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Dissipative motion of defects and dislocations

Uber den Einfluf! thermisch angeregter Schallwellen
auf die plastische Deformation*.
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Dissipative motion of defects and dislocations

Leibried (1950) finds that a dislocation propagating through a crystal, experiences
drag force due to acoustic phonons, where the magnitude of the force per unit
length is proportional to temperature
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Eshelby (1962) developed this argument further and applied it to kinks on

dislocation lines.
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It is easy to show that unless the kink is supersonic (a possibility
we do not consider) (6-5) is incompatible with the equation of energy conservation

AR 2m = AEK2[2m + hek,

and g0 we must consider second-order transitions. E
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Dissipative motion of defects and dislocations

Argument involving the incompatibility of the dispersion relations of quasiparticles
with different dispersion relations is well known. Absorption or emission of a single
phonon by a massive (i.e. not mass-less, like a phonon) particle requires that

p'=p+7k
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From the second of the above equations we find that

(P—p)-(p+p) _ 7k-(p'+p) _ e K|
2m 2m

. The latter equation cannot possibly be satisfied unless (p/m) is close to the
speed of sound, which is never the case under reasonable, i.e. not “the end of
the world”, deformation strain rate conditions.

. Hence the occurence of thermal dislocation drag, and in fact any thermal
friction experienced by a massive defect, must be fundamentally related to

the two-phonon scattering processes.
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Dissipative motion of defects and dislocations

In a two-phonon process involving the absorption and emission of phonons, the
cross-section of momentum transfer is proportional to

—_ — _ _ _ _ d_
G(p'ﬂnk _lank' +1;p9nk9nk') ~ nk(nk' +1)_nk'(nk +1) =Nk — Nk ~ (/ch

The equilibrium phonon occupation numbers are

e = 1 _kT 1 of e
*explion 1k, T) -1 hew, 2\ kT

In the classical high temperature limit, accessible to conventional molecular
dynamics, dislocation drag is predicted to be a linear function of temperature.
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Dissipative motion of defects and dislocations

Dissipative motion of defects and dislocations
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Fig. 1. Drag coefficent for edge and screw dislocations in Ni (blue, EAMI;
black, EAM2). The solid line corresponds the Leibfried estimate Eq. (3),
)1y denotes the Debye temperature.
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Simulations agree with the Leibfried argument.
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Self-interstitial atom defects as massive quasiparticles
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:i';;t A crowdion defect is well described by the Frenkel-Kontorova model.
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Self-interstitial atom defects as massive quasiparticles

Equations of motion of atoms

d’z maja’ . (2rxz,
m—-=a(z z =2z )— S1

dt* m 27 a

If the chain of atoms contains an extra atom, the positions of atoms in a chain are
described by the following solution

2a 1)
z (t) =an+—arctan| exp| — ! (an—Vr)
L \/ 2, 2
7T cvl-V"/c
The energy of this solution equals o] RN 8 g EE
Mc , MV RETARE R AN N /4 B
E= ~Mc+——+... ¥ - Riq
2 2 2 R A R S
\/l—V /c 7
United Here M is the effective mass of the defect.
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Dissipative motion of defects and dislocations

Langevin treatment of thermal drag

« dv
m 0 =—yv+ f(t); f(¢) is the stochastic thermal force.

FOSENr = frolt—1);

v(t)z# | f(f)exp(—#(t—f)jdr

FDT: m*0*0),/2=k,T/2 = f>=2yk,T

FDT: fluctuation-dissipation theorem

The Langevin equation is consistent with the equipartition principle.

Asymptotic equilibrium FDT condition on the thermal energy of the
w . | diffusion particle does not depend on the friction coefficient y.
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Langevin treatment of thermal drag

FDT also makes it possible to establish a relation between the friction
coefficient y and the diffusion coefficient D.

v(t):i* j £(z) exp(—#(t—r)jdr

VOWt'))7 = —TGXP[——If t @
m

Position of the defect = integral of its (fluctuating) velocity:

x(t) = jdrv(r);

() = [dr [de(uemE)),

_ , kT Effective mass m* of
United D(T) =11m[<x (1)) /2t)= the defect is of no
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Langevin treatment of thermal drag
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It is possible to extract the values of diffusion coefficient, treated as a
- function of temperature, directly from the simulated trajectories of defects.
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Langevin treatment of thermal drag

kT
D(T) =lim|(x*(¢)) / 2t |=—2
(T) tgg[@c ) t] T

This is an exact equation.

