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☛ SM+Higgs works quite well 

☛ that’s annoying but not unexpected 

☛ what’s the BSM landscape?

Why do we have to have this workshop?

concrete UV 
complete models

model-
independent (?) around 

the TeV scale
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What are good places to look?
☛ global fits to hundreds of parameters technically challenging 

☛ educated guesses
Higgs sector

top sector

dark matter

neutrinos

dark energy
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What are good places to look?

☛ my talk: what can we learn from the top sector at the LHC 

1. what’s the status after the first LHC runs 

2. what’s the best way to constrain generic BSM phenomena 
in the top sector in the future

top sector

0. top physics is abundant - why not use it directly



5

coupling/scale 
separated BSM physics

Effective Field Theory concrete models
• (N)MSSM

• Higgs portals

• compositeness

• …

[Buchmüller, Wyler `87]  
[Hagiwara, Peccei, Zeppenfeld, Hikasa `87] 
[Giudice, Grojean, Pomarol, Rattazzi `07] 
[Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

L = LSM +
�

i

ci

�2
Oi

Model - independence?
no evidence for 

exoticsthe SM is flawed



general idea
• aim to create a scalable framework

• no random walks, but polynomial 
interpolation of fully differentiable 
observables

• we know the outcome!

set-up outlinefull Warsaw basis

FeynRules

parameter redefinitions

FeynArts

[Duhr et al.]

[Hahn et al.]

MadEvent MCFM/
aMC@NLO

interpolation / limit 
setting with Professor

[Buckley et al.]

d� = d�SM + d�Oi/�2

+ d�̄Oi/�4

nice interplay with Morse theory
• “do parameterisation once 

have it forever” scalability

Andy’s talk
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• operators

• consider CP even operators for the moment 
• neglect operators with chiral suppression for the interference with SM 
• top pair production, single top production, top pair + Z production 

decay observables, “corrected to top level”

expressed in the so-called ‘Warsaw basis’ of Ref. [48]†

O(1)

qq = (q̄�µq)(q̄�
µq) OuW = (q̄�µ⌫⌧ Iu)�̃W I

µ⌫ O(3)

�q = i(�† !D I
µ�)(q̄�µ⌧ Iq)

O(3)

qq = (q̄�µ⌧
Iq)(q̄�µ⌧ Iq) OuG = (q̄�µ⌫TAu)�̃GA

µ⌫ O(1)

�q = i(�† !D µ�)(q̄�µq)

Ouu = (ū�µu)(ū�µu) OG = fABCGA⌫
µ GB�

⌫ GCµ
� OuB = (q̄�µ⌫u)�̃Bµ⌫

O(8)

qu = (q̄�µT
Aq)(ū�µTAu) O

˜G = fABCG̃A⌫
µ GB�

⌫ GCµ
� O�u = (�†i

 !
D µ�)(ū�µu)

O(8)

qd = (q̄�µT
Aq)(d̄�µTAd) O�G = (�†�)GA

µ⌫G
Aµ⌫ O� ˜G = (�†�)G̃A

µ⌫G
Aµ⌫

O(8)

ud = (ū�µT
Au)(d̄�µTAd) . (3)

It should be noted that the operators OuW , OuG and OuB are not hermitian and so may

have complex coe�cients, which, along with O
˜G and O� ˜G lead to CP-violating e↵ects.

These do not contribute to Standard Model spin-averaged cross-sections, though they are

in principle sensitive to polarimetric observables such as spin correlations, and should

therefore be treated as independent operators. However, measurements that would be

sensitive have been extracted by making model-specific assumptions that preclude their

usage in our global fit, e.g. ...... We will discuss this issue in more detail in the next

section. With these caveats, a total of 14 constrainable CP-even dimension-six operators

model top quark production and decay at leading order in the SMEFT.

3 Methodology

3.1 Experimental inputs

The experimental measurements used [55–92] in the fit are included in Table 1. All these

measurements are quoted in terms of ‘parton-level’ quantities; that is, top quarks and

their direct decay products. This is advantageous for speed, since parton-level theory

predictions can be directly compared to data this way, without the need for a full analysis

chain reaching from parton level over shower and hadronization all the way to including

detector e↵ects at each point in the parameter space. However, there is the downside that

the unfolding procedure introduces additional systematic uncertainties. AB: MC speed

here is a bit of a red herring, since we then go on to paramaterise the obs and

the way that they were made does not factor anymore. Also, showering will

(annoyingly) introduce further theory uncertainties, although hopefully ones

with only small e↵ect.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 100 measurements, 85 of which come from

di↵erential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor. Indeed top pair

†Given the simplicity of how it captures modifications to SM fermion couplings, this basis is well-suited
to top EFT. For basis choices of interest in Higgs physics, see e.g. Refs. [49–53], and Ref. [54] for a tool
for translating between them.
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4.1 Top pair production

By far the most abundant source of data in top physics is from the production of top pairs.

