
James Willis, Matthieu Schaller, Richard Bower, Pedro Gonnet & 

SWIFT Team

Durham University, ICC

SWIFT – SCALING ON NEXT GENERATION 
ARCHITECTURES

Sixth Annual DiRAC Science Day
8th September 2016



TEAM

This work is a collaboration between two departments at Durham 

University (UK):

• The Institute for Computational Cosmology,

• The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of 

Ghent (Belgium) and the DiRAC software team.

• This research is partly funded by an Intel IPCC since March 2015.



• Motivation behind SWIFT

• Problem that we need to solve

• SWIFT's solution to problem

• New architectures (e.g. KNL)

• Challenges faced on KNL

• Scaling results from KNL

• Conclusion

OVERVIEW



• Create simulations of the formation and evolution of the Universe

• Update 109 particles using hydrodynamical and gravitational forces

• Simulate physical processes:

• Cooling and heating of the gas due to the presence of stars and other 

emission

• Formation of stars in cold and dense regions

• Explosion of supernovae with injection of their energy in the surrounding gas

• Formation of supermassive black holes

MOTIVATION BEHIND SWIFT



• We update each particle using SPH (Smoothed-Particle 

Hydrodynamics)

• Each particle interacts with its neighbours that are within a 

smoothing length, h

• The smoothing length varies depending on the particle density 

of the region

PROBLEM TO SOLVE



• Particles move over time and so to will their neighbour lists

• An interaction between two particles is computationally cheap 
to carry out (low FLOPs)

• Domain is unstructured leading to large particle density 
variations

• Domain is constantly evolving

CHALLENGES



TASK BASED PARALLELISM

• Shared-memory parallel programming paradigm:

• Fine-grained tasking

• Data locality

• Asynchronous MPI

• Abstracts the parallelisation completely away from the 
physics

• Avoids most problems associated with concurrency and load-
balancing

• Implemented by our own Open-source library QuickSched
(arXiv:1601.05384)



TASK BASED PARALLELISM FOR SPH
• Decomposes the problem 

into a set of inter-dependent 

tasks which form a task 
graph

• Each task has a set of 
dependencies and conflicts

• Each thread then executes a 
task that has no unresolved 
dependencies or conflicts



TASK BASED PARALLELISM

Task graph for one time-step. Orange bars are integration tasks.

Blue and green are particle interaction tasks.

Almost perfect load-balancing is achieved on 32 cores.



SUPERMUC SCALING

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C 
at 2.7 GHz with 32 GByte of RAM per node.



SWIFT VS GADGET-2

• On one core SWIFT is 
~17.2x faster than 

Gadget-2

• SWIFT on one core is 

as fast as Gadget-2 
on 64

• Same physics is used 
with the same level of 
accuracy

17.2x Faster than 
Gadget-2



NEXT GENERATION ARCHITECTURES

• CPU clock rates peaking

• Number of cores per chip increasing

• Intel Xeon Phi Knights Landing 64-72 cores

• Lower clock rates ≈1.3GHz

• Intel Xeon Broadwell 22 cores

• AMD Zen 32 cores

www.ophtek.com



CHALLENGES

• Applications must improve their strong scaling in order to take 
advantage of this new technology

• Lower clock rates

• Make use of 16-wide vector units to improve performance even 
further

• Effective ways to utilise MPI



KNL SCALING

• Intel Xeon Phi CPU 7250 @ 1.30GHz

• 64 cores, 4-way Hyper Threading

• Supports up to 256 threads with HT turned on

• 16 GB MCDRAM



KNL SCALING

Note: The KNL's MCDRAM was operating in cache mode

COSMA5
16 threads: 78% efficiency
32 threads: 48% efficiency

KNL
16 threads: 77% efficiency
32 threads: 64% efficiency 



SWIFT THREADPOOL

• Poor scaling on KNL

• Profiled code:

• Physics perfectly load balanced, scales well

• Bottlenecks down to scheduler maintenance that is run serially 

in between time steps

Solution

• Parallelise serial code using a pool of threads

• Each thread is assigned a job to perform

• Created using Pthreads

• Similar to a lightweight version of OpenMP



KNL SCALING

Note: The KNL's MCDRAM was operating in cache mode

Master
16 threads: 77% efficiency
32 threads: 64% efficiency

Threadpool
16 threads: 90% efficiency
32 threads: 84% efficiency 



VECTORISATION

• Performed auto-vectorisation on SWIFT

• Wanted to make it easier for scientists to vectorise code without 
using intrinsics

• Vectorised with ICC, but we need the same performance with 
GCC

• Now looking at explicit vectorisation using intrinsics to get better 
performance

Further Work

• AVX-512 instruction set

• 16-wide vector units 

• Masking operations



CONCLUSIONS

• Improved SWIFT scaling on a many-core system

• Reduced time to solution

• Implemented a lightweight threadpool that parallelises serial 
jobs

• Physics scales very well up to 100,000 cores

• ~17.2x faster than Gadget-2

Future Work

• Improve efficiency by parallelising serial parts:

• IO

• Tree construction

• Scheduler



QUESTIONS

• Thank you for your attention

• Any questions?

• Website: www.icc.dur.ac.uk/swift/



VECTORISATION CHALLENGES

• SWIFT has high vector register pressure

• SWIFT has low FLOPs

• Opposite to QCD and LAPACK code which have low register 
pressure and high FLOPs


