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Background WELDS in RINGHALS 3,4 

 MATERIAL: SA508 cl.2 [1] 

Cu 0.08 0.05 

Mn 1.46 1.35 

Ni 1.58 1.66 

Si 0.21 0.14 

P 0.009 0.0015 

Cr 0.07 0.04 

C 0.052 0.068 

Mo 0.54 0.50 

Al 0.027 0.024 

Co 0.015 0.010 

V 0.002 0.00 

DBTT * - 75°C - 75°C 

1 2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh [1] P. Efsing, J. ASTM Int. (2007) 

* Ductile to Brittle Transition 

Temperature at Beginning of Life 

  Radiation-induced embrittlement of reactor 

pressure vessel (RPV), due to the formation of 

nanoclusters that hinder dislocation motion (shift of 

DBTT). 

 

  Nanonclusters are solute-defect complexes caused 

or enhanced by the supersaturation of defects induced 

by radiation. 

 

  In irradiated ferritic-martensitic alloys at 300°C, two 

kinds of clusters are formed: 

 Cu-rich precipitates. 

 Mn-Ni-rich precipitates (late blooming phases??). 

 

  The solute mobilities are strictly related to their 

interactions with defects, which are the object of this 

project. 

High Mn-Ni concentration! 



Who is the nasty guy here? 

2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 2 

Courtesy of L. Malerba (courtesy of Gracie Burke) 
Effect of Irradiation in RPV Steels - A nanoscale perspective  

SOTERIA, 17/09/2012  



Onsager Matrix 

3 

Ji   Lij j
j1

N



  Seperation between the kinetic properties of the system and the 

thermodynamical driving forces. 

  The off-diagonal coefficients account for the correlation effects 

between fluxes of different species. 

  These coefficients lead to: 

  diffusion coefficients ; 

  possible dragging mechanisms ; 

  impurity concentration profiles at defect sinks (RIS 

tendencies). 
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4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 

JA  LAAA  LABB  LAVV

JB  LBAA  LBBB  LBVV

JV  LAVA  LBVB  LVVV









Lij  L jiTHE MATRIX IS SYMMETRIC: 

Ji   DijC j
j1

N

FICK’S LAW  



The Way to the Coefficients 

4 

A mean field approach is applied in this project to treat vacancy-mediated diffusion 
in terms of statistical mechanics for the following binary alloys: FeNi, FeCr, FeCu, 
FeSi, FeP, FeMn.    

2 methods are used and compared + benchmark with Monte Carlo sim. (Lakimoka): 

The approximated 9-frequency model introduced by A.D. Le Claire [1] . 

The Self-Consistent Mean Field (SCMF) theory by M. Nastar [2], which provides 
an exact solution in the case of dilute binary alloys.  

The coefficients are determined by solving the master equation and determining the 
probability distribution of all possible configurations of the system.  

The high symmetry of the lattice allows to reduce the number of independent 
variables to a limited set of atom-vacancy exchange frequencies.  

The number of jump types depends on the range of the thermodynamical 
interaction. 

 

Migration barriers and attempt frequencies were determined via ab-initio 
calculations (VASP). 

 i 
*

i exp 
H i

M

kBT







 i
*   initj

j1

N3

  saddlej

j1

N4



[1] A.D. Le Claire, J. Nucl. Mat.. (1978) 

[2] M. Nastar,  Phil. Mag. (2005) 
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From the Onsager Matrix 
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VACANCY WIND 

If G < -1, vacancy and solute flux have the same direction  VACANCY DRAG   

f0 = 0.7272 for bcc [1] 
TRACER 

DIFFUSION  

COEFFICIENTS 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 
[1]  A.D. Le Claire, Physical Chemistry, an advanced treatise (1970) 

[2]  M. Nastar, F. Soisson,  Compr. Nucl. Mat. (2012) 2013-06-05 

CONCENTRATION 

PROFILE AT DEFECT 

SINKS 

(d = partial diff.coefficients) 

If dBV < dAV  enrichment of solute B at grain boundaries! 



MODELS 
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Interaction range: 1st NN 
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The number of hopping rates to be included in the model depends upon the 

range of the thermodynamic interactions. 

2 

2 solute 

1 

5 3 

4 

3 

The interaction range defines the distance 

beyond which the Sol-V interaction vanishes. 

