

Microstructure, dislocations, defects and cracks in austenitic steels under cycle loading

- Experiments and Simulations -

Ewa Soppa, Ch. Kohler Materialprüfungsanstalt Universität Stuttgart Pfaffenwaldring 32, Germany

Meeting of the contact persons SP4 JPNM June 03. 2013 Edinburgh

1

Objective of our project(s)

Possible contribution MPA

- Development of defects in austenitic steels under cyclic loading
- TEM investigations of stacking faults in the austenitic matrix prior to nucleation of α '-martensite (bcc)
- EBSD investigations of local orientation and misorientation caused by phase transformation
- EBSD investigations of phase (austenite and martensite) distribution
- Atomistic simulations (MD) of martensite formation incl. dislocations and stacking fault formation

currently at work:

- Elastic-anisotropic FE-simulations of deformation and martensitc transformation in the grain-microstructure
- Isotropic and anisotropic simulations of martensitic transformation taking into account vol. expansion and change of properties
- Initiation of fatigue cracks, plastic zone, phase transformation, lifetime....

Material, Heat treatment, Microstructure

С	Si	Mn	Р	S	Cr	Ni	Nb	Та
0.043	0.410	1.900	0.019	0.002	17.150	10.300	0.660	0.008
balance Fe (weight %)								

X6CrNiNb18-10

 $\mathbf{Cr} - \uparrow$ corrosion resistance, ferrite stabiliser

Ni – austenite stabiliser

Nb - \uparrow corrosion resistance \rightarrow NbC

Heat treatment

Homogenization: T=1050°C / 10 min

Water-quenched to room temperature

Dislocation patterns

Before mechanical loading

Distribution of NbC has influence on the location of dislocation-rich walls.

ε_a=1.5%

 ϵ_a =0.25%

Combination of LCF and EBSD

Formation of α '-martensite

0 cycles (~0%)

180 cycles (~60%)

300 cycles (~100%)

"Nucleation" of martensite - TEM

- Classical Molecular Dynamics
- Nanocrystalline models Fe₅₀Ni₅₀
- Grains with random orientations
- Periodic boundary conditions in two spatial dimensions
- 3D-geometry (cube)

Quasi-3D-geometry (plate)

Atomistic Simulations

Uniform tensile deformation up to 20 %

Austenite (kfz)

Martensite (krz)

Stacking fault (hcp)

Defect-atoms

- 250 nm x 250 nm x 2 nm
- 8 grains
- room temperature

Soppa, E.; Kohler, Ch.: Final report, BMWi-Projekt 1501353, Materialprüfungsanstalt Universität Stuttgart, 2011.

Atomistic Simulations

Uniform tensile deformation up to 20 %

Two-phase microstructure near the crack

Micro cracks at NbC

Crack initiation at broken or debonded NbC

Micro cracks in the phase boundary M/A

Crack formation in the phase boundary between martensite and austenite (former grain or twin boundaries in austenite)

- Crack closure caused by increase of vol.% martensite and compression stress at the crack tip.
- Crack propagation in the phase boundary A/M and/or in martensitic areas.

Conclusions

- Deformation induced formation of ferromagnetic bcc martensite in fcc austenite under cyclic loading.
- Work hardening due to martensitic transformation depens on the strain amplitude.
- Nucleation of martensite at grain boundaries, defects and free surface.
- Formation of martensite via fcc-hcp intermediate phase.
- Small (~1 μm) martensitic grains.
- Partially back-formation of martensite under compression.
- No extrusions / intrusions were found.
- Fatigue crack initiation at phase boundary martensite / austenite
- ...and at broken or debonded NbC.
- Formation of martensite at the crack tip.
- Crack growth in the X6CrNiNb18-10 under cyclic loading at room temperature is mainly controlled by the martensitic phase.

This work was performed with support of the **German Federal Ministry of Economics and Technology (BMWi)** which is gratefully acknowledged.

We gratefully thank the **bwGRiD** project for the computational resources.