Investigation of open and hidden strangeness at ELSA

Tom Jude On behalf of the BGO-OD Collaboration

Physikalisches Institut University of Bonn Supported by the DFG / tr-16

26.09.16 - 27.09.16

- BGO-OD at ELSA, Bonn University
- Exotic hadron evidence in the strangeness sector
- $\gamma p \rightarrow K^0 \Sigma^+$ data from CBELSA/TAPS
- Ongoing analysis at BGO-OD

The Electron Stretcher Accelerator (ELSA)

The BGO-OD experiment at ELSA

- BGO calorimeter (central region) & Forward Spectrometer combination
- High momentum resolution, excellent charged & neutral particle ID •

Tom Jude (University of Bonn)

The BGO-OD experiment at ELSA

- BGO calorimeter (central region) & Forward Spectrometer combination
- High momentum resolution, excellent charged & neutral particle ID

The BGO-OD experiment at ELSA

- BGO calorimeter (central region) & Forward Spectrometer combination
- High momentum resolution, excellent charged & neutral particle ID

Analysis overview

- So far: 25 days lin. pol. data (IH₂ target), 2 days C target, 2 days D₂ target
- Example of recent data (IH₂ target, subset of data):

Strangeness photoproduction - physics motivation

- BGO-OD Identify final states of mixed charge investigation of Y^* resonances, eg $K^+\Lambda(1405) \rightarrow K^+\pi^0\Sigma^0 \rightarrow K^+\pi^0\gamma\Lambda \rightarrow K^+\gamma\gamma\gamma\rho\pi^-$
- Y* spectrum limited success with constituent quark models
- Models including meson-baryon interactions as degrees of freedom more successful, C. Garcia-Recio, M.F.M. Lutz, and J. Nieves, Phys. Lett. B 582 (2004) 49, M.F.M. Lutz and E.E. Kolomeitsev, Phys. Lett. B 585 (2004) 243.

- Λ(1405) dynamically generated by meson-baryon interactions?
 J.C. Nacher, E. Oset, H. Toki, A. Ramos, U.G. Meissner, Nucl. Phys. A 725 (2003) 181
- LQCD calculations: J.M.M Hall et al., Phys. Rev. Lett. 114 (2015) 132002

Strangeness photoproduction - physics motivation

- Hadronic molecules predict new Y^* states, eg Σ^* close to $\Sigma(1385)$ Jia-Jun Wu, S. Dulat & B. S. Zou, Phys. Rev. D 80 (2009) 017503
- BGO-OD measurements at extreme forward angles reaction dynamics at very low momentum exchange (t-channel)

Strangeness photoproduction - physics motivation

- Hadronic molecules predict new Y^* states, eg Σ^* close to $\Sigma(1385)$ Jia-Jun Wu, S. Dulat & B. S. Zou, Phys. Rev. D 80 (2009) 017503
- BGO-OD measurements at extreme forward angles reaction dynamics at very low momentum exchange (t-channel)

Evidence of hadronic molecules in the charmed sector

N.A. Törnqvist, Phys. Lett. B590, 209 (2004) Close to $D^0 \bar{D}^{0*}$ threshold

B. Aubert et al (BARBAR Collaboration), Phys. Rev. D77

111101 (2008)

Tom Jude (University of Bonn)

R. Aaij et al, PRL 115, 072001 (2015)

Pentaguark candidates at LHCb

$\gamma p ightarrow K^0 \Sigma^+ \ d\sigma/d\Omega$ at CBELSA/TAPS

R. Ewald et al., Phys. Lett. B 713 (2012) 180 (CBELSA/TAPS Collaboration)

Tom Jude (University of Bonn)

26.09.16 - 27.09.16 7 / 17

Preliminary identification of $K^0\Sigma^+$ with BGO-OD

- The 1st beam asymmetry measurement R. Ewald *et.al*, PLB 738 (2014) 268 (CBELSA/TAPS Collaboration)
- Access $\gamma p \rightarrow K^0 \Sigma^+$ via different decay modes at BGO-OD:

K^0 photoproduction off the neutron

A. Ramos and E. Oset, Phys. Lett. **B 727**, (2013) 287 The role of vector-baryon channels and resonances in the $\gamma p \rightarrow K^0 \Sigma^+$ and $\gamma n \rightarrow K^0 \Sigma^0$ reactions near the $K^*\Lambda$ threshold

Test beam time data (Deuterium target), 2 days

(a) $2\pi^0$ in the BGO, Missing mass between 1000 - 1200 MeV . ଟି₂₅₀⁄ • $K^0 \rightarrow 2\pi^0$ reconstructed in 200 the BGO 1500 Mean - 508 MeV • Total neutral particles < 61000^{+*}Height = 380 $\sigma = 26 \text{ MeV}$ Total charged particles < 3 Integral over $\pm 2\sigma = 23753$ • $K^0 \rightarrow 2\pi^0$ reconstructed in 2πº invariant mass [MeV] (b) $2\pi^0$ and proton. Missing mass between 1000 - 1200 MeV the BGO 120 Counts Proton in the Forward 100 spectrometer & select missing π^0 mass from $\Sigma^+ \rightarrow \rho \pi^0$ 60 Mean = 512 MeV • Total neutral particles < 6Height = 296 σ = 18 MeV Total charged particles < 3 20 Integral over $\pm 2\sigma = 5787$ 300 400 800 900 2π⁰ invariant mass [MeV]

26.09.16 - 27.09.16

10 / 17

K^+ at forward angles - motivation

- Higher lying Y* states at low t complementary to recent Λ(1405) measurements at CLAS (K. Moriya et al., Phys. Rev. C88, 045201 (2013))
- γp → K⁺Λ Extreme forward angles Constrain dominant t-channel mechanisms, & important for hypernuclei electroproduction

Bydzovsky and D. Skoupil, arXiv:1211.2684v1 (2012) Proceedings of SNP12

K^+ identification in the forward spectrometer

• β & momenta measured in the forward spectrometer

To enhance K^+ signal

- $\pi^0 \rightarrow \gamma \gamma$ mass reconstructed in the BGO
- BGO total energy deposition < 250 MeV
- Beam energies above $K^+\Lambda$ threshold

Mass recoiling from K^+ in the forward spectrometer

- 11 days of continuous data (approx. 1/3 of available data)
- Clear peaks of higher lying hyperon states

Very forward $K^+ \Lambda \ d\sigma / d\Omega$ (preliminary)

T. Zimmermann, preliminary data, PhD thesis work

$\gamma p \rightarrow K^+ \Sigma^0$ with no initial particle Identification

Preliminary analysis, 25 days data, (G. Scheluchin, PhD thesis work)

- K^+ & $\Lambda \rightarrow p\pi^-$ over large acceptance region ($1^0 < \theta < 155^0$)
- Σ^0 decay photon in the BGO ($\Sigma^0 \to \Lambda \gamma$)
- Technique used for higher lying Y* states (eg $\Lambda(1405) \rightarrow \pi^0 \Sigma^0$)

Reconstructing the Σ^0 invariant mass

(a) Momentum conservation & K^+ "missing mass" cut

(b) Kinematic fit & confidence level cut (c) Neural network to suppress background

Tom Jude (University of Bonn)

$\gamma p \rightarrow K^+ \Sigma^0$ with no initial particle Identification

BGO-OD (preliminary), CLAS: B. Dey, et al., Phys. Rev. C82 025202 (2010) SAPHIR: K.-H. Glander et al., Eur. Phys. J. A19 251 (2004), LEPS: M. Sumihama et al., Phys. Rev. C73 035214 (2006)

Tom Jude (University of Bonn)

- BGO-OD Charged particle ID at forward angles & mixed charged final state reconstruction
- Associated strangeness photoproduction & low momentum transfer processes
- ${\cal K}^0\Sigma^+$ & ${\cal K}^0\Lambda$ study cusp-like structure in ${\cal K}^0\Sigma^+$ cross section
- $K^+\Lambda$ & $K^+\Sigma^0$ $d\sigma/d\Omega$ at extremely forward angles
- Identification of higher lying Y* states analysis on the way!