3 

Jumping rates to be distinguished. 

1) Unperturbed Fe-V exchange. 

2) Sol-V exchange. 

3) Dissociative V jump from 1NN. 

4) Associative V jump to 1NN. 

4 jump types ! 



Interaction range: 2nd NN 

2013-06-05 
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In BCC crystals, the 2-NN interaction is part of the dragging path! 

2 

2 
solute 

1 

5 3 

4 

3 

Jumping rates to be distinguished. 

1) Unperturbed Fe-V exchange. 

2) Sol-V exchange. 

3) Dissociative V jump from 1NN. 

4) Associative V jump to 1NN. 

5) Dissociative V jump from 2NN. 

6) Associative V jump to 2NN. 

7) 1NN-2NN Fe-V exchange. 

 

The interaction range defines the distance 

beyond which the Sol-V interaction vanishes. 

3 
10 jump types ! 



(9+1)-Frequency model 
LeClaire’s nomenclature 
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ω2 

ω0 

ω3 

ω4 

ω3' 
ω4' 

ω4’’ 

ω3’' 

ω5 

ω6 

2NN 

2NN 

5NN 3NN 

4NN 

3NN 

solute 

43'

eff  33' 3''

Dissociative paths: 

44'

eff  34' 4''

Associative paths: 



Lij:s from Monte Carlo 
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Follow evolution of the alloy with Kinetic Monte Carlo 

(KMC) simulations. 

At each step all possible events (vacancy jumps) are given a 

probability proportional to the jump frequency. 

The residence time algorithm is the most common way to 

estimate the time passed between two subsequent events. 

From ref.[1] : 

[1] A.R. Allnatt and E.R. Allnatt, Phil.Mag.A. (1984) 2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 



Self Consistent Mean Field theory  

[1] M. Nastar,  Phil. Mag. (2005) 

dP(n)

dt
 W (n ' n)P(n ')W (n n ')P(n) 

n '



P(n) P0(n)P1(n)

MASTER EQUATION 

Species “A” 

Species “B” 

configuration  n 

configurations  n’ 

n  {n1
A,n1

B,L n1
v,n2

A,n2
B,L ,n2

v,L }

ni
 

0

1



EQUILIBRIUM 

The probability for a state to occur 

depends on the energy of the state 

according to the Boltzmann factor. 

P0(n) exp 
E0(n)

kBT








CONFIGURATION = ENSEMBLE OF  

OCCUPATION NUMBERS 

E0(n) : some of pair interactions 

(possibly multi-body) 

THERMODYNAMIC INTERACTIONS 

NON EQUILIBRIUM 

E(n) 
1

2!
ni
n j

vij


i j , , 

 
1

3!
ni
n j

nk
 vijk



i jk, ,  , 

 L

Small perturbation from equilibrium state. 

The variation of energy of the system is given by pair 

(possibly multi-body) interactions with the same 

mathematical structure. 

KINETIC INTERACTIONS 

UNKNOWNS TO BE FOUND! 

2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 11 



Linear non-equilibrium thermodynamics 

12 

Difference betweeen the two methods is how to express the non-
equilibrium distribution. 

Lidiard and Allnatt started from the master equation and applied the linear 
response theory of the Kubo type.  

It worked well as long as random alloys were concerned. In order to 
introduce interactions, a more rigourous approach has to be undertaken. 

Configurational thermodynamic: the atoms occupy sites in a lattice and 
interact through a configurational hamiltonian (which includes the 
thermodynamic interactions). 

First attempted solution was to describe non equilibrium by introducing a 
time-dependent single particle field, but yielded wrong results. 

Nastar’s novelty is to express non-equilibrium through an effective 
hamiltonian where kinetic interactions (null at equilibrium) are expressed 
in terms of an hamiltonian field. 

2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 



(9+1)-Frequency model  
Serruys [1] 

13 2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh [1]  P.Y. Serruys et al. Phil. Mag. A (1982) 



Kinetic Equations - Vacancies 
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1st 

1st : Configuration n can change when atom α jump from site i to a 

neighboring site s occupied by a vacancy. 

2nd : Configuration n can change when atom β jump from site j to a 

neighboring site s occupied by a vacancy. 

