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Introduction

Krylov space approximations may used to compute the eigenpairs of a
(large sparse) symmetric matrix A.

In many applications, including lattice QCD, such matrices are
approximations to an underlying di�erential operator.

There are two aspects to understanding how e�ective Krylov space
algorithms, such as the L�anczos algorithm:

How rapidly the eigenpairs of the projection H of A onto the Krylov space
approach those of A as the dimension of the Krylov space increases, and
The numerical stability of the algorithm used to compute the eigenpairs
of H.

Our principal goal is to obtain a priori bounds (ones that essentially only
depend on the spectrum of A) that address the �rst question for
eigenvalues that lie in the interior of the spectrum.

Our approach is a generalization of the textbook methods of Kaniel,
Paige, and Saad that give such bounds for extremal eigenpairs.
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Previous Work

A signi�cant application in lattice QCD is the computation of the
eigenpairs in the middle of the spectrum of the Hermitian Dirac
operator H = 
5 =D. [Edwards, Heller, and Narayanan, 1999]

This made use of the Ritz algorithm, which minimizes the Rayleigh{Ritz
functional �

�
A2; x

�
= (x ;A2x) with respect to x where x is a unit vector.

[Bunk, Jansen, L�uscher, and Simma, 1994; Kalkreuter and Simma, 1996]

Clearly the interior eigenpairs of A correspond to the extremal eigenpairs
of (A� �)2 for some constant shift �.

A problem is that the eigenspaces corresponding to eigenvalues �� � of A
become degenerate, and it may be di�cult to resolve them.

04:50:34 August 01, 2016 A D Kennedy QCD&NA 2016, Edinburgh 3 / 26

T
H

E

U N I V E R S
I T

Y

O
F

E
D I N B U

R
G

H



Introduction
Eigenvalue Bounds

Eigensubspace Bounds
Partial LANSO

Conclusions

Overview
Krylov Spaces
Ritz Pairs
Rayleigh Quotient

Basic Idea of Our Approach

Our analysis is based upon the following trivial observation: the Krylov
space for A2 of dimension d is a subspace of the Krylov space for A of
dimension 2d � 1.

Hence if there is a good approximation for an extremal eigenpair in the
former then it must also be a good approximation for an internal eigenpair
in the latter.

Such internal eigenpairs must therefore be well-approximated in the Krylov
space for A.

No resolution of degenerate eigenspaces is required.

The squared matrix is only used for the theoretical analysis.

In practice one just constructs the Krylov space for A in the usual way,
using the L�anczos algorithm or some variant (such as Partial Selective
Orthogonalization, which we shall brie
y descibe if time permits).
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Krylov Spaces

We shall now give a brief introduction to Krylov spaces and Kaniel{Paige
theory. For experts this can be taken to be a verbose summary of our notation.

Let A : RN ! R
N be a linear

operator (everything can be
generalized to CN , of course).

A is symmetric with respect to
the inner product (x ; y) of
vectors x ; y 2 RN , i.e.,
(x ;Ay) = (Ax ; y).

We shall denote the norm of x
by kxk =p(x ; x).

The spectrum �(A) is the set
of all the distinct eigenvalues
of A, which we assume are
labelled in increasing order

�1 < �2 < �3 < � � � < �N0 :

The corresponding eigenvectors in RN

with kzjk = 1 will be written as
z1; z2; z3; : : : ; zN0

Given an initial vector v 6= 0 the
Krylov space of dimension d � N 0 is
de�ned to be

Kd(A) = span(v ;Av ;A2
v ; : : : ;Ad�1

v):

N 0 � N is the smallest integer such
that KN0+1(A) = KN0(A).

We require that zj 2 KN0(A) (all the
eigenspaces of Kd(A) are
non-degenerate).
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Ritz Pairs

Let P : RN ! R
d be an d � N

matrix whose rows are orthonormal
basis vectors of Kd(A). Then

PTP : RN ! RN is an
orthogonal projector onto the
subspace of RN corresponding
to Kd (A),

PPT = 1 is the d � d unit
matrix on the Krylov space,

and H = PAPT is the d � d
projection of A onto the Krylov
space.