Collaborating Institutions

- Physikalisches Institut, Bonn, Germany
- INFN sezione di Pavia, Pavia, Italy
- INFN ISS, Rome, Italy
- The University of Edinburgh, Edinburgh, UK
- INFN sezione di Roma, Rome, Italy
- INFN Roma Tor Vergata, Rome, Italy
- INFN sezione di Roma, Rome, Italy
- INFN LNF, Frascati (Rome), Italy
- INFN sezione di Torino, Torino, Italy
- INFN Roma Tor Vergata, Rome, Italy
- The University of Torino, Torino, Italy
- INFN sezione di Catania, Catania, Italy

- Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany
- Justus-Liebig-Universität Giessen, Germany
- Institut f
 ür Physik, Basel, Switzerland
- The University of Messina, Messina, Italy
- The University of Rome "Tor Vergata", Rome, Italy
- National Science Center Kharkov Institute of Physics and Technology, Kharkov, Ukraine
- Russian Academy of Sciences Institute for Nuclear Research, Moscow, Russia
- Petersburg Nuclear Physics Institute, Gatchina, Russia

Extra slides...

Incident photon beam parameters

- Energy tagged γ beam \leq 3 GeV, 250 ps time resolution
- Current \leq 2 nA, 10 nA upgrade planned
- \bullet Circularly and linearly polarised γ beams available

Coherent bremsstrahlung using a diamond radiator

30% polarisation at 1.8 GeV with an incident electron energy of 3.2 GeV

$\gamma p ightarrow {\cal K}^0 \Sigma^+ \; d\sigma/d\Omega$ at CBELSA/TAPS

First $\gamma p ightarrow {\cal K}^0 \Sigma^+$ beam asymmetry, Σ , data

• The 1st beam asymmetry measurement R. Ewald *et.al*, PLB 738 (2014) 268 (CBELSA/TAPS Collaboration)

K^0 photoproduction off the neutron

- T. Mart, Phys. Rev. C 83, 048203 (2011)
- Complimentary to γp → K⁺Λ measurements: relate hadronic coupling constant predictions of n(γ, K⁰)Λ cross section

- BGO-OD 1st differential cross section measurement to $E_{\gamma} = 3 \text{ GeV}$ & polarisation observables
- Higher statistics K^0 identification via both main decay modes

K^0 photoproduction off the neutron

- No K⁰ t-channel exchange (but still K^{*}) s channel resonances more prominent
- Complementary to $K^+\Lambda$ relate hadronic coupling constants
- K. Tsukada et al, Phys. Rev. C 78, 014001 (2008)

Separating $K^0\Lambda$ and $K^0\Sigma^0$ final states

- Simulated data to demonstrate separation of channels
- Identify the decay: $\Sigma^0 \to \Lambda \gamma$

K^+ identification in the BGO

- Time delayed, K^+ weak decay within the crystals of the BGO ball
- T.C Jude, D.I. Glazier, D.P. Watts, et al, PLB, 735 (2014) 112

Tom Jude (University of Bonn)

Open and hidden strangeness at ELSA

26.09.16 - 27.09.16 17 / 17

K^+ identification in the BGO

- Identify photon from $\Sigma^0 \to \Lambda \gamma$
- 77 MeV in Σ^0 rest frame $(M_{\Sigma^0} M_{\Lambda})$

Reject K^+ punching through BGO crystals

Unreliable signal for energetic K^+ which do decay close or in the PMT