One kinetic equation for each relevant site couple, for each combination of species. 

d ni
n j



dt
  n j

ni
ns

v̂ is

v (s
  i

 )
si j

 ni
n j

ns
v̂ js

v (s
  i

 )
si j



 n j
ni

ns
vnk

 ̂ is

vvik


ki, 

  n j
ni

ns
vnk

̂ is

vvsk


ks, 












si j

 

 ni
n j

ns
vnk

̂ js

vvik


k j , 

  n j
ni

ns
vnk

 ̂ js

vvsk


ks, 












si j



α β 

site i site j 

site s 

2nd 



d ni
n j



dt
  n j

ni
ns

v̂ is

v (s
  i

 )
si j

 ni
n j

ns
v̂ js

v (s
  i

 )
si j



 n j
ni

ns
vnk

 ̂ is

vvik


ki, 

  n j
ni

ns
vnk

̂ is

vvsk


ks, 












si j

 

 ni
n j

ns
vnk

̂ js

vvik


k j , 

  n j
ni

ns
vnk

 ̂ js

vvsk


ks, 












si j



Kinetic Equations - Vacancies 
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1st 

2nd 

1st : Configuration n can change when atom α jump from site i to a 

neighboring site s occupied by a vacancy. 

2nd : Configuration n can change when atom β jump from site j to a 

neighboring site s occupied by a vacancy. 

One kinetic equation for each relevant site couple, for each combination of species. 

α β 

site i site j 

site s 



Kinetic Equations – Dumbbells! 
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1



d ni
AB

dt
 ns

Ani
Bysi

A/B

 s
A  i

A 
si,  ,

  ns
Bni

Aysi
B/A

 s
B  i

B 
si,  ,



 ns
Ani

Bysi
A/B

 vAB  ns
Ani

Bysi
A/B

 vA  ns
Ani

Bnk
 ysi

A/B

 vik
AB

ki, 

  ns
Ani

Bnk
 ysi

A/B

 vsk
A

ks, 












si,  ,



 ns
Bni

Aysi
B/A

 vAB  ns
Bni

Aysi
B/A

 vB  ns
Bni

Ank
 ysi

B/A

 vik
AB

ki, 

  ns
Bni

Ank
 ysi

B/A

 vsk
B

ks, 












si,  ,



 ni
AB yR

 R

ABvAB  ni
AB yR

 R

ABvAB  ni
ABnk

 yR
 R

ABvik
AB

ki, 

  ni
ABnk

 yR
 R

ABvik
AB

ki, 














  0

1



d ni
ABn j

C

dt
 n j

Cns
Ani

Bysi
A/B

 s
A  i

A 
si j ,  ,

 n j
Cns

Bni
Aysi

B/A

 s
B  i

B 
si j ,  ,



 n j
CAni

By ji
CA/B

  j
A  i

A 


  n j
CBni

Ay ji
CB/A





  j
B  i

B 

 n j
Cns

Ani
Bysi

A/B

 vAB  n j
Cns

Ani
Bysi

A/B

 vA  n j
Cns

Ani
Bnk

 ysi
A/B

 vik
AB

ki, 

  n j
Cns

Ani
Bnk

 ysi
A/B

 vsk
A

ks, 












si j ,  ,



 n j
Cns

Bni
Aysi

B/A

 vAB  n j
Cns

Bni
Aysi

B/A

 vB  n j
Cns

Bni
Ank

 ysi
B/A

 vik
AB

ki, 

  n j
Cns

Bni
Ank

 ysi
B/A

 vsk
B

ks, 












si j ,  ,



 n j
CAni

By ji
CA/B

 vAB  n j
CAni

By ji
CA/B

 vCA  n j
CAni

Bnk
 y ji

CA/B

 vik
AB

ki, 

  n j
CAni

Bnk
 y ji

CA/B

 v jk
CA

k j , 
















 n j
CBni

Ay ji
CB/A

 vAB  n j
CBni

Ay ji
CB/A

 vCB  n j
CBni

Ank
 y ji

CB/A

 vik
AB

ki, 

  n j
CBni

Ank
 y ji

CB/A

 v jk
CB

k j , 
















 n j
Cni

AB yR
 R

ABvAB  n j
Cni

AB yR
 R

ABvAB  n j
Cni

ABnk
 yR

 R

ABvik
AB

ki, 

  n j
Cni

ABnk
 yR

 R

ABvik
AB

ki, 














  0



Why is the dumbbell case so complicated? 