If the diffusion coefficient is a linear function of T, then y is constant.
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Kinks on screw dislocations
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Kinks on screw dislocations

L= Z——a— Z(unH—M) —aE Zsm ad

n=—0o0 n——oo n=-—% p

Field of atomic displacements in a kink

2L / E
u(z,t)=—=arctan| exp| — i—ﬁ 2—” (z—V¥)
T , | 2K

Energy density in a kink

dE
dz ,
cosh (z Vt)
Total energy of a kink: £, = —L | 2KE
T
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Dissipative motion of defects and dislocations

Kinks on screw dislocations
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Energy density in the kinks as well as their total energies are well described by the
Frenkel-Kontorova model. This is the same model that was earlier, and equally
B > successfully, applied to the treatment of crowdion defects.
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Kinks on screw dislocations
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s .. 1he Frenkel-Kontorova model predicts that the double kink energies should scale
A4 as the square root of the Peierls potential for the screw dislocation. This prediction
#"% is confirmed by calculations performed using three different tungsten potentials. E
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Thermal Brownian motion of kinks

Molecular dynamics simulations of migration of kinks on
a/2<111> screw dislocations. These simulations were
performed using LAMMPS and the Gordon et al. (2012)

potential for bcc Fe, assuming T=100K, using S
280x80x80b simulation box, total simulation time is 1ns. 5 CCF E
"Latlel’ Authority |
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Derivation of the kink diffusion coefficient

To simulate diffusion of kinks it is necessary to use a simulation cell containing two
dislocations, hence in principle there is a problem associated with interaction between
kinks. The bare friction coefficient can still be derived from the data. Equations of
motion for the kinks:

dzl __ﬂ@_U ' _ N
dr k,T oz, +\/27D1 (O, @), =0@-1);
dz, D, aU

Z_ k,T 5 \/E L (D), <§2(t)62(t )>T o(t—t")

Introduce two new independent (also stochastic!) variables
z()=z,()—z,(1); Z()= (Dzzl +D122)/(D1 +D2)

Equation of motion for the “centre of mass” (or “centre of diffusion”) is independent of
the kink-kink interaction law

dz
—=2——-8@), O, =5(-1).
United dt D D
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Dissipative motion of defects and dislocations

Brownian motion of kinks on screw dislocations in iron

It is often assumed that the friction coefficient for the kinks obeys the Liebfried law.
Direct MD simulations of thermal diffusion of kinks show that the friction coefficient is
independent of temperature, just like the friction coefficient for nano-scale defects and

nano-scale prismatic dislocation loops.
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Conclusions

35 I I I I | | I
— . is Work)
5 . ffusion (This
X 9 M'Eriction from Loop D g8 il
(0
all 25 O’f\(\ |
= N =
T 20 Aleld & -
£ otV oA\
2 15| \;\ﬂe ‘ e\, vz l
® on £O% 0 Qe eV & L =16/121
_I +
T 10 [0V U"‘Bgﬂ BL= 2|121]
g o ko L= 6121
= 7 eact OL=28121| ]
° 0 llIfJI[J Z:JD 3:310 4IDO 5:30 EJIDFJ 7IOD 800
Temperature [K]
United a/2<111>{110} edge dislocation lines and loops.
Kingdo_m SN af od sl
. éi‘;‘:‘;; T. Swinburne et al. PRB 87, 064108 (2013)

Authority CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority



4th Fe Alloys and 22nd FeCr Alloys Workshop,

Dissipative motion of defects and dislocations
Edinburgh, 4-5 June 2013

Conclusions

y(T)=4

w

I +B

origin unknown

There is a significant T-independent contribution to drag, the origin of
which is unknown, which is dominant for nano-scale defects and kinks.

Motion of line dislocations is almost unaffected by the anomalous T-
independent term.

Bridging MD and DDD on the nanoscale appears problematic.
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