

Central Exclusive Production at LHCb (and other low multiplicity physics)

Paolo Gandini

University of Oxford

Exotic Hadron Workshop @ Edinburgh

27th September 2016

Outline

LHCb is in a unique position at the LHC to measure QCD phenomena at high rapidities and low transverse momenta

Perfect to study Central Exclusive Production (CEP) processes at high energy

A not-so-random collection of results and ideas \rightarrow past and future

Goal is to to show what we can do/can't do and highlight current activities

- Theoretical interest & Experimental signatures
- The Herschel detector
- Recent results and examples
- CEP as a production mechanism
- Seaches in production, not in decay

LHCb Detector

Please see nice talk by Marco Pappagallo
I will highlight the most relevant features for this talk

Fully instrumented: $2 < \eta < 5$

Some sensitivity: $-3.5 < \eta < -1.5$

- Forward spectrometer
- Good Vertex measurements
- Precise Tracking
- Excellent PID up to 100GeV
- Versatile Trigger (L0+Hlt)

CEP – Introduction

• Central Exclusive Production can be done at LHCb → What do we look for?

$$pp \rightarrow p + X + p$$
 (rapidity gaps and protons intact)

- Colourless objects in QCD, Very low PT objects, Clean experimental environment
- Rich Physics: Photon-Pomeron, Double-Pomeron, Photoproduction, Glueballs, Exotica
- Just to give an idea of "coverage" of various processes:

CEP - Signatures

- How do we select / trigger these events?
- Protons → escape in the beampipe
- Events with low activity in detector
- Look at backwards tracks in the VELO (some η coverage)
- Unique features compared to "standard" LHCb event

Typical Event

CEP-like event: 2muons

LHCb is forward, but we can detect backward tracks in the VELO (no p information for those)

- New detector installed for Run2 in 2015. Fully operational
- Start of 2016: new better electronics installed
- Increase η coverage in the forward/backward region
- IDEA is to veto events with activity at high η
 - Idea: scintillators in the tunnel where beampipe is accessible
 - High Rapidity Shower Counters for LHCb: HeRSCheL
 - Five planes of scintillators: 4 quadrants, 20mm thick
 - Use same electronics of Preshower Detector

Parking position available

- New detector installed for Run2 in 2015. Fully operational
- Start of 2016: new better electronics installed
- Increase η coverage in the forward/backward region
- IDEA is to veto events with activity at high η

To get an idea on distances

- Fully operational → first analysis using it performed
- Now included in HLT1 to reduce trigger rates
- Work ongoing for the integration in L0 hardware trigger

Figure 2: Photographs of the backward HERSCHEL stations (left: B0, middle: B1, right: B2)

Figure 4: Energy deposit in the scintillators as function of the pseudorapidity of the "parent" particle that caused the shower. The grey area indicates the nominal pseudorapidity coverage of LHCb.

- Just an example on the ADC distributions observed (2015)
- We can exploit different techniques to evaluate the pedestal
- We can extract the efficiency via data-driven tecniques

CEP programme at LHCb

- LHCb has a rich CEP programme → rapidly expanding
- Already published

 CEP J/Ψ,Ψ(2S)
 2014 J. Phys. G. 41 055002

 CEP double J/Ψ
 2014 J. Phys. G. 41 115002

 CEP Υ
 JHEP 1509 (2015) 084

 CEP J/Ψ, Ψ(2S) at 13TeV
 LHCb-CONF-2016-007

- New analyses to come e.g:
 - Other charmonium ($\chi_{0.1.2}$ states)
 - Exotica searches
 - Spectroscopy in CEP
 - (see Marco's talk for details)
- Analyses still ongoing... stay tuned!

Taken for an old CONF note 2010 Should update soon

Inelastic contribution appears to be much larger than for J/ψ . In a first approximation it should be square of bkg in J/ψ process.

LHC forward physics WG

- LHC wide effort → this is included in forward physics WG
- Yellow pages: http://slac.stanford.edu/pubs/slacpubs/16250/slac-pub-16364.pdf
- A lot of effort both theoretical and experimental communities
- LHCb → Herschel, CMS+TOTEM special runs, ATLAS+ALPHA
- Two methods
 - Tag the protons and momentum balance
 - Veto forward activity and fit the pt2 spectrum

CERN-PH-LPCC-2015-001 SLAC-PUB-16364 DESY 15-167

LHC Forward Physics

Editors: N. Cartiglia, C. Royon The LHC Forward Physics Working Group

5 C	entral Exclusive Production	104
5.1	Introduction	102
5.2	Analysis techniques and detectors to study exclusive processes at the LHC	104
5.2.1	Analysis techniques	104
5.2.2	Central exclusive production at LHCb and ALICE	104
5.2.3	Central exclusive production at CMS and ATLAS	105
5.3	QCD processes	106
5.3.1	Introduction	106
5.3.2	Forward proton tagging: phenomenological insight and advantages	108
5.3.3	Conventional quarkonium production	110
5.3.4	'Exotic' quarkonium production	113
5.3.5	Photon pair production	114
5.3.6	Light meson pair production	115
5.3.7	Production of low mass resonances and glueballs	118
5.3.8	Quarkonium Pair Production	122

CEP-type analyses at LHCb

- LHCb can't "reconstruct" the forward/backward intact protons
- Select signal requiring no other activity in the detector
- Extract purity looking at the pt2 distribution (CEP/nonCEP fractions)
- Irreducible backgrounds dominated by inelastic backgrounds
- Undetectable events where the proton breaks up in the forward direction

Example of 2013 Jspi paper: NO HERSCHEL

Updated measurements of exclusive J/ψ and $\psi(2S)$ production cross-sections in pp collisions at $\sqrt{s}=7~{\rm TeV}$

Correlated uncertainties expressed as a percentage of the final result Purity determination (J/ψ) 2.0% Purity determination $(\psi(2S))$ 13.0% 1.0% 2.0% *Acceptance *Shape of the inelastic background 5.0% 3.5% *Luminosity Total correlated statistical uncertainty (J/ψ) 2.4% Total correlated statistical uncertainty $(\psi(2S))$ 13.0% Total correlated systematic uncertainty 6.5%

> CERN-PH-EP-2013-233 LHCb-PAPER-2013-059

Estimate of potential benefit of vetoeing particles up to η<7.5

CEP of J/ψ at 13TeV

- Use new 2015 dataset @13TeV (200pb⁻¹) + Herschel information
- Nearly all numbers (efficiencies, etc) come from data driven approaches
- Selection:
 - MuonTriggers for CEP (require low multiplicity on SPD)
 - Two reconstructed muons with $2 < \eta < 4.5$
 - No additional tracks/energy
 - Within 65 MeV/c2 of the J/ψ
 - Herschel VETO applied (and validated with different approaches)
 - Background halved relative to previous analyses

CEP of J/ψ at 13TeV

- Clean pedestals and complete suppression of pileup
- Pedestals calibrated using non connected channels
- Quadratic sum of normalised signals (ΣH) used to create veto
- Response checked against 3 classes of events
- Clear signal/background enhancement

CEP of J/ψ at 13TeV

• Results in a CONF note (presented at ICHEP) → now proceeding to a paper

LHCb Preliminary Cross Section

$$\sigma_{J/\psi \to \mu^+ \mu^-} (2 < \eta_{\mu^+ \mu^-} < 4.5) = 407 \pm 8 \pm 24 \pm 16 \text{ pb}$$

 $\sigma_{\psi(2S) \to \mu^+ \mu^-} (2 < \eta_{\mu^+ \mu^-} < 4.5) = 9.4 \pm 0.9 \pm 0.6 \pm 0.4 \text{ pb}$

Differential cross section in better agreement with JMRT NLO rather than LO predictions

_HCb-CONF-2016-007-001

CEP processes

Related phenomena where the colourless object creates a particle

- LHC is essentially a gluon collider → cross sections should be high
- But also a gamma collider → photoproduction!
- Provides selection rules for production: e.g pomeron-pomeron 0⁺⁺,2⁺⁺
- We could study more exotic quantum number combinations as well
- Reggeon-Reggeon scattering is also possible
- In brief, a very good laboratory for clean direct production

A few thoughts for the future...

- Taking for the LHC Flavour Physics roadmap → new analyses are possible
- Exploit big dataset both with muon and hadronic channels
- Just two selected examples (not a full list)
- Double Vector
 - $\eta(')\eta(')$ and $\varphi\varphi,\varphi\omega,\omega\omega$
 - Includes final states with pi0
 - Interesting for NonRes-Res production
 - Belle evidence of new resonance

Fig. 5.6: Differential cross section $d\sigma/dM_X$ for the CEP of meson pairs, for meson transverse energy $E_{\perp} > 2.5$ GeV and pseudorapidity $|\eta| < 1$. Predictions made using SuperChic MC [46].

PRL 108, 232001 (2012) PHYSIC

PHYSICAL REVIEW LETTERS

week ending

Observation of New Resonant Structures in $\gamma\gamma \rightarrow \omega\phi$, $\phi\phi$, and $\omega\omega$

• Gamma Gamma

- Never observed $\gamma \gamma \rightarrow \gamma \gamma$
- Usually $\gamma \gamma \to X$
- we can do $X \rightarrow \gamma \gamma$
- Interesting prospects

Observing light-by-light scattering at the Large Hadron Collider

David d'Enterria¹ and Gustavo G. Silveira²

¹CERN, PH Department, 1211 Geneva, Switzerland

²UC Louvain, Center for Particle Physics and Phenomenology (CP3), Louvain-la-Neuve, Belgium

Elastic light-by-light scattering $(\gamma\gamma\to\gamma\gamma)$ is open to study at the Large Hadron Collider thanks to the large quasi-real photon fluxes available in electromagnetic interactions of protons (p) and lead (Pb) ions. The $\gamma\gamma\to\gamma\gamma$ cross sections for diphoton masses $m_{\gamma\gamma}>5$ GeV amount to 105 fb, 260 pb, and 370 nb in p-p, p-Pb, and Pb-Pb collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{\rm NN}}=14$ TeV, 8.8 TeV, and 5.5 TeV respectively. Such a measurement has no substantial backgrounds in Pb-Pb collisions where one expects about 70 signal events per run, after typical detector acceptance and reconstruction efficiency selections.

Using Neutrals

- Benefit from the low multiplicity environment \rightarrow we can use neutrals
- Performance of LHCb calorimeter depends on occupancy
- In average events, too much activity makes analyses with $\pi 0$ difficult!
- CEP-like events are much cleaner → different triggers/selections in 2015,2016

Gluonic objects

- We can look at hadronic/gluonic objects at low invariant mass
- Standard glueballs, oddballs and hybrids
- E.g DiPion, DiKaon CEP
- Amplitude analysis required, several approaches
- Discussed in this workshop (see Derek Glazier)

• Oddballs:

- Quantum number 0⁻⁻
- Higher in mass. Don't mix with qqbar
- Several predictions (lattice) + Holographic models
- Several decay patterns: $f1(1285)\gamma$ and $f1(1285)\omega$
- Fully accessible to LHCb

Conclusion

- CEP is a very rich field → rapidly expanding programme
- Nice production mechanism & unique experimental conditions
- Quantum number selection rules
- Run2: still 2 years of good data to collect!
- Also we have other dataset to exploit (ions!)
- Any thoughts to add from theory audience?