 Internal dumbbell interaction. 

◦ More equations and more complicated structure of the T matrix. 

◦ Application of the symmetry condition involves also the 
dumbbell inversion. 

 Several dumbbell orientations. 

◦ “Combined” symmetry. 

◦ For each orientation there is a change of 
 accessible sites. 

 symmetry classes. 

 vanishing interactions. 

 More paths for configuration change. 

◦ The defect is made of two atoms. 

◦ Possibility of “i-j” exchange. 

◦ Dumbbell on-site rotation. 

◦ Rotation-translation jumps. 

 

 

 
2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh 17 

Code in progress! 



RESULTS 
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Solute-Vacancy Binding Energies 

19 

• Cr is almost transparent to vacancies! 

• Large disagreement with previous calculations only for binding energies 

computed with Ultra-Soft Pseudopotentials (USPP) [1]. 

Ab-initio solute-vacancy binding energies computed with the PAW-PBE method in VASP and comparison with previous works. 

Negative energy stands for attractive interaction. 

2013-06-05 

4th n-FAME & 22nd Fe-Cr workshop, 

Edinburgh [1] A.V. Barashev et al., Phil. Mag. Lett. (2006)  



Migration barriers 
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ΔG [eV] Ni Cr Cu Mn Si P 

w0 0.70 

w2 0.63 0.55 0.51 0.41 0.51 0.40 

w3 0.59  0.70 0.72 0.66 0.74 0.68 

w4 0.69 0.66 

(0.64) 

0.64 0.70 0.55 0.57 

w3' 0.72 0.69 0.74 0.70 0.89 0.98 

w4' 0.66 

(0.62) 

0.64 0.51 

(0.49) 

0.56 

(0.53) 

0.58 

(0.59) 

0.58 

(0.61) 

w3’’ 0.66 0.67 0.67 0.66 0.82 0.86 

w4’’ 0.62 

(0.56) 

0.65 

(0.62) 

0.50 

(0.41) 

0.56 

(0.49) 

0.55 

(0.52) 

0.47 

(0.48) 

w5 0.80 0.72 0.75 0.76 0.71 0.74 

w6 0.59 0.70 0.57 0.64 0.58 

(0.59) 

0.48(0.

47) 

Values in red: modified migration barriers in order to fulfill detailed balance. 
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Detailed balance 

 In absence of irradiation, the equilibrium vacancy concentration 

must be conserved, locally and globally. 

 This condition reduces the number of independent hopping rates. 
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 4

 3

 exp 
(H1NN

b H2NN

b )

kBT







 4

 3


 *4
 *3
exp 

(H4

m H3

m )

kBT









 Attempt frequencies contain the migration entropy term. If their ratio 
is equal to 1 

 

 

 If the interactions beyond the 2NN are to be neglected, the 
dft-computed migration barriers must be adjusted in order 
to respect detailed balance. 

 In other words: at equilibrium, there is no interaction between 
solute and vacancy beyond the fixed interaction range (2NN). 

H1
m H2

m  H1NN
b H2NN

b



VACANCY WIND 
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KMC KMC KMC 

KMC KMC KMC 



Vacancy wind 

P Si Cu Ni Mn Cr 

E1nn  -0.38 eV -0.30 eV -0.26 eV -0.10 eV -0.17 eV -0.06 eV 

E2nn -0.27 eV -0.11 eV -0.17 eV -0.21 eV -0.11 eV -0.01 eV 

S EXnn -0.65 eV -0.41 eV -0.43 eV -0.31 eV -0.28 eV -0.07 eV 

Tcrit [K] 2100 1424 1062 1038 962 ≈290 

G573K -1.99 -1.91 -1.77 -1.68 -1.65 -0.25 
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•There is a clear correlation between vacancy-solute binding strength and 

dragging tendency. 

 

•At RPV temperature (≈ 573 K) all solutes but Cr are expected to be dragged 

along. 



Diffusion coefficients 
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Benchmarking with Kinetic Monte-Carlo 
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 Box of 432 atoms, 1 sol + 1 vacancy 

 106 observations of 5000 events each, at 1500 K. 