The eigenpairs (�j ; sj) of H (with
sj 2 Rd and ksjk = 1),

(H � �j)sj = 0;

are called Ritz pairs.

We order the Ritz values such that

�1 < �2 < � � � < �d :

The corresponding Ritz vectors in
R

N are y1; y2; : : : ; yd , that is
yj = PT sj with

P(A� �j)yj = 0:

Clearly �1 � �1.
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Rayleigh Quotient

The Rayleigh quotient (or Ritz functional) is de�ned to be

� (A; u) =
(u;Au)

(u; u)
= (û;Aû):

Since
Pd

j=1 yj 
 yT
j = 1 on Kd(A), we have

� (A; u) = � (A; û) =
dX

j=1

�j j(û; yj)j2 � �1

dX
j=1

j(û; yj)j2 = �1kûk2 = �1;

for any u 2 Kd(A), thus � (A; u) � �1.

Hence we have
� (A� �1; u) � �1 � �1 � 0

for any u 2 Kd(A).
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Kaniel Theory

Following Kaniel we introduce a vector u 2 Kd(A) such that û = u=kuk is
an approximation to the eigenvector z1.

Since u lies in a Krylov space u = p(A)v where p is a polynomial of
degree d � 1.

We shall call such a polynomial for which

jp(�j)j � 1 8 j > 1

and jp(�1)j is large a Kaniel polynomial.

The simplest choice is p(�) = Td�1

�

(�)

�
where

Td(x) = cos
�
d cos�1(x)

�
is a Chebyshev polynomial and 
 is the linear

mapping with 
(�2) = 1 and 
(�N0) = �1.
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Bounds on Rayleigh Quotient

Since
PN0

j=1 zj 
 zTj = 1 on KN0(A) and u = p(A)v 2 Kd(A) � KN0(A),
we have

u =
N0X
j=1

zj(zj ; p(A)v) =
N0X
j=1

zj(p(A)zj ; v) =
N0X
j=1

zjp(�j)(zj ; v);

=) kuk2 = (u; u) =
N0X
j=1

p(�j)
2j(zj ; v)j2 � p(�1)

2j(z1; v)j2 = p(�1)
2kvkk2

where vk = z1(z1; v) is the projection of v onto z1.
Moreover,

� (A� �1; u) kuk2 =
N0X
j=1

(�j � �1)p(�j)
2j(v ; zj)j2 =

N0X
j=2

(�j � �1)p(�j)
2j(v ; zj)j2

�
N0X
j=2

(�j � �1)j(v ; zj)j2 � (�N0 � �1)kv?k2

where v? = v � vk.
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Extremal Eigenvalue Bounds

We have thus established that

� (A� �1; u) � �N0 � �1
p(�1)2

kv?k2
kvkk2 =

�N0 � �1
p(�1)2

(tan\z1:v )
2 (1)

where \z1;v is the angle between the initial vector v and the eigenvector z1.

We thus have the bounds

0 � �1 � �1 � � (A� �1; u) � �N0 � �1
p(�1)2

(tan\z1;v )
2:

The angle \z1;v depends upon the initial vector v , and is thus not known a

priori , however it does not depend upon the dimension d of the Krylov
space (i.e., the number of L�anczos iterations).

On the other hand the value of p(�1) grows exponentially with d .
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Folding

If z is an eigenvector of A belonging to eigenvalue � then it must also be an
eigenvector of ~A = (A� �)2 with eigenvalue ~Az = ~�z = (�� �)2z .

1 The eigenvalues of A are plotted
along the x-axis and those of ~A along
the ~x-axis.

2 Under the map A 7! (A� �)2 the
eigenvalues of A are lifted onto the
red parabola.

3 Here the shift � = �4, so
�4 7! ~�1 = 0.

4 Since we label both sets of
eigenvalues in increasing order the
eigenvalue �j 7!

~��j
: for example

�2 = 3 so �2 7! ~�3.

