
Vectorisation of SWIFT

James Willis | Richard Bower, Matthieu Schaller, Pedro Gonnet | Institute for Computational Cosmology, Durham University
Contact: james.s.willis@durham.ac.uk

Introduction

SWIFT is an SPH code that utilises the
concept of task-based parallelism to
distribute its workload across multiple
processors.

Overview

The improved performance of SWIFT is the
result of several features:
• Task-based parallelism: decomposes the
problem into a task graph that specifies all
dependencies and conflicts between tasks.
The tasks are then scheduled on a processor
based upon this graph, which provides a
better fine-grained load balancing.

• SIMD vectorisation: takes advantage of
CPUs’ vector units to parallelise computation
and make use of single-precision values
where excessive accuracy is not needed.

• Hybrid shared/distributed memory
parallelism: tasks that require data from
neighbouring nodes are scheduled after the
asynchronous transfers are complete, which
means that communication latencies can be
hidden with computation.

• Graph-based domain decomposition: uses
information collected from the task graph to
decompose the simulation domain such that
the work is equally distributed across all
nodes.

SIMD Vectorisation

Results

Conclusion

The maximum speed-up obtained from
vectorisation (AVX) was ~2x, which is well
below the theoretical maximum performance.
This gap in performance is due to a number of
reasons:
• High vector register pressure
• Partially filled vectors due to low number of
 interactions between particles

For these reasons we have recently begun to
vectorise the code using intrinsics, which give
us more control over how the code is executed
on the CPU and reduces our reliance on the
compiler.

Problem

The problem we face in SPH is that each
particle must be interacted with each of its
neighbours that fall within a smoothing length,
h.

However, it is very time consuming to loop over
all particles in a neighbouring cell and test
whether they interact or not.

Solution

One solution is to sort the particles along the
axis linking two neighbouring cells. This greatly
reduces the number of unnecessary
computations as you only need to loop over
particles that are a distance h, on the axis.

Vectorisation can improve the performance of
an application by making use of a CPUs’ vector
registers. SSE, AVX and AVX-512 instruction
sets utilise these registers to process multiple
pieces of data in a single step. Each set can
perform concurrent operations on up to: 4,8 and
16 single precision numbers. Thus, the
theoretical speed-up obtained from each
instruction set is: 4x, 8x and 16x respectively.

In practice the code is sped up by vectorising
the most time consuming loops in the code.
This can be achieved in one of two ways:

 Auto-vectorisation: the compiler
automatically vectorises loops based upon a
set of criteria

 Explicit Vectorisation: the code is modified
by the developer to use a set of compiler
intrinsics and data types

We wanted to keep the code readable and easy
to maintain, so we opted to allow the compiler
to vectorise the code for us rather than
modifying the code to use intrinsics.

Vectorisation of SWIFT

In order to vectorise the code there were a
number of changes that needed to be made:
• Remove vector dependencies between
 variables

• Remove multiple exit conditions from loops
• Careful placement of conditional statements

Once the code was vectorised a benchmark
was created to both measure the accuracy and
performance gain. After analysing the first
benchmark results it became clear that
extensive optimisations were needed to
achieve the theoretical maximum speed-up.

The following optimisations were performed:
• Place particles into a cache formed from a
 SoA (Structure of Arrays)

• Sort the cache
• Improve memory access pattern by using a
 branchless smoothing kernel (Wendland C2)

• Vectorise the loop that locates the exit
 condition

• Improve the algorithm

The results displayed below show the speed-up
gained from each optimised version of the
code.

Website
http://icc.dur.ac.uk/swift/

Papers
https://arxiv.org/abs/1606.02738
https://arxiv.org/abs/1601.05384

Figure: Sorted particles. Only need to loop over
particles that are up to a distance, h, on the
axis.

	Slide 1

