Nu-FuSE

HPC Issues for DFT Calculations

Adrian Jackson EPCC

Scientific Simulation

- Simulation fast becoming 4th pillar of science
 - Observation, Theory, Experimentation, Simulation
- Explore universe through simulation rather than experimentation
 - Test theories
 - Predict or validate experiments
 - Simulate "untestable" science
- Reproduce "real world" in computers
 - Generally simplified
 - Dimensions and timescales restricted
 - Simulation of scientific problem or environment
 - Input of real data
 - Output of simulated data
 - Parameter space studies
 - Wide range of approaches

COM http://www.nu-fuse.

Reduce runtime

tanium 2

- Serial code optimisations
 - Reduce runtime through efficiencies
 - Unlikely to produce required saving sim 2
 - Upgrade 100 mard W ar fise toubling every 24 months.
 - 1965 Moore's law predicts growth in complexity of processors
 - Doubling of CPU performance
 - Performance often improved through on chip parallelism

- Why not just make a faster chip?
 - Theoretical
 - Physical limitations to size and speed of a single chip
 - Capacitance increases with complexity
 - Speed of light, size of atoms, dissipation of heat
 - The power used by a CPU core is proportional to Clock Frequency x Voltage²
 - Voltage reduction vs Clock speed for power requirements
 - Voltages become too small for "digital" differences
 - Practical
 - Developing new chips is incredibly expensive
 - Must make maximum use of existing technology

Parallel Systems

- Different types of parallel systems
 - Shared memory
 - Distributed memory
- Distributed memory: MPI
 - Each processor has its own local memory
 - Processors connected by some interconnect mechanism
 - Processors communicate via explicit message passing
 - Highly scalable architecture
- Shared memory: OpenMP
 - Each processor has access to a global memory
 - Communications via write/reads to memory
 - Caches are automatically kept up-to-date or coherent
 - Simple to program (no explicit communications)
 - Scaling is difficult because of memory access bottleneck
 - Usually modest numbers of processors

cea epc

HPC Trends

Parallel Background

- http://www.nu-fuse.com
- Now parallelism explicit in chip design
 - Beyond implicit parallelism of pipelines, multi-issue and vector units
- Now possible (and economically desirable) to place multiple processors on a chip.
- From a programming perspective, this is largely irrelevant
 - simply a convenient way to build a small SMP
 - on-chip buses can have very high bandwidth
- Main difference is that processors may share caches
- Typically, each core has its own Level 1 and Level 2 caches, but the Level 3 cache is shared between cores
- May also share other functional units
 - i.e. FPU

Multi- and Many-core

 \bigcirc

HECToR XE6 Compute Node

für Plasmaphysik

Node architecture:

•2x 16-core 2.3GHz

Really 4x 8-core •32GB DDR3 RAM •85.3GB/s (3.6GB/s/core)

Gemini interconnect:

- •1 Gemini per 2 compute nodes
- Interconnect connected directly through **HyperTransport**
- •Hardware support for:
 - MPI •
 - Single-sided • communications
 - Direct memory • access

•Latency ~1-1.5µs; •Bandwidth 5GB/s

Shared memory clusters

- Dominant HPC architecture
 - Shared memory clusters
 - Multi-core nodes
- Dominate processor architecture
 - Multi-core processors
 - Small shared memory systems on chip
 - 4-16 available per processor
 - Combine to give 48-64 cores per server
- Complex hierarchy of technologies
 - Efficient utilisation more challenging

<u>uon</u> http://www.nu-fuse.

Accelerators

- Need a chip which can perform many parallel operations every clock cycle
 - Many cores and/or many operations per core
- Want to keep power/core as low as possible
- Much of the power expended by CPU cores is on functionality not generally that useful for HPC
 - Branch prediction, out-of-order execution etc
- However, still need to run complex programs (operating systems)
 - Solution is to add specialised processing elements to standard systems: Accelerators
 - GPGPU (Graphical Processing Units) most common

AMD 12-core CPU

http://www.nu-fuse.com

NVIDIA Fermi GPU

cea ep

• GPU dedicates much more space to compute

Max-Planck-Institut für Plasmaphysik

- At expense of caches, controllers, sophistication etc

PPPL

GPU Performance

• GPU vs CPU: Theoretical Peak capabilities

	NVIDIA Fermi	AMD Magny-Cours (6172)
Cores	448 (1.15GHz)	12 (2.1GHz)
Operations/cycle	1	4
DP Performance (peak)	515 GFlops	101 GFlops
Memory Bandwidth (peak)	144 GB/s	27.5 GB/s

- For these particular products, GPU theoretical advantage is ~5x for both compute and main memory bandwidth
- Application performance very much depends on application
 - Typically a small fraction of peak
 - Depends how well application is suited to/tuned for architecture

Intel Xeon Phi

• 60 cores, 4 threads per code, 1.053 GHz

– 1 Tflop/s DP performance

CPU-like

x86 cores: same instruction set as standard CPUs

Relatively small number cores/chip

Fully cache coherent

In principle could support an OS

GPU-like

Simple cores, lack sophistication e.g. no out-of-order execution

Each core contains 512-bit vector processing unit (16 SP or 8 DP numbers)

Supports multithreading

Not expected to run OS, but used as accelerator

(at least initially)

Accelerators

- Challenge to fully exploit both accelerator and processor
- Cost of data transfer
- Access to network
 - Currently through host
- Small amounts of memory per core

Exascale challenges

- Exascale challenge exacerbates issues
 - Very large shared memory nodes
 - Very expensive communications

	2013	2017	2022
System Perf.	20 PFlops	100-200 PFlops	1 EFlops
Memory	1 PB	5 PB	10 PB
Node Perf.	200 GFlops	400 GFlops	1-10 TFlops
Concurrency	32	O(100)	O(1000)
Interconnect BW	40 GB/s	100 GB/s	200-400 GB/s
Nodes	100,000	500,000	O(Million)
I/O	2 TB/s	10 TB/s	20 TB/s
MTTI	Days	Days	O(1 Day)
Power	10 MW	10 MW	20 MW

- UK National HPC Service
- Currently 30cabinet Cray XE6 system
 - 90,112 cores
- Each node has
 - 2 × 16-core AMD
 Opterons
 - (2.3GHz Interlagos)
 - 32 GB memory
 - Peak of over 800 TF and 90 TB of memory

HECTOR usage statistics

Phase 3 statistics (Nov 2011 - Apr 2013) Ab initio codes (VASP, CP2K, CASTEP, ONETEP, NWChem, Quantum Espresso, GAMESS-US, SIESTA, GAMESS-UK, MOLPRO)

HECTOR usage statistics

http://www.nu-fuse.com

Phase 3 statistics (Nov 2011 - Apr 2013) 35% of the Chemistry software on HECToR is using DFT methods.

HECTOR Usage Statistics

Many Body Schrodinger Equation (exponential scaling)

$$\{-\sum_{i}\frac{1}{2}\nabla_{i}^{2} + \sum_{i,j}\frac{1}{|r_{i} - r_{j}|} + \sum_{i,I}\frac{Z}{|r_{i} - R_{I}|}\}\Psi(r_{1},..r_{N}) = E\Psi(r_{1},..r_{N})$$

Kohn Sham Equation (65): The many body ground state problem can be mapped onto a single particle problem with the same electron density and a different effective potential (cubic scaling).

$$\begin{aligned} &\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{T} \frac{Z}{|r-R_{T}|} + V_{XC} \} \psi_{i}(r) = E_{i} \psi_{i}(r) \\ &\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{1}, .., r_{N})|^{2} \end{aligned}$$

DFT Issues

- Pseudo-Potential Plane-wave
 - Good coverage, no region bias
 - Coverage where not needed (cubic scaling)
 - Relies heavily on 3D FFTs
 - Orthoganlisation
 - Diagonalisation
 - 3D FFTs
 - Pseudo-potentials
- CASTEP simulation of 64 atoms (Ti-Al-V): on 64 cores 13.5% of execution time is spent performing MPI_alltoallv for FFTs. Scaling 128 cores causes MPI to dominate, using 50% of the execution time

Scaling of 3D FFTs N=128³

Scaling of 3D FFTs N=1024³

3x1D FFT and MPI, N= 128^3

GPU 1D FFT

GPGPU: 3D FFT using cu-FFT

Optimisations

http://www.nu-fuse.com

cea epcc

Work by Berekley Labs

- Hybrid parallelisation
- Reduce FFT processes

FFT part

Optimisation

- Optimisations linear scaling
 - Real-space-grid algorithms (highorder finite difference method to calculate derivatives such as the kinetic-energy operator + localised wave functions)
 - Localised Basis sets
 - Not clear beneficial for metals

Conclusions

- DFT generally performed through packages
 - This means the optimisations should be done for you
- Accelerators and complex hardware becoming more common

