Ab initio investigation of austenitic steels: The interplay of composition, magnetism and mechanical behaviour

Tilmann Hickel, F. Körmann, I. Bleskov, J. Neugebauer

Phase diagrams: The Fe-C system

accuracy 1000x smaller than typical binding energies required

Materials design for innovative steels

Materials design for innovative steels

- deformation processes in innovative steels: TRIP and TWIP
- controlled by stacking fault energy
- based on free energy calculations

Stacking sequences

phase transformation

 $\gamma \rightarrow \varepsilon \rightarrow \alpha'$

CABCABC CABCBAC

ABABABA

stacking faults are decisive for mechanical behaviour

stacking fault energy (SFE) determines importance of TRIP, TWIP

Ab initio investigation of austenitic steels: The interplay of composition, magnetism and mechanical behaviour

Tilmann Hickel, F. Körmann, I. Bleskov, J. Neugebauer

Ab initio for finite temperatures

Performance for phonon energies

nFAME, Edinburgh, 04 June 2013

B. Grabowski, TH, JN, PRB **76**, 024309 (2007).

7

Performance for free energies

nFAME, Edinburgh, 04 June 2013

B. Grabowski, TH, JN, PRB **76**, 024309 (2007).

8

Ab initio for finite temperatures

Ab initio for finite temperatures

Treatment of magnetic excitations

> DFT for magnons 4 ... $\Delta E(q, \theta)$

$$\omega_q = \frac{4}{M} \lim_{\theta \to 0} \frac{\Delta E(q, \theta)}{\sin^2 \theta}$$

calculated and measured magnons in good agreement

$$H = -\sum_{i,j} J_{i,j} \mathbf{S}_i \cdot \mathbf{S}_j$$

exchange integrals derived from magnon spectrum

$$\omega_q = \frac{4}{M} \big(J_0 - J_q \big)$$

J. Lynn, PRB **11**, 2624 (1974). C. Loong et al., JAP **55**, 1895 (1984).

nFAME, Edinburgh, 04 June 2013

F. Körmann, TH, et al., PRB 78, 033102 (2008). 11

Simulation of Heisenberg model systems

nFAME, Edinburgh, 04 June 2013

Analysis of different MC approaches

nFAME, Edinburgh, 04 June 2013

Magnetic entropy for bcc iron

Magnetic entropy important contribution to free energy of bcc iron Shortcomings of approaches:

- → analytical approach (RPA): cannot cover complete temperature range
- \rightarrow classical Monte-Carlo (MC): error at low temperatures due to quantum effects
- → quantum Monte-Carlo (**rMC**): negative sign problem

Numerics performed with ALPS simulation package.

The Fe-C system

Heat capacity of Fe₃C

B. Hallstedt, D. Djurovic, J. von Appen, R. Dronskowski, A. Dick, F. Körmann, T. Hickel, J. Neugebauer, Calphad, 34, 129 (2010).

nFAME, Edinburgh, 04 June 2013

Dick *et al.* Phys. Rev. B **84**, 125101 (2011)

16

D. Djurovic, B. Hallstedt, J. v. Appen, R. Dronskowski: CALPHAD 34, 279 (2010)

nFAME, Edinburgh, 04 June 2013

Dick et al. Phys. Rev. B 84, 125101 (2011)

17

Ab initio for finite temperatures

Influence of magnetism on phonons of Fe

Phonons of iron above the Curie temperature

Spin space average (SSA) technique

Adiabatic approximation: assuming magnetic degree of freedom faster than atomic motion, i.e. at high T each atom "feels" same (disordered = SQS) environment

19

Influence of magnetism on phonons of Fe

Phonons of iron above the Curie temperature

PM calculated with newly developed spin space average (SSA) technique,
average over multiple spin Born-Oppenheimer surfaces

Stability of fcc Fe due to spin excitations

Dependence on C content

Non-magnetic

-AFMD phase

0.3

0.4

0.2

Dependence on C content

Conclusions (Challenge, Status, Outlook)

- **C**: Small energy difference between phases
- S: Quantum-effects in magnetic data
- S: Phonon spectra in PM regime
- **O**: Accurate description of phase transition
- C: Magnetic structure with inequivalent atoms
- **S**: Identification of reliable experimental C_p data
- **O**: Formation energy at T = 0K

- C: Strong dependence of SFE on magnetic order
- S: Application to Fe-Mn alloys
- O: Generalization to PM configurations