The CP-even dimension-six operators that interfere with the Standard Model amplitude are

LD6 ⊃
CuG

Λ2
(q̄σµνTAu)ϕ̃GA

µν +
CG

Λ2
fABCG

Aν
µ GBλ

ν GCµ
λ +

CϕG

Λ2
(ϕ†ϕ)GA

µνG
Aµν

+
C(1)
qq

Λ2
(q̄γµq)(q̄γ

µq) +
C(3)
qq

Λ2
(q̄γµτ

Iq)(q̄γµτ Iq) +
Cuu

Λ2
(ūγµu)(ūγ

µu) (4.1)

+
C(8)
qu

Λ2
(q̄γµT

Aq)(ūγµTAu) +
C(8)
qd

Λ2
(q̄γµT

Aq)(d̄γµTAd) +
C(8)
ud

Λ2
(ūγµT

Au)(d̄γµTAd) .

As pointed out in ref. [52], the operator OϕG cannot be bounded by top pair production

alone, since the branching ratio to virtual top pairs for a 125GeV Higgs is practically

zero, therefore we do not consider it here. For a recent constraint from Higgs physics

see e.g. refs. [18, 20, 24, 25]. We further ignore the contribution of the operator O11
uG ,

as this operator is a direct mixing of the left- and right- chiral u quark fields, and so

contributes terms proportional to mu. We also note that the six four-quark operators

of eq. (4.1) interfere with the Standard Model QCD processes ūu, d̄d → t̄t to produce

terms dependent only on the four linear combinations of Wilson Coefficients (following the

notation of ref. [46])

C1
u = C(1)1331

qq + C1331
uu + C(3)1331

qq

C2
u = C(8)1133

qu + C(8)3311
qu

C1
d = C(3)1133

qq +
1

4
C(8)3311
ud

C2
d = C(8)1133

qu + C(8)3311
qd .

(4.2)

It is these four that are constrainable in a dimension-six analysis. Finally, we note

that the operator OG, whilst not directly coupling to the top at tree-level, should not be

neglected. Since it modifies the triple gluon vertex, and the gg channel contributes ∼ 75%

(90%) of the total top pair production cross-section at the 8 (13)TeV LHC, moderate values

of its Wilson coefficient can substantially impact total rates. We note, however, that in

this special case, the cross section modifications are driven by the squared dimension six

terms instead of the linearised interference with the SM. Nonetheless, in the interests of

generality, we choose to include this operator in our fit at this stage, noting that bounds

on its Wilson coefficient should be interpreted with caution.3 Representative Feynman

diagrams for the interference of these operators are shown in figure 2.

The most obvious place to look for the effects of higher-dimensional terms is through

the enhancement (or reduction, in the case of destructive interference) of total cross-

sections. Important differences between SM and dimension-six terms are lost in this ap-

proach, however, since operators can cause deviations in the shape of distributions without

substantially impacting event yields. This is highlighted in figure 3, where we plot our NLO

3We have observed that excluding this operator actually tightens the bounds on the remaining ones, so

choosing to keep it is the more conservative option.

– 8 –

Ct = C(3)1133
qq +

1

6
(C(3)1331

qq � C(3)1331
qq )

• only sensitive to a superposition of operators (at LO)
top pairs top single top
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Dataset
p

s (TeV) Measurements arXiv ref. Dataset
p

s (TeV) Measurements Ref.

Top pair production

Total cross-sections: Di↵erential cross-sections:

ATLAS 7 lepton+jets 1406.5375 ATLAS 7 pT (t), Mt¯t, |yt¯t| 1407.0371

ATLAS 7 dilepton 1202.4892 CDF 1.96 Mt¯t 0903.2850

ATLAS 7 lepton+tau 1205.3067 CMS 7 pT (t), Mt¯t, yt, yt¯t 1211.2220

ATLAS 7 lepton w/o b jets 1201.1889 CMS 8 pT (t), Mt¯t, yt, yt¯t 1505.04480

ATLAS 7 lepton w/ b jets 1406.5375 D/0 1.96 Mt¯t, pT (t), |yt| 1401.5785

ATLAS 7 tau+jets 1211.7205

ATLAS 7 tt̄, Z�, WW 1407.0573 Charge asymmetries:

ATLAS 8 dilepton 1202.4892 ATLAS 7 A
C

(inclusive+Mt¯t, yt¯t) 1311.6742

CMS 7 all hadronic 1302.0508 CMS 7 A
C

(inclusive+Mt¯t, yt¯t) 1402.3803

CMS 7 dilepton 1208.2761 CDF 1.96 AFB (inclusive+Mt¯t, yt¯t) 1211.1003

CMS 7 lepton+jets 1212.6682 D/0 1.96 AFB (inclusive+Mt¯t, yt¯t) 1405.0421

CMS 7 lepton+tau 1203.6810

CMS 7 tau+jets 1301.5755 Top widths:

CMS 8 dilepton 1312.7582 D/0 1.96 �
top

1308.4050

CDF + D/0 1.96 Combined world average 1309.7570 CDF 1.96 �
top

1201.4156

Single top production W -boson helicity fractions:

ATLAS 7 t-channel (di↵erential) 1406.7844 ATLAS 7 1205.2484

CDF 1.96 s-channel (total) 1402.0484 CDF 1.96 1211.4523

CMS 7 t-channel (total) 1406.7844 CMS 1.96 1308.3879

CMS 8 t-channel (total) 1406.7844 D/0 1.96 1011.6549

D/0 1.96 s-channel (total) 0907.4259

D/0 1.96 t-channel (total) 1105.2788

Associated production Run II data

ATLAS 7 tt̄� 1502.00586 CMS 13 tt̄ (dilepton) 1510.05302

ATLAS 8 tt̄Z 1509.05276

CMS 8 tt̄Z 1406.7830

Table 1: The measurements entering our fit. Details of each are described in the text.

The importance of including kinematic distributions is manifest here. For top pair

production, for instance, we have a total of 100 measurements, 85 of which come from

di↵erential observables. This size of fit is unprecedented in top physics, which underlines

the need for a systematic fitting approach, as provided by Professor. Indeed top pair

production cross-sections make of the bulk of measurements that are used in the fit. Single

top production cross-sections comprise the next dominant contribution to the fit. We

also make use of data from charge asymmetries in top pair production, as well as inclusive

measurements of top pair production in association with a photon or a Z (tt̄� and tt̄Z) and

observables relating to top quark decay. We take each of these categories of measurement

in turn, discussing which operators are relevant and the constraints obtained on them from

data.

3.2 Treatment of uncertainties

The uncertainties entering our fit can be classed into three categories:

Experimental uncertainties: We generally have no control over these. In cases where

statistical and systematic (and luminosity) errors are recorded separately, we add them in

5

update late 2016?



constrained top EFT status

10

• total of 195 measurements, 174 based on differential distributions 

• treatment of uncertainties and systematics

1. experimental systematics  
• in general no control 
• available experimental systematics/uncertainties added in 

quadrature when available 
• uncertainties of top parton-level matching included when 

available 
• correlation between different signal regions not included 
• bin-by-bin migration effects do not impact the fit result
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• total of 195 measurements, 174 based on differential distributions 

• treatment of uncertainties and systematics

2. SM theoretical uncertainties 
• PDF and scale uncertainties following the PDF4LHC 

recommendation: full scale + PDF uncertainty band 
• no electroweak corrections 
• no strong/electroweak operator mixing effects: reasonable to 

assume that they are small for direct searches 
• interpolation error estimated to 5% 
• uncorrelated with experimental systematics

[Butterworth et al. `15]

[CE, Spannowsky `15] 
[Bylund et al `16]
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• total of 195 measurements, 174 based on differential distributions 

• fitting

Standard Model theoretical uncertainties: These stem from the choice of parton

distribution functions (PDFs), as well as neglected higher-order perturbative corrections.

As is conventional, we model the latter by varying the renormalisation and factorisation

scales independently in the range µ
0

/2  µ
R,F  2µ

0

, where we use µ
0

= mt as the default

scale, and take the envelope as our uncertainty. For the PDF uncertainty, we follow the

PDF4LHC recommendation [101] of using CT10 [102], MSTW [103] & NNPDF [104] NLO

fits, each with associated scale uncertainties, then taking the full width of the scale+PDF

envelope as our uncertainty estimate – i.e. we conservatively assume that scales and

parton densities are 100% correlated. Unless otherwise stated, we take the top quark

mass to be mt = 173.2 ± 1.0 GeV. We do not consider electroweak corrections.

Only recently a lot of progress has been made in extending the dimension six-extended

SM to higher order, see Refs. [105–118]. Including these e↵ects is beyond the scope of

this work, also because we work to leading order accuracy in the electroweak expansion

of the SM. QCD corrections to four fermion operators included via renormalisation group

equations are typically of the order of 15%, depending on the resolved phase space [114].

As pointed out in Ref. [119], these e↵ects can be important in electroweak precision data

fits.

Interpolation error: A small error relating to the Monte Carlo interpolation (described

in more detail in the next section) is included. This is estimated to be 5% at a conservative

estimate, as discussed in the following section, and subleading compared to the previous

two categories.

