

Constraining BSM (Simplified) models with SM measurements

Jon Butterworth, David Grellscheid (IPPP), Michael Krämer (Aachen), David Yallup

> Fit(s) for LHC run-2' workshop: 12 Oct 2016

The Standard Model

12/10/2016

Contur

The Standard Model

Is there anything out there?

Contur

The Standard Model

- Is there anything out there?
 - Tread carefully
 - High energies, high luminosities, model independence...

Precision 'Standard Model' Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM
- Thus they can potentially exclude extensions

Precision 'Standard Model'

Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM

Precision 'Standard Model'

Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM
- Thus they can potentially exclude extensions

What do we actually *measure*?

• The final state!

– Quantum mechanics says so

- Clearly we can't, even in principle, tell the difference between amplitudes with identical final states
- If your measurement can't be defined in such terms, you should worry!
 - Model dependence
 - Physical meaning!

What is your final state?

- Quarks, gluons? (top?)
- W, Z, H?
- Taus?
- Hadrons? (lifetime cut? Do they propagate in B-field? In material?)
- Jets (what are the input objects?)
- Neutrinos? All of them? From hadronic decays too? Missing ${\rm E}_{\rm T}$
- Photons? Isolated photons? From hadronic decays too?
- Electrons, muons? From hadronic decays too? What about QED FSR?

Important considerations (for searches too)

- What is your final state?
 - A common choice is place a lifetime cut at 10ps, and where necessary to draw further distinction, draw the line at hadronisation.
 - Stable objects (hadrons, leptons, photons) can be combined algorithmically to give well-defined objects (jets, dressed leptons, isolated photons, missing E_{T} ...)
 - Remember, this is about defining "truth", i.e. what we correct back to within some systematic uncertainty

Unfold

Increase acceptance

13/7/2016

Increase acceptance

Extrapolate

13/7/2016

Concept of a "fiducial" cross section

- Defines a region in which acceptance is ~100%
- Implies that some kinematic cuts must be implemented in whatever theory the data are compared to (easy for MC, less so for some high-order calculations)

13/7/2016

Concept of a "fiducial" cross section

- Defines a region in which acceptance is ~100%
- Implies that some kinematic cuts must be implemented in whatever theory the data are compared to (easy for MC, less so for some high-order calculations)
- Ideally of course, build an experiment which covers all the phase space of interest...

Simplified Model(s)

- Effective lagrangian including minimal new couplings and particles
- Our starter example: leptophobic Z' with vector coupling to u,d quarks, axial vector to a DM candidate ψ.

$$\mathcal{L} \supset g_{
m DM} \, \overline{\psi} \gamma_\mu \gamma_5 \psi \, Z'^\mu + g_q \sum_q ar{q} \gamma_\mu q \, Z'^\mu$$

Key tools:

Strategy

- Use measurements shown to agree with the Standard Model
 - Not a search! Guaranteed not to find anything
 - Will be slower, but more comprehensive and model independent
 - Assume the data = the background!

Will miss this kind of thing...

Strategy

- Use measurements shown to agree with the Standard Model
 - Not a search! Guaranteed not to find anything
 - Will be slower, but more comprehensive and model independent
 - Assume the data = the background!
- Key for constraining new models if there is a signal (unintended consequences)
- Key for constraining scale of new physics if there is no signal

Statistics

- Construct likelihood function using
 - BSM signal event count
 - Background count (from central value of data points)
 - Gaussian assumption on uncertainty in background count, from combination of statistical and systematic uncertainties
 - BSM signal count error from statistics of generated events (small!)
- Make profile likelihood ratio a la Cowan et al (Asimov data set approximation is valid)
- Present in CL_s method (A. Read)
- Systematic correlations not fully treated take only the most significant deviation in a given plot (conservative)

Dynamic data selection

- SM measurements of fiducial, particle-level differential cross sections, with existing Rivet routines
- Classify according to data set (7, 8, 13 TeV) and into nonoverlapping signatures
- Use only one plot from each given statistically correlated sample
- Jets, W+jets, Z+jets, γ (+jets), γγ, ZZ, W/Z+γ
- Sadly no Missing E_T+jets, not much 8 TeV, no 13 TeV yet, though much is on the way... Also can use suitably modelindependent Higgs and top measurements in future.
- Most sensitive measurement will vary with model and model parameters