5 Note that in this example the
eigenvalues �2 and �5 of A both map
to the same eigenvalue ~�3 of ~A.

x

x~
x = (x ‒ Λ)2~

Δ

Δ2

λ1 λ2 λ3 λ4 = Λ λ5 λ6

λ1 = 0~

λ2

~

λ3

~

λ4

~

λ5

~
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Relationship between Kd( ~A) and K2d(A)

If we take � to be the desired eigenvalue of A then

1 The vector u = ~p( ~A)v 2 Kd( ~A) that approximates the eigenvector ~z1
corresponding to the eigenvalue ~�1 = 0 in the folded spectrum also
approximates z

��1(1) = ~z1 of A with eigenvalue �.

2 Moreover u 2 Kd( ~A) � K2d�1(A) � K2d(A), since any polynomial ~p of
degree d � 1 in the variable (x � �)2 is also a polynomial p of degree
2d � 2 in the variable x , where ~p(x2) = p(x).

3 It follows that Au 2 K2d(A).
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Rayleigh Quotient for Kaniel vector u for ~A in K2d(A)

Since (A� �)û 2 K2d(A) we may expand it in the complete orthonormal
basis of Ritz vectors y1; y2; : : : ; y2d of K2d(A) with corresponding Ritz
values �1; �2; : : : ; �2d :

�
�
~A; u
�
= �

�
(A� �)2; û

�
=
�
û; (A� �)2û

�
=
�
(A� �)û; (A� �)û

�

=
2dX
i=1

2dX
j=1

�
(A� �)û; yi

�
(yi ; yj)

�
yj ; (A� �)û

�

=
2dX
i=1

2dX
j=1

�
û; (A� �)yi

�
�ij
�
(A� �)yj ; û

�
=

2dX
j�1

(�j � �)2j(yj ; û)j2

=
2dX
j=1

~��j
j(yj ; û)j2 � ~�1kûk2 = (�

��1(1) � �)2:

�
��1(1) is the Ritz value closest to �, which may not be unique.
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Interior Eigenvalue Bounds

The (extremal) Kaniel bound for u = ~p( ~A)v is

�
�
~A; u
�
�

~� ~N0

~p(0)2
(tan\~z1;v )

2 ;

since ~�1 = 0.

Hence we obtain the bound on the (interior) Ritz value � of A that is
closest to �

j� � �j �
r
�
�
~A; u
�
�
���� (~�� �) tan\~z1;v

~p(0)

����
where ~� = �

��1( ~N0) is the eigenvalue of A furthest from � (i.e.,

~� ~N0 = (~�� �)2), which again may not be unique.

This bound behaves as ~p(0)�1 for 2d � 1 applications of A, as opposed to
p(�1)

�2 for d applications of A in the extremal case; nevertheless it
establishes exponential convergence in d .
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Eigenvector Bounds

It might seem desirable to have an a priori bound on the angle between
the eigenvector z belonging to eigenvalue � and the Ritz vector y
belonging to the Ritz value � closest to �.

However, such a bound is often unsatisfactory, especially in the interior of
the spectrum, because such a y and z may be completely unrelated.
A simple example of this phenomenon occurs when the spectrum �(A) is
symmetric about zero but does not contain zero, and the initial vector v
respects this symmetry. Under these conditions all odd-dimensional Krylov
spaces K2d+1(A) possess a vanishing Ritz value whose Ritz vector
approximates no eigenvector of A.
Even for extremal eigenpairs such bounds can be very poor. For example, if
�1 � �2 and (v ; z1) � (v ; z2) then the eigenvectors z1 and z2 in KN0 (A) are
orthogonal when �2 � �1 = " > 0, but collapse onto a single eigenvector for
" = 0.