3.3 Fitting procedure

Our fitting procedure, briefly outlined in Ref. [52], uses the Professor framework. The

first step is to construct an N -dimensional hypercube in the space of dimension six cou-

plings, compute the observables at each point in the space, and then to fit an interpolating

function f(C) that parametrises the theory prediction as a function of the Wilson coe�-

cients C = {Ci}. This can then be used to rapidly generate theory observables for arbitrary

values of the coe�cients. Motivated by the dependence of the total cross-section with a

Wilson coe�cient:

� ⇠ �
SM

+ Ci�D6

+ C2

i �D6

2 , (4)

the fitting function is chosen to be a second-order or higher polynomial:

fb({Ci}) = ↵b
0

+
X

i

�b
iCi +

X

ij

�b
i,jCiCj + . . . . (5)

In the absence of systematic uncertainties, each observable would exactly follow a

second-order polynomial in the coe�cients, and higher-order terms capture bin uncertain-

ties which modify this. The polynomial also serves as a useful check that the dimension-six

approximation is valid. By comparing eq. (4) with eq. (5), we see that the terms quadratic

in Ci are small provided that the coe�cients in the interpolating function �i,j are small.
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Figure 1: Residuals distributions for interpolated observable values (left) and uncertain-

ties (right), evaluated over all input MC runs and all observables. The 4th order polynomial

parameterisation gives the best performance and the vast majority of entries are within 5%

of the explicit MC value. The poor performance of a constant uncertainty assumption based

on the median input uncertainty is evident – since all three lines have the same normalisa-

tion, the majority of residual mismodellings for the median approach are (far) outside the

displayed 10% interval.

This is a more robust way to ensure validity of the dimension-six approximation than to

assume a linear fit from the start.

In practice, to minimise the interpolation uncertainty, we use up to a 4th order polyno-

mial in eq. (5), depending on the observable of interest. The performance of the interpola-

tion method is shown in Figure 1, which depicts the fractional deviation of the polynomial

fit from the explicit MC points used to constrain it. The central values and the sizes of the

modelling uncertainties may both be parameterised with extremely similar performance,

with 4th order performing best for both. The width of this residual mismodeling distribu-

tion being ⇠ 3% for each of the value and error components is the motivation for a total

5% interpolation uncertainty to be included in the goodness of fit of the interpolated MC

polynomial f(C) to the experimentally measured value E:

�2(C) =
X

O

X

i,j

(fi(C) � Ei)⇢i,j(fj(C) � Ej)

�i�j
, (6)

where we sum over all observables O and all bins in that observable i. We include the

correlation matrix ⇢i,j where this is provided by the experiments, otherwise ⇢i,j = �ij.

The uncertainty on each bin is given by �i =
q

�2

th,i + �2

exp,i, i.e. we treat theory and

experimental errors as uncorrelated. The parameterisation of the theory uncertainties is

restricted to not become larger than in the training set, to ensure that polynomial blow-up

of the uncertainty at the edges of the sampling range cannot produce a spuriously low �2

and disrupt the fit.

7
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Top quark pair production

13Figure 3: 68%, 95% and 99% confidence intervals for selected combinations of operators

contributing to top pair production, with all remaining operators marginalised over. The

star marks the best fit point, indicating good agreement with the Standard Model.

Tevatron, as illustrated in Figure 4. It is interesting to see that although Tevatron data

are naively more sensitive to four-quark operators, after the LHC run 1 and early into run

2, the LHC data size and probed energy transfers lead to comparably stronger constraints.

In our fit this is highlighted by the simple fact that LHC data comprise more than 80% of

the bins in our fit, so have a much larger pull. This stresses the importance of collecting

large statistics as well as using sensitive discriminating observables.

4.2 Single top production

The next most abundant source of top quark data is from single top production. In our

fit we consider production in the t and s channels, and omit Wt-associated production.

Though measurements of the latter process have been published, they are not suitable for

inclusion in a fit involving parton level theory predictions. As is well-known, Wt production

interferes with top pair production at NLO and beyond (in a five-flavour scheme [115–117]),

or at LO in a four-flavour one. Its separation from top pair production is then a delicate

issue, discussed in detail in Refs. [118–121]. We thus choose to postpone the inclusion of

Wt production to a future study, going beyond parton level. The operators that could lead

10

best fit point

[Buckley , CE, Ferrando, Miller, Moore, Russell, White `15]
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Figure 4: Left: 68%, 95% and 99% confidence intervals on the operators CG vs. C1

u ,

considering di↵erential and total cross-sections (contours), and total cross-sections only

(lines). Right: Limits on C33

uG vs. C1

u, considering both Tevatron and LHC data (contours)

and Tevatron data only (lines)

to deviations from SM predictions are shown below

LD6

� CuW

⇤2

(q̄�µ⌫⌧ Iu) '̃ W I
µ⌫ +

C(3)

'q

⇤2

i('† !D I
µ')(q̄�µ⌧ Iq)

+
C'ud

⇤2

('† !D µ')(ū�µd) +
CdW

⇤2

(q̄�µ⌫⌧ Id) '̃ W I
µ⌫

+
C(3)

qq

⇤2

(q̄�µ⌧
Iq)(q̄�µ⌧ Iq) +

C(1)

qq

⇤2

(q̄�µq)(q̄�
µq) +

C(1)

qu

⇤2

(q̄�µq)(ū�µu) .

(10)

As in top pair production there are several simplifications which reduce this operator

set. The operators OdW , O'ud and the last two four-quark operators involve a chirality flip

LM: we should restate this for a bit more clarity - it’s not the property of these

operators themselves per se that cause them to be neglected, but the result of

their diagrams’ interference with the left-chiral SM weak matrix elements [38],

so their interference term is proportional to mbmt/⇤2. The rest of the operators LM: not

quite all the rest: only those with two Higgs, so this doesn’t include OuW or

O(3)

qq considered interfere with strength v2/⇤2, so the contributions of these chirality flipped

operators are suppressed by mb/v ⇠ 50. Due to this chiral suppression, we can neglect

the operators’ impact on our dimension-six fit and we have numerically checked that the

contribution of these operators is entirely negligible.

Single top production can thus be characterised by 3 dimension-six operators: OuW ,

O3

'q and O3

qq.

11

Tevatron

LHC+Tevatrontotal cross sections

distributions

Figure 2: Comparison of estimates for di↵erential distributions in top pair production,

for the SM (red) vs. with the operator C2

u switched on (blue), showing the enhancement in

the tails of the distributions.

choose to include this operator in our fit at this stage since neglecting it would tighten the

fit; the reader should keep this in mind when interpreting the results below.

The most obvious place to look for the e↵ects of higher-dimensional terms is through the

enhancement (or reduction, in the case of destructive interference) of total cross-sections.

Important di↵erences between SM and dimension-six terms are lost out in this approach,

however, since operators can cause deviations in the shape of distributions without sub-

stantially impacting event yields. This is highlighted in Figure 2, where we plot our NLO

SM estimate for two top pair distributions, vs. one with a large interference term. Both

are consistent with the data in the threshold region, which dominates the cross-section,

but clear discrimination between SM and higher-dimensional operators in the high-mass

region, not unexpectedly, given that these operators scale as E2/⇤2.

Limits on these operators can be obtained in two ways; by setting all other operators

to zero, and by marginalising over the other parameters in a global fit. In Figure 3 we plot

the allowed 68%, 95% and 99% confidence intervals for various pairs of operators, show-

ing correlations between some coe�cients. Most of these operators appear uncorrelated,

though there is a strong correlation between C1

u and C1

d , due to a relative sign between

their interference terms. Given the lack of reported deviations in top quark measurements,

it is perhaps unsurprising to see that all operators are zero within the 95% confidence

intervals, and that the SM hypothesis is an excellent description of the data.

In Figure 4, the stronger joint constraints on CG vs C1

u obtained from including di↵er-

ential measurements make manifest the importance of utilizing all available cross-section

information.

It is also interesting to note the relative pull of measurements from the LHC and

9

��2 ��2

[Buckley , CE, Ferrando, Miller, Moore, Russell, White `15]
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Figure 6: Left: Individual (red) and marginalised (blue) 95% confidence intervals on

dimension-six operators from top pair production and single top production (bottom three).

Right: Marginalised 95 % bounds considering all data from LHC and Tevatron (green) vs

Tevatron only (purple).

where q = pt � pb. There is a one-to-one mapping between this Lagrangian and those

dimension-six operators that modify the Wtb vertex:

VL ! Vtb + C(3)

'q v2/⇤2 VR ! 1

2
C'udv

2/⇤2

gL !
p

2CuWv2/⇤2 gR !
p

2CdWv2/⇤2 (13)

What, then, is the advantage of using higher-dimensional operators when anomalous

couplings capture most of the same physics? The advantages are manifold. Firstly, the

power-counting arguments of the previous paragraph that allowed us to reject the operators

OdW , O'ud at order ⇤�2 would not be clear in an anomalous coupling framework. In

addition, the four-quark operator O(3)

qq in eq. (10) can have a substantial e↵ect on single-top

production, but this can only be captured by an EFT approach. For a detailed comparison

of these approaches, see e.g. Ref. [133]. The 95% confidence limits on these operators

from single top production are shown in Fig. (6), along with those operators previously

discussed in top pair production.

Let us compare these results to our findings of Section 4.1. The bounds on operators

from top pair production are typically stronger. The so-called chromomagnetic moment

operator OuG is also tightly constrained, owing to its appearance in both the qq̄ and gg

channels, i.e. it is sensitive to both Tevatron and LHC measurements. For the four-quark

operators, the stronger bounds are typically on the C1

i -type. This originates from the

more pronounced e↵ect on kinematic distributions that they have. The phenomenology

of the C2

i -type operators is SM-like, and their e↵ect becomes only visible in the tails of

distributions.

13

Top quark pair production
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Figure 7: Individual 95% confidence intervals for the operators of 14 from tt̄� and tt̄Z pro-

duction (green) and in the two cases where there is overlap, from single top measurements

(blue).

that they do not have much e↵ect on such a fit. Instead, we choose to present individual

constraints on the operators from associated production alone, comparing these with top

pair and single top in what follows. For the former, we find that the constraints on the

operators of eq. (14) obtained from tt̄� and tt̄Z measurements are much weaker than those

obtained from top pair production, therefore we do not show them here. The constraints

on the new operators of eq. (14) are displayed in Figure 7. It is interesting to note that

the constraints from associated production measurements are comparable with those from

single top production, despite the relative paucity of the former.

