.
I Intel: v16 has support for OpenMP 4.0.
I Cray: supports OpenMP 4.0
I Clang/LLVM: v3.8 supports some OpenMP 4.0 and 4.5
I ...

I OpenACC:
I PGI (NVIDIA)
I Cray
I GCC 6.1
I Research compilers: OpenUH (U of Houston), OpenARC (ORNL)

I Targets/Architectures (to be) supported:
I AMD and NVIDIA GPUs
I Intel MICs and Xeons
I IBM Power
I ARM
I FPGA
I ...

26

recent hackathon experience

I Goal: to make Grid2 portable to GPUs

I Approach: use OpenACC

I Venue: University of Delaware

I Team: Chulwoo Jung, Zhihua Dong,
Chris Kelly, ML, Mathias Wagner
(NVIDIA), Mathew Colgrove (PGI)

Courtesy: University of Delaware

2P. Boyle, A. Yamaguchi, A. Portelli, G. Cossu, arXiv:1512.03487

27

issues

I Grid makes use of a lot of C++11 features, which caused some problems with the
PGI compiler, even for CPUs.

I std random number generator hangs. ↪→ boost::random
I std::thread not supported. ↪→ Got rid of it.
I Intrinsics not supported. ↪→ Replaced with generic vector types.

I Offloading to GPUs is complicated by the user-defined data types. Any lattice
wide operations (offloadable) will involve Spin Color Vectors.

I axpy example:
template<class sobj,class vobj> strong_inline

void axpy(Lattice<vobj> &ret,sobj a,const Lattice<vobj> &x,const Lattice<vobj> &y){
...

const vobj *xdata = x._odata.data();
const vobj *ydata = y._odata.data();
vobj *retdata = ret._odata.data();

...
#pragma acc data \

copyin(a,xdata[0:size],ydata[0:size]) \
copyout(retdata[0:size])
{
#pragma acc kernels
for(int ss=0;ss<sites;ss++) retdata[ss] = a*xdata[ss]+ydata[ss];
}

I It runs on GPUs but gives the incorrect results. ↪→ Issues with deep copy?
a=-1
xdata[size-1]S {V<4>{V<3>{<(-143.009,-141.73),(-121.144,-128.706)>,<(-131.458,-117.319),...}}}
ydata[size-1]S {V<4>{V<3>{<(-29.8989,-48.3114),(-57.2752,-29.1623)>,<(-43.3413,-41.3039),...}}}

retdata[size-1]S {V<4>{V<3>{<(141.046,90.0025),(91.2382,113.036)>,<(110.604,72.2897),...}}}

28

deep copy

I Current OpenACC standard does not support deep copy.
I For user-defined data types (arrays of structures), simple copy will result in
incorrect pointer dereferencing.

Source: www.openacc.org

I Work around: PGI compiler provides
the ”managed” option to use NVIDIA
unified memory.

I Pre-Pascal: The maximum size of the
unified memory space is limited by the
GPU memory.

I Pascal: Allows oversubscription of GPU
memory. Unified memory can be as big
as host memory.

Host GPU

Host
memory

Device
memory

Unified Memory
(Shared memory address space)

29

maybe we just worked on the wrong application!

I Took an hour to get CPS to run on
GPUs simply by using kernels and
-ta=tesla:managed.

I But of course the performance is
poor. Spends 99% of time doing data
movement.

I Not a fair comparison: CPS is mostly
C, and doesn’t have the same
challenges as Grid.

Some success! with CPS Dslash

Older c++ code base for Lattice QCD, with basic
(inheritance, overloading,..) c++ features.
Performance critical code is C.

Adding OpenACC pragmas + small editing for loop
collapsing.

Runs correctly with “managed” option. Spends too
much time on device to host data copy.

So far failing without “managed”.

30

summary and outlook

summary and outlook

Summary

I Achieving performance portability is important for exascale.
I Ongoing efforts on using source-to-source compilers and programming directives
to make existing LQCD codes performance portable.

I Challenges still remain to use compiler directives in C++ applications.

Outlook

I With Unified Memory and/or support for deep copy, it is possible to get existing
C++ LQCD codes to run on GPUs.

I Should we design the next-generation of LQCD codes with performance
portability in mind from the get-go?

I We should try to influence the directive standards to better support our needs.
↪→ BNL is now an OpenACC member organization.

32

	Introduction
	Source-to-Source Compiler
	OpenMP and OpenACC
	Summary and Outlook