We therefore derive an a priori bound on the angle \z;Y between the

eigenvector z and the subspace Y = span(y1; y2; : : : ; yk) corresponding

to all the Ritz vectors with nearby Ritz values j�j � �j < � for
j = 1; 2; : : : ; k where � is a free parameter.
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Eigensubspace Bounds

We probably will not have time to go through the details of the
calculation, but the result is that for the extremal eigenvector z1 we obtain

j\z1;Y j � �

���� tan\z1;v

p(�1)

����
 
1

2
+

r
�N0 � �1

�

!

where all the angles are assumed to be smaller than �=2.

For an interior eigenvector ~z1 the corresponding formula is very similar

j\~z1;Y j � �

���� tan\~z1;v

~p(0)

����
0
@1

2
+

s
~� ~N0

�

1
A :

The geometric situation underlying the proof is illustrated in the following
diagram.
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Geometry

u

u      Ðu,

y1

yk

z1

z     
Ðz  ,

1

 Ðz ,u
1


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Proof of Extremal Eigenspace Bounds

For any unit vectors x and y we have

kx�yk2 = (x�y ; x�y) = 2
�
1�(x ; y)

�
= 2(1�cos\x;y ) = (2 sin 1

2
\x;y )

2:

The angle \z1;Y between the vector z1 and the subspace Y is de�ned to
be the angle between z1 and the closest unit vector zY 2 Y, so we have
kz1 � zYk = miny2Y kz1 � yk.
Thus we have ��sin 1

2
\z1;Y

�� = 1
2
kz1 � zYk:

Likewise, the nearest vector uY 2 Y to the Kaniel vector u satis�es��sin 1
2
\u;Y

�� = 1
2
kû � uYk = 1

2
min
y2Y

kû � yk:
As uY 2 Y we must have��sin 1

2
\z1;Y

�� = 1
2
min
y2Y

kz1 � yk � 1
2
kz1 � uYk;

and since kz1 � uYk = kz1 � u + u � uYk � kz1 � uk+ ku � uYk by the
triangle inequality, we obtain��sin 1

2
\z1;Y

�� � ��sin 1
2
\z1;u

��+ ��sin 1
2
\u;Y

�� : (2)
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Extremal Bound on \z1;u

Consider the ratio of the magnitude of the component u? of u
perpendicular to z1 to that of the component uk parallel to it,

(tan\z1;u)
2 =

ku?k2
kukk2 =

ku � (u; z1)z1k2
k(u; z1)z1k2 =

N0X
i=2

j(u; zi )j2

j(u; z1)j2

=

N0X
i=2

j(p(A)v ; zi )j2

j(p(A)v ; z1)j2 =

N0X
i=2

j(v ; zi )p(�i )j2

j(v ; z1)p(�1)j2 �

N0X
i=2

j(v ; zi )j2

j(v ; z1)j2p(�1)2

=
kz?k2

kzkk2p(�1)2 =
(tan\z1;v )

2

p(�1)2
:

Therefore

jtan\z1;uj �
���� tan\z1;v

p(�1)

���� : (3)
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Extremal Bound on \u;Y

Choose k such that �k � �1 < � < �k+1 � �1.

The Rayleigh quotient is

� (A� �1; u) =
�
û; (A� �1)û

�
=

dX
j=1

(�j � �1)j(û; yj)j2

�
dX

j=k+1

(�j � �1)j(û; yj)j2 � (�k+1 � �1)

 
1�

kX
j=1

j(û; yj)j2
!
:

Since (cos\u;Y)
2 = j(û; ûY)j2 =

Pk

j=1 j(û; yj)j2 we have
� (A� �1; u) > �(sin\u;Y)

2

.

