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Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)
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Numerical relativity

017 1372.800

numerically solve
full Einstein equations
on 3D (mesh-refined) grids

0.751

0.501

0.252

Requires weeks to months
on |00s of cores.
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Masses: m;, m>
Spins: Sy, S

(8 parameters)

useful combinations:
M=m; +my
qg=mz/ m
N =mj; my /[ M?
y =S/m?

Plus: distance, sky location,

orientation, polarisation



Aligned spins

(Dominant spin effect is a weighted sum of the spins)
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® (a) PN-based ansatz ® (a) EOB + terms tuned to NR

® (b) phenomenological fit waveforms

(based on NR behaviour) o

® (c) FFT of ringdown
waveform (Lorentzian)

(b) Smooth transition to ringdown

® |Includes both spins

® Analytic: fast ® Numerically solve ODEs: slow

® Speed-up: Reduced-order models
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(a) EOB + terms tuned to NR
waveforms

(b) Smooth transition to ringdown

Includes both spins

Numerically solve ODEs: slow

Speed-up: Reduced-order models
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Orbital precession

Newtonian gravity:
L, Si, S2 remain fixed



Orbital precession

General relativity
(L, S1,S2) precess around |



Orientation dependence

g=3, |S2| = 0.75 (in plane)

Observer aligned
with |




Orientation dependence

g=3, |S2| = 0.75 (in plane)

Observer aligned
with |
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Equal-mass nonspinning BBH
consistent with GW 150914
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Unequal-mass precessing BBH
consistent with GW 150914




Non-precessing

“Face-on”
to the
source Precessing




Non-precessing

“Edge-on”
to the
source Precessing




—  Qverall
— |IMRPhenom
— EOBNR

—  Prior
—  |MRPhenom

| |
| 1 I | |
30° 60° 90° 120° 150° 180° 0.00 0.25 0.50 0.75 1.00
0,],\' \.l’




Follow-up simulations

Perform simulations near “best-guess” parameters
Study systematic errors in the waveform models
“Local” models could improve measurements

|00s of simulations (SXS, Cardiff-UIB, GATech, RIT)
DiRAC: 29 simulations on Cosma.

® Required ~| million CPU hours
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All observations
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All observations
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All observations

GW151226

‘\-_

R SSs

GW150914




Solar Masses
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Future observations
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Future observations
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The future

The field of gravitational-wave astronomy has begun!
|00s of black hole observations expected in next 5 years

We need to be ready to extract the maximum science!

For future signals, we will need better models:
® higher harmonics
® more precession physics

A large NR simulation campaign is underway...