 

(b) Parameters from E.  Aublant (Vincent) and R. Ngayam-Happy, binary alloys 

(m) Parameters from E.  Aublant (Vincent) and R. Ngayam-Happy, multi-

component alloy 

WIND FeCr FeCu FeMn FeNi FeP FeSi 

SCMF +0.14 -0.74 -0.38 -0.71 -1.45 -0.93 

KMC +0.16 -0.71 -0.42 -0.70 -1.43 -0.91 

KMC (b) +0.06 +0.16 +0.25 -0.36 -0.01 

KMC (m) +0.04 +0.25 +0.21 -0.37 +0.00 



RIS at grain boundaries 
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CB

CV


CBCAdAVdAI

 CAdAIDB CBdBIDA 
dBV

dAV

dBI

dAI







dBV 

LBB
V  LBA

V

CBCV
dAV 

LAA
V  LAB

V

CACV

CV 

CA CB 

DEPLETION OF A, 

ENRICHMENT OF B 

dBV  dAV

CV 

CB CA 

ENRICHMENT OF 

A, 

DEPLETION OF B 

dBV  dAV

DEPLETION OF A, 

ENRICHMENT OF B 

ENRICHMENT OF A, 

DEPLETION OF B 

=1 
PARTIAL DIFFUSION COEFFICIENTS CONCENTRATION GRADIENTS 

The RIS behaviour is determined by the relative diffusion velocities between Fe 

and solute. 

Hitherto the contribution of vacancy mediated diffusion was analyzed (dBV, dAV). 



RIS at grain boundaries 
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Solute depletion 

Solute enrichment dBV

dAV
 0

(solute dragging) 

Solute dragging  

for 



Conclusions 
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 A complete set of Lij coefficients was computed. 

◦ P and Si have the strongest interaction with vacancies. The interaction 

vac-Ni is particularly strong at the 2NN. 

◦ All solutes (with the exception of Cr) are expected to undergo vacancy 

dragging. In the case of Mn, the effect is weak. 

◦ As opposed to the approximated Serruy’s model, SCMF is able to 

predict dragging of Cu in bcc iron, as expected from experimental 

evidence, and for Mn at low temperatures.  

◦ At low temperatures, all solutes are expected to enrich at grain 

boundaries with the exception of Cr, which is expected to deplete 

(as far as only the interaction with vacancies is concerned). 

 

 Perspectives: 

◦ DFT calculation of interstitial migration barriers for the 6 alloys. 

◦ Calculation of Lij:s for interstitial-mediated diffusion, consequences on 

dragging and RIS behaviour. 

◦ Multi-component dilute alloys 

◦ Concentrated alloys (Fe-Cr based) 



THANKS FOR YOUR ATTENTION! 
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Ab-initio calculations 
VASP SETTINGS 

PAW-PBE method 

Spin-polarized calculations 

Full-core PAW potentials for Fe, Cu, Ni, Si, 

P, Mn 

Semi-core PAW potential for Cr 

Supercell: 4x4x4 (128 atoms) 

K-point mesh: 3x3x3  

Cutoff energy: 300 eV 

Refinement of mixing tags to prevent the 

simulation from getting trapped into a 

wrong magnetic state (Mn, Si). 

Nudged Elastic Band (NEB) method 

Molecular statics simulation for frozen 

phonons. 30 

MIGRATION BARRIERS: 

Emax 

Eini 

Efin 

ΔEM
4 

ω3 

ω4 

ΔEM
3 
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ATTEMPT FREQUENCY 

(only in pure Fe at the moment): 

 i
*   initj

j1

N

  saddlej

j1

N1



2013-06-05 



Magnetic Models 

31 

Q(T )QFT0 h

Q(T )QP(1M 2 )

• B. Jönsson, Z. Metallkd. (1992) 

• L. Ruch, J. Phys. Chem. Solids (1976)  

PLOT WITH FITTING TO EXPERIMENTS! 
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TC 

TC 

Ab-initio computed 

self-diffusion 

coefficient in pure 

Fe (CB=0) by 

applying Jönsson’s 

and Ruch’s magnetic 

models, and 

comparison with 

experimental 

measurements 

(α=0.62 eV, β= 

0.156[1] ). 

[1] S. Takemoto et al., Phil. Mag. (2007) 

Activation energy: Q  H f H m



Sensitivity to binding energies 
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