Hence, making use of equation (1),

(sin\u;Y)
2 <

� (A� �1; u)

�
� �N0 � �1

�

���� tan\z1;v

p(�1)

����
2

: (4)
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Trigonometric Inequalities

We will make use of the following trivial inequalities

1 For 0 � x � �

2
we have

tan x =
2 sin x

2
cos x

2�
cos x

2

�2 � �sin x
2

�2 =
2 tan x

2

1� �tan x
2

�2 � 2 tan
x

2
� 2 sin

x

2
:

2 Moreover, for 0 � x � 2�
3
we have

sin x = 2 sin
x

2
cos

x

2
and 1

2
� cos

x

2
� 1 =) sin

x

2
� sin x � 2 sin

x

2
:

3 Furthermore, for 0 � x � �

2
we have 2x

�
� sin x � x .
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Bound on \z1;Y

Combining the bounds of equations (2), (3), and (4) we have

j\z1;Y j �
�

2
jsin\z1;Y j � �

��sin 1
2
\z1;Y

�� � �
���sin 1

2
\z1;u

��+ ��sin 1
2
\u;Y

���
� �

��� 1
2
tan\z1;u

��+ jsin\u;Y j
� � �

���� tan\z1;v

p(�1)

����
 
1

2
+

r
�N0 � �1

�

!

where all the angles are assumed to be smaller than �=2.

The proof of the bounds given earlier for interior eigenvectors is quite
similar.
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Numerical Example

Convergence of Ritz values for matrix A whose spectrum is shown on the right.

1 The plot shows the logarithm of the magnitude
of the di�erence between each Ritz value and
the nearest eigenvalue of A as a function of
the dimension n of the Krylov space.

2 The initial vector for the Krylov spaces was
taken to have exactly equal overlap with each
eigenvector.

3 The black \bands" in the spectrum are
equally-spaced eigenvalues with a spacing
of 0.05. The smallest eigenvalue is
�46 = �13:2.

4 The squares show the errors for the actual Ritz
values, and their colour indicates the nearest
eigenvalue.

5 The solid lines are the bounds from the shifted
and squared matrix A0 with shifts � chosen to

give the smallest bound for an error of 10�8,
while the dashed lines are the original
Kaniel{Paige{Saad bounds.

6 The shifts used were � ! 1 for �1 and
� = 0:45 for �23, �24, and �25.

7 The solid line for �24 lies under that for �25:
this is because they are equidistant from the
shift value.

8 The Ritz values coincide with the eigenvalues
for n = dim A = 46
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L�anczos Algorithm with Selective Orthogonalization

This algorithm is described in Parlett's book.

The principal di�cult in �nding eigenpairs using the L�anczos algorithm is
that eigenpairs appear multiple times due to rounding errors.

Paige observed that eigenpairs reappear when they are well-approximated
in the Krylov space: we call these good eigenpairs.

Parlett and Scott introduced the L�anczos algorithm with Selective
Orthogonalization (LANSO) to eliminate the spurious eigenpairs by
explicitly reorthogonalizing the L�anczos vectors with respect to all
previously found good eigenvectors.
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L�anczos Algorithm with Partial Selective Orthogonalization

The details of this algorithm and its implementation were presented by Chris
Johnson at the previous QCD&NA workshop, so we shall just provide the
briefest of summaries here.

As we are interested in eigenpairs with eigenvalues in a given small region
of the spectrum we just reorthogonalize with respect to good eigenvectors
whose eigenvalues lie in this region.

We may easily �nd such good eigenvectors by using appropriate shifts in
the QR algorithm to �nd candidate Ritz pairs (�j ; sj), and selecting those
whose �nal components are smaller than

p
� where � is the unit of least

precision (ULP) in 
oating point arithmetic (i.e., � is the smallest 
oating
point number such that 1� � > 1.
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Remarks and Conclusions

In principle Krylov space methods only allow us to compute a single
eigenvector belonging to a degenerate eigenvalue.

In practice they give all the eigenvectors with the correct multiplicity
thanks to rounding errors.

We have shown why eigenpairs in low density regions of the spectrum are
well-approximated by Ritz vectors in Krylov spaces.

This result extends the well-known results for extremal eigenpairs.

We have shown that the subspace of Ritz vectors with Ritz values close to
an eigenvalue contains a good approximation to the corresponding
eigenvector.

Such subspace bounds are better behaved that eigenvector bounds even
for extermal eigenpairs.

This work was carried out in collaboration with Chris Johnson (EPCC).
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