4.4 Decay observables

This completes the list of independent dimension-six operators that a↵ect top quark pro-

duction cross-sections. However, dimension-six operators may also contribute (at interfer-

ence level) to observables relating to top quark decay. Top quarks decay almost 100% of

the time to a W and b quark. The fraction of these events which decay to W -bosons with

a given helicity: left-handed, right-handed or zero-helicity, can be expressed in terms of

helicity fractions, which for leading order with a finite b-quark mass are

F
0

=
(1 � y2)2 � x2(1 + y2)

(1 � y2)2 + x2(1 � 2x2 + y2)

FL =
x2(1 � x2 + y2) +

p
�

(1 � y2)2 + x2(1 � 2x2 + y2)

FR =
x2(1 � x2 + y2) � p

�

(1 � y2)2 + x2(1 � 2x2 + y2)

(15)

where x = MW/mt, y = mb/mt and � = 1+x4+y4�2x2y2�2x2�2y2. As noted in Ref. [46],

measurements of these fractions can be translated into bounds on the operator OuW . (The

15
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Figure 8: Results of a 1000 point parameter space scan over -10 TeV < C1,2
u,d < 10

TeV overlaid with the most up to date measurements of A
FB

and A
C

, showing clearly the

correlation between them.

QCD prediction to the dimension-six terms. In the case of A
C

, we normalise the small (but

non-zero) LO QCD piece, to the NLO prediction, which has been calculated with a Monte

Carlo and cross-checked with a dedicated NLO calculation [128]. The 95% confidence

intervals on the operators C1,2
u,d from purely charge asymmetry data are shown in figure

9. Unsurprisingly, the bounds are much weaker than for cross-section measurements, with

the down type operators unconstrained by LHC data alone. Despite the small discrepancy

between the measured A
FB

and its SM value, this does not translate into a non-zero Wilson

coe�cient; as before, all operators are zero within the 95% confidence intervals.

At 13 TeV, the asymmetry A
C

will be diluted even further, due to the increased domi-

nance of the gg ! tt̄ channel, for which AC = 0. It is therefore possible that these are the

strongest bounds that will be obtained on dimension-six operators from top pair charge

asymmetries at the LHC.

5 Constraining UV models

As an illustration of the wide-ranging applicability of EFT techniques, we conclude by

matching our e↵ective operator constraints to the low-energy regime of some specific UV

models. These models serve purely illustrative purposes.

5.1 Axigluon

Considering top pair production, one can imagine the four operators of equation ?? as

being generated by integrating out a heavy s-channel resonance which interferes with the

17
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Figure 9: Marginalised 95% confidence intervals on top pair four quark operators from

charge asymmetries at the LHC and Tevatron.

QCD qq̄ ! tt̄ amplitude. One particle that could generate such an interference is the so-

called axigluon. These originate from models with an extended strong sector with gauge

group SU(3)c1 ⇥ SU(3)c2 which is spontaneously broken to the diagonal subgroup SU(3)c
of QCD. In the most minimal scenario, this breaking can be described by a non-linear

sigma model

L = �1

4
G

1µ⌫G
µ⌫
1

� 1

4
G

2µ⌫G
µ⌫
2

+
f 2

4
TrDµ⌃Dµ⌃† , ⌃ = exp

✓
2i⇡ata

f

◆
, a = 1, ..., 8.

(18)

⇡a represent the Goldstone bosons which form the longitudinal degrees of freedom of

the colorons, giving them mass, ta are the Gell-Mann matrices, and f is the symmetry

breaking scale. The nonlinear sigma fields transform in the bifundamental representation

of SU(3)c1 ⇥ SU(3)c2:

⌃ ! UL⌃U †
R , UL = exp

✓
i⇡a↵a

L

f

◆
, UR = exp

✓
i⇡a↵a

R

f

◆
(19)

The physical fields are obtained by rotating the gauge fields G
1

and G
2

to the mass

eigenstate basis

✓
Ga

1µ

Ga
2µ

◆
=

✓
cos ✓c � sin ✓c
sin ✓c cos ✓c

◆✓
Ga

µ

Ca
µ

◆
(20)

where the mixing angle ✓c is defined by

sin ✓c =
gs1p

g2

s1 + g2

s2

(21)

The case of an axigluon corresponds to maximal mixing ✓ = ⇡/4, i.e. g2

s1 = g2

s2 = g2

s/2.
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• correlated Tevatron LHC distributions are highly constraining, e.g. 
LHC central charge asymmetry vs Tevatron forward backward 
asymmetry [Czakon, Heymes, Mitov `15]
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non-zero) LO QCD piece, to the NLO prediction, which has been calculated with a Monte

Carlo and cross-checked with a dedicated NLO calculation [128]. The 95% confidence

intervals on the operators C1,2
u,d from purely charge asymmetry data are shown in figure

9. Unsurprisingly, the bounds are much weaker than for cross-section measurements, with

the down type operators unconstrained by LHC data alone. Despite the small discrepancy

between the measured A
FB

and its SM value, this does not translate into a non-zero Wilson

coe�cient; as before, all operators are zero within the 95% confidence intervals.

At 13 TeV, the asymmetry A
C

will be diluted even further, due to the increased domi-

nance of the gg ! tt̄ channel, for which AC = 0. It is therefore possible that these are the

strongest bounds that will be obtained on dimension-six operators from top pair charge

asymmetries at the LHC.
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As an illustration of the wide-ranging applicability of EFT techniques, we conclude by
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Figure 8: 95% bounds on the operator OuW obtained from data on top quark helicity frac-

tions (blue) vs. single top production cross-sections (red), and both sets of measurements

combined (purple).

operator O(3)

'q cannot be accessed in this way, since its only e↵ect is to rescale the Wtb

vertex V 2

tb ! Vtb

⇣
Vtb + v2C(3)

'q /⇤2

⌘
, therefore it has no e↵ect on event kinematics.) The

desirable feature of these quantities is that they are relatively stable against higher order

corrections, so the associated scale uncertainties are small. The Standard Model NNLO

estimates for these are: {F
0

, FL, FR} = {0.687±0.005, 0.311±0.005, 0.0017±0.0001} [134],

i.e. the uncertainties are at the per mille level. It is interesting to ask whether the

bound obtained on OuW in this way is stronger than that obtained from cross-section

measurements. In Figure 8 we show the constraints obtained in each way. Although

they are in excellent agreement with each other, cross-section information gives a slightly

stronger bound, mainly due to the larger amount of data available, but also due to the

large experimental uncertainties on Fi. Still, these measurements provide complementary

information on the operator OuW , and combining both results in a stronger constraint than

either alone, as expected.

4.5 Charge asymmetries

Asymmetries in the production of top quark pairs have received a lot of attention in recent

years, particularly due to an apparent discrepancy between the Standard Model prediction

for the so-called ‘forward-backward’ asymmetry A
FB

in top pair production

A
FB

=
N(�y > 0) � N(�y < 0)

N(�y > 0) + N(�y < 0)
(16)

where �y = yt � y
¯t, and a measurement by CDF [135]. This discrepancy was most

pronounced in the high invariant mass region, pointing to potential TeV-scale physics at

play. However, recent work has cast doubts on its significance for two reasons: Firstly, an

updated analysis with higher statistics [90] has slightly lowered the excess. Secondly, a full

NNLO QCD calculation [136] of A
FB

showed that, along with NLO QCD + electroweak

calculations [137–139] the radiative corrections to A
FB

are large. The current measurements

are now consistent with the Standard Model within 2�. Moreover, the D/0 experiment

reports [91] a high-invariant mass measurement lower than the SM prediction. From a

16

[Zhang, Willenbrock `10]
• helicity fractions
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Figure 6: 95% confidence intervals for the dimension-six operators that we consider here,

with all remaining operators set to zero (red) and marginalised over (blue). In cases where

there are constraints on the same operator from di↵erent classes of measurement, the

strongest limits are shown here. The lack of marginalised constraints for the final three

operators is discussed in the next section.

for instance, contains the 6 top pair operators in 8, plus the following

LD6

� CuW

⇤2

(q̄�µ⌫⌧ Iu) '̃ W I
µ⌫ +

CuB

⇤2

(q̄�µ⌫u) '̃ Bµ⌫ +
C(3)

'q

⇤2

i('† !D I
µ')(q̄�µ⌧ Iq)

+
C(1)

'q

⇤2

i('† !D µ')(q̄�µq) +
C'u

⇤2

('†i
 !
D µ')(ū�µu) .

(13)

There is overlap between this operator set and those relevant for single top production,

so it is interesting to see the complementarity of constraints from each. Unfortunately there

is currently insu�cient data to set simultaneous limits on these operators in a global fit.

There are only two cross-section measurements available for this process, and 11 Wilson

coe�cients to fit them, i.e. the system is under-constrained. The best that can be done is

to set limits on each of these individually i.e. without marginalising over other operators.

The bottom line constraints on all the operators considered so far are displayed in Figure 6.

14
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Figure 6: 95% confidence intervals for the dimension-six operators that we consider here,

with all remaining operators set to zero (red) and marginalised over (blue). In cases where

there are constraints on the same operator from di↵erent classes of measurement, the

strongest limits are shown here. The lack of marginalised constraints for the final three

operators is discussed in the next section.

for instance, contains the 6 top pair operators in 8, plus the following

LD6

� CuW

⇤2

(q̄�µ⌫⌧ Iu) '̃ W I
µ⌫ +

CuB

⇤2

(q̄�µ⌫u) '̃ Bµ⌫ +
C(3)

'q

⇤2

i('† !D I
µ')(q̄�µ⌧ Iq)

+
C(1)

'q

⇤2

i('† !D µ')(q̄�µq) +
C'u

⇤2

('†i
 !
D µ')(ū�µu) .

