Processing ODS steels and microstructure characterization

<u>H. Zhang</u>¹, M. Gorley¹, P. Grant¹, S. Roberts¹ K. Dawson², C. Burrows¹, C. Williams¹, P. Edmondson¹, A. Jones², G. Tatlock²

¹ Oxford University ² Liverpool University

22nd workshop on Fe-Cr alloys, Edinburgh, June 2013

Outline

- Background and objectives
- Study of Y₂O₃ evolution during processing by using powder diffraction techniques
- Manufacturing and microstructure characterisation of ODS
 - Primary route: powder metallurgy
 - ✓ Conventional: HIP
 - ✓ Novel: Spark plasma sintering (SPS)
 - Secondary approach: liquid metal processing ongoing
- Conclusions & future work

Background and objectives

- Incomplete processing knowledge
 - How to identify the acceptable powder?
 - Can nanocluster behaviour be correlated with processing variables?
 - Limited commercial products for comparison
- Objectives:
 - Create own bespoke ODS alloys to support microstructural analysis, testing and model validation

Powder metallurgy processing routes

Study of Y₂O₃ evolution during processing

- Core process aspects to be understood
 - \circ Dissolution of Y₂O₃ during milling
 - $\circ\,$ Re-precipitation as nanoclusters during hot working
- Techniques employed: high resolution powder diffraction (HRPD)
 - In-house processing to know detailed process history
 - Easy to prepare powder samples
 - \circ Penetration depth of neutrons (~25 mm) or synchrotron X-rays much greater than laboratory XRD (~5 μm)
 - o In-situ high temperature monitoring

Powder Neutron diffraction of Fe-14Cr-10Y₂O₃

- 10% Y₂O₃ for confident detection
- Dissolution of Y₂O₃ during milling
- Re-precipitation of Y_2O_3 peaks during *in-situ* annealing > 900°C
- First real-time observation

Nanoscale analysis of as-milled ODS powder

TEM of Fe-14Cr-10Y₂O₃

APT of Fe-14Cr-0.25Y₂O₃

- Y₂O₃ particles not convincingly resolved dissolved
- High defect density due to work hardening during milling
- Homogeneous distribution of Y from APT, TEM & neutron diffraction

Consolidation of ODS by HIPing

• HIP conditions: 1150°C x 150 MPa x 4 h

Microstructures of HIPed 14YWT

15 μm Fe-14Cr-3W-0.2Ti (Non-ODS)

15 μm

Atom probe tomography (APT)

- Refined grain sizes due to addition of Y₂O₃
- Average nano-cluster size (1.9 nm) and density (2.4x10²³ m⁻³) are comparable to reported values from other leading groups in ODS processing.

Microstructures of HIPed 14YWT

• Nano-clusters with uniform distribution and high number density

Effect of HIP temperature on nano-clusters

 With increasing HIP temperature, size of nano-clusters increases and their number density decreases.

Thermomechanical treatment of ODS by Forging

- Forging @ Adv. Forming Res. Cent. (AFRC), Strathclyde.
- Forging conditions: sample temp = 1150°C, die temp = 300°C, 35% reduction, unidirectional forging.
- Mechanical test being performed by KIT.

Spark Plasma Sintering (SPS)

Advantages:

- Rapid heating rates (up to 1000K/min) sintering in minutes
- Homogenous temperature distribution
- Preservation of nano- and metastable structures in bulk materials
- High throughput and low energy consumption
- Little work on ODS

Consolidation of ODS by SPS

Fe-14Cr-0.4Ti-0.25Y₂O₃

SPS vs. HIP

Force: 50MPa vs. 200MPa Sintering duration: 5min vs. 3-4 hr Density: 99.6%

High resolution synchrotron XRD of SPSed ODS

Microstructures of SPSed ODS

Fe-14Cr-0.4Ti-0.25Y₂O₃

• Y-Ti-O nano-clusters with mean $R_g=1.2nm$ and number density =2.7x10²³ m⁻³

Liquid metal processing of ODS - 1st route: spray forming

Liquid metal processing of ODS - 1st route: spray forming

- Rationale
 - Gas atomization reaction synthesis (Ar-O₂)
 - In situ surface oxidation of the most kinetically favoured oxide phase (metastable Cr-enriched oxide)
 - O exchange reaction during annealing to form Y-enriched oxide dispersoids

ODS produced by spray forming

ODS produced by spray forming

Challenges:

- Highly reactive of Y
- High temperature of 1700°C
- High vacuum for big chamber
- Reaction between wash coat $(AI_2O_3 \text{ and } ZrO_2)$ and Y

Processing condition:

- 22kg Fe-17Cr + 300g Fe-75Y for target composition: Fe-17Cr-1Y
- Final composition: Fe-17Cr-0.1Y

Liquid metal processing of ODS - 2nd route: melt spinning + internal oxidation

Methodology

- Produce Fe-Y ribbons by melt spinning
- Seal Fe-Y ribbons with Fe-Fe₂O₃ powder mixture in evacuated quartz tube
- Ball milling of mixture of Fe-Y ribbons and Fe₂O₃

UNIVERSITY OF

Summary

- Fundamental study on nano-precipitate formation mechanism
 - First time to observe re-precipitation behaviours of Y₂O₃ in real time.
- Establish in-house manufacture capability for high quality ODS
 - Better understanding of the effect of processing variables & compositions
 - Similar microstructures to reports from other leading groups.
 - Supply of bespoke alloys to whole group
 - SPS is a cost-effective technique for ODS consolidation.
 - Full processing route from in-house powder to forged and tested bespoke materials with reasonable large scale.
 - Liquid metal processing routes are progressing.

Future work

- Mechanical testing at KIT
 - Dedicated vacuum tensile testing rig (RT-1200°C)
 - Charpy testing (Liquid nitrogen to 1000°C)
- Alternative ODS processing routes
 - Reactive ball mill
 - Spray forming
 - Melt spinning + internal oxidation
- More neutron and synchrotron X-ray beam time

Thank you for your attention