CONTUR Category	Rivet/ Inspire ID	Rivet description
ATLAS 7 Jets	ATLAS_2014_I1325553 [28]	Measurement of the inclusive jet cross-section
	ATLAS_2014_I1268975 [30]	High-mass dijet cross section
	ATLAS_2014_I1326641 [32]	3-jet cross section
	ATLAS_2014_I1307243 [31]	Measurements of jet vetoes and azimuthal decorrelations in dijet events
CMS 7 Jets	CMS_2014_I1298810 [29]	Ratios of jet pT spectra, which relate to the ratios of inclusive, differential jet cross sections
ATLAS 8 Jets	ATLAS_2015_I1394679 [34]	Multijets at 8 TeV
ATLAS 7 Z Jets	ATLAS_2013_I1230812 [35]	Z + jets
CMS 7 Z Jets	CMS_2015_I1310737 [38]	Jet multiplicity and differential cross-sections of $Z{+}\mathrm{jets}$ events
CMS 7 W Jets	CMS_2014_I1303894 [37]	Differential cross-section of W bosons + jets
ATLAS W jets	ATLAS_2014_I1319490 [36]	W + jets
ATLAS 7 Photon Jet	ATLAS_2013_I1263495 [42]	Inclusive isolated prompt photon analysis with 2011 LHC data
	ATLAS_2012_I1093738 [44]	Isolated prompt photon $+$ jet cross-section
CMS 7 Photon Jet	$CMS_2014_I1266056$ [45]	Photon + jets triple differential cross-section
ATLAS 7 Diphoton	ATLAS_2012_I1199269 [43]	Inclusive diphoton $+X$ events
ATLAS 7 ZZ	ATLAS_2012_I1203852 [39]	Measurement of the $ZZ(*)$ production cross-section
ATLAS W/Z gamma	ATLAS_2013_I1217863 [40]	W/Z gamma production

Key tools: Constraints On New Theories Using Rivet

Key tools: Constraints On New Theories Using Rivet

Contur

Parameter Choices

- Scan in M_{DM} and $M_{Z^{\prime}}$
- Four pairs of couplings:
 - Challenging: $g_q = 0.25;$ $g_{DM} = 1$
 - Medium: $g_q = 0.375; g_{DM} = 1$
 - Optimistic: $g_q = 0.5;$ $g_{DM} = 1$
 - DM-suppressed $g_q = 0.375$; $g_{DM} = 0.25$

UC

ATLAS Dijet double-differential cross sections (y* < 0.5)

Data Comparisons

Heatmap for $g_q=0.25$, $g_{DM}=1$ (Challenging scenario)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for $g_q=0.25$, $g_{DM}=1$ (Challenging scenario)

Heatmap for $g_q=0.375$, $g_{DM}=1$ (Medium scenario)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for $g_q=0.375$, $g_{DM}=1$ (Medium scenario)

Heatmap for $g_q=0.5$, $g_{DM}=1$ (Optimistic scenario)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for g_q =0.5, g_{DM} =1 (Optimistic scenario)

Heatmap for g_q =0.375, g_{DM} =0.25 (DM suppressed)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for g_q =0.375, g_{DM} =0.25 (DM Suppressed)

Heatmap for $g_q=0.25$, $g_{DM}=1$ (Challenging scenario)

Heatmap for $g_q=0.25$, $g_{DM}=1$ (Challenging scenario)

Heatmap for $g_q=0.375$, $g_{DM}=1$ (Medium scenario)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for $g_q=0.375$, $g_{DM}=1$ (Medium scenario)

Heatmap for $g_q=0.5$, $g_{DM}=1$ (Optimistic scenario)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for $g_q=0.5$, $g_{DM}=1$ (Optimistic scenario)

Heatmap for g_q =0.375, g_{DM} =0.25 (DM suppressed)

Contur Category	Inspire ID	Description
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2014_I1279489	Z + dijets (Vector boson fusion motivated)
ATLAS 8 Photons	http://rivet.hepforge.org/analyses#ATLAS_2016_I1457605	Inclusive photons
ATLAS 8 Z Jets	http://rivet.hepforge.org/analyses#ATLAS_2015_I1408516	Drell Yan dileptons

Heatmap for g_q =0.375, g_{DM} =0.25 (DM Suppressed)

Conclusions

- Particle-level measurements not only measure what is happening in our collisions, they constrain what is not happening.
- Limit-setting procedure developed; even with conservative treatment of correlations, limits are competitive with those from dedicated searches using comparable data-sets
- General framework developed:
 - consider all new processes in a given (simplified) model
 - consider all available final states. (e.g. V+jet shows previously unexamined sensitivity to the model considered)
- Highly scaleable to other models & new measurements plan continuous rolling development
- See arXiv (and references therein), and hepforge.org/ contur 12/10/2016 Contur