# Gravitational Waves, Numerical Relativity, and measuring Black Holes 

Mark Hannam<br>Cardiff University



## DiRAC Day

Edinburgh, September 8, 2016

## February II, 2016

##  Scientist

MISINFORMATION AGE Nobody is safe from
the internet mindwarp

LOOSE CORALS How to seduce them
to spawn in captivity

The theory of relativity proved
 that they have finaliy been detected from two
massive black holes colliding 1.3 billion light years away. The consequences for our understanding
of the universe are out of this world


FOREVER PREMATURE The lasting legacy of
being born too soon

WARM, WARMER, REALLY WARM! Can we find our way to the $1.5^{\circ} \mathrm{C}$ climate target?

reetomonolet
32-pagebook
The Big Brain The Big Brain
Workout Workout
The Daily Celcarapl

## GRAVITATIONAL WAVES

$=$ EU deal could split Tories
N

aw .




## Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott et al. ${ }^{*}$<br>(LIGO Scientific Collaboration and Virgo Collaboration)<br>(Received 21 January 2016; published 11 February 2016)




## Numerical relativity

numerically solve
full Einstein equations on 3D (mesh-refined) grids

Requires weeks to months on 100s of cores.




Masses: $m_{1}, m_{2}$

## Spins: $\mathbf{S}_{1}, \mathbf{S}_{2}$

(8 parameters)
useful combinations:

$$
\begin{gathered}
M=m_{1}+m_{2} \\
q=m_{2} / m_{I} \\
\eta=m_{I} m_{2} / M^{2} \\
\chi=S / m^{2}
\end{gathered}
$$



Plus: distance, sky location, orientation, polarisation

## Aligned spins



$\uparrow \uparrow$


II
(Dominant spin effect is a weighted sum of the spins)

## IMRPhenom

(frequency domain)


- (a) PN-based ansatz
- (b) phenomenological fit (based on NR behaviour)
- (c) FFT of ringdown waveform (Lorentzian)
- Analytic: fast


## EOBNR

(time domain)


- (a) EOB + terms tuned to NR waveforms
- (b) Smooth transition to ringdown
- Includes both spins
- Numerically solve ODEs: slow
- Speed-up: Reduced-order models


## Phenom

(frequency domain)

## EOB-NR

(time domain)


- (a) EOB + terms tuned to NR waveforms
- (b) Smooth transition to ringdown
- Includes both spins
- Numerically solve ODEs: slow
- Speed-up: Reduced-order models



## $50 M_{\odot}$


[Khan, et. al (2016)]

## $50 M_{\odot}$



[LVC (20|6)]


GWI50914 "The Event"

## Orbital precession



Newtonian gravity:
$L, S_{1}, S_{2}$ remain fixed

## Orbital precession



General relativity
( $\mathrm{L}, \mathrm{S}_{1}, \mathrm{~S}_{2}$ ) precess around J

## Orientation dependence

$$
q=3,\left|S_{2}\right|=0.75 \text { (in plane) }
$$

Observer aligned with J

## Orientation dependence

$$
q=3,\left|S_{2}\right|=0.75 \text { (in plane) }
$$



Observer aligned with J


Observer inclined $\pi / 6$ to $J$


Observer inclined $\pi / 3$ to $J$


Observer inclined $\pi / 2$ to $J$

## Equal-mass nonspinning BBH consistent with GWI50914



## Unequal-mass precessing BBH consistent with GWI509|4


"Face-on" to the source

Non-precessing


Precessing


## "Edge-on" to the source



[LVC (2016)]

## Follow-up simulations

- Perform simulations near "best-guess" parameters
- Study systematic errors in the waveform models
- "Local" models could improve measurements
- I00s of simulations (SXS, Cardiff-UIB, GATech, RIT)
- DiRAC: 29 simulations on Cosma.
- Required ~I million CPU hours




## All observations



## All observations



## All observations



## Black Holes of Known Mass



## Future observations



## Future observations



## The future

- The field of gravitational-wave astronomy has begun!
- I00s of black hole observations expected in next 5 years
- We need to be ready to extract the maximum science!
- For future signals, we will need better models:
- higher harmonics
- more precession physics
- A large NR simulation campaign is underway...