(13)

There is overlap between this operator set and those relevant for single top production,

so it is interesting to see the complementarity of constraints from each. Unfortunately there

is currently insu�cient data to set simultaneous limits on these operators in a global fit.

There are only two cross-section measurements available for this process, and 11 Wilson

coe�cients to fit them, i.e. the system is under-constrained. The best that can be done is

to set limits on each of these individually i.e. without marginalising over other operators.

The bottom line constraints on all the operators considered so far are displayed in Figure 6.
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• top quark pheno programme at the LHC is well-developed 

• we can set constraints on all operators relevant for top pairs 
modulo “blind” directions of operator combinations. But…

experimental 
selection 

theoretical model

• which phase space region impacts the constraints on on top sector 

max. abundant
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• setup 

• top pair production extrapolated to 13 TeV, >30/fb 

• split sensitivity range in fully resolved and boosted regime 
(HepTopTagger) for semi-leptonic tops [Plehn, Salam, Spannowsky `09]
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FIG. 2: Individual 95% bounds on the operators consid-
ered here, from the boosted analysis and the resolved fat jet
analysis, and the combined constraint from both, assuming
20% systematics and 30 fb�1 of data. We also show existing
constraints from unfolded 8 TeV pT distributions published
in [48] and [49], showing the sizeable improvement even for a
modest luminosity gain.

fit have been based on standard top reconstruction tech-
niques, which, while providing good coverage of the low
pT ‘threshold’ region, su↵er from poor statistical and sys-
tematic uncertainties in the tails of distributions, pre-
cisely the region of phase space we aim to isolate.

Moreover, the measurements used were typically un-
folded; that is, the final-state objects were corrected for
detector e↵ects and the actual measured ‘fiducial’ cross
section extrapolated to the full phase space, without cuts.
This includes the treatment of reducible as well as ir-
reducible backgrounds, which we implicitly understand
as part of experimental systematic uncertainties in the
following. Unfolded distributions substantially ease the
workflow of our fit, since we can compare them directly
to parton level quantities without the need for shower-
ing, hadronisation and detector simulation at each point
in the parameter space. However, the extrapolation from
the fiducial to full phase space, which makes use of com-
paring to Monte Carlo simulations, necessarily biases the
unfolded distributions towards SM-like shapes. It also
introduces additional correlations between neighbouring
bins, broadening the �2.

For top pair production, being a 2 ! 2 process, the
relevant observables which span the partonic phase space
are scattering angle and partonic centre-of-mass energy.
All other observables are functions of these parameters,
of which the top quark transverse momentum is crucial
observable which determines quality and e�ciency of the
boosted top tagging approach [50–56] which we will em-
ploy in the following. The advantage of selecting high
pT objects is thus twofold [57]. Firstly, by making use of

sophisticated reconstruction techniques for boosted ob-
jects, we move to the region of phase space where the
e↵ects of heavy new degrees of freedom will be most pro-
nounced, as illustrated in Fig. 1, and secondly, jet sub-
structure techniques require, by definition, a hadron-level
analysis, so we avoid the model-dependence that fitting
parton-level distributions to unfolded measurements suf-
fers from.
The sting in the tail for analyses selecting high pT ob-

jects is, of course, low rates. At 13 TeV, for instance, we
find that 90% of the cross section comes from the resolved
region ptT < 200 GeV.† We thus aim to quantify at what
stage in the LHC programme, if at all, the increased sen-
sitivity in this region can compensate for the relatively
poor statistics. Our analysis setup, as implemented in
Rivet [58], is as follows:
Restricting ourselves to the semileptonic top pair de-

cay channel, we first require a single charged lepton with
pT > 30 GeV‡, and find the Emiss

T vector which we require
to have a magnitude > 30 GeV. The leptonic W -boson
is reconstructed from these by assuming it was produced
on-shell. Jets are then clustered using the anti-kT al-
gorithm [59] using FastJet [60] in two separate groups
with R = (0.4, 1.2) requiring pT > (30, 200) GeV respec-
tively, and jets which overlap with the charged lepton are
removed. The R = 1.2 fat jets are required to be within
|⌘| < 2, and the R = 0.4 small jets are b-tagged within
the same ⌘ range with an e�ciency of 70% and fake rate
of 1% [61].

If at least one fat jet and one b-tagged small jet which
does not overlap with the leading fat jet exists, we per-
form a boosted top-tag of the leading fat jet using HEP-
TopTagger [50, 51, 62] and reconstruct the leptonic top
candidate using the leading, non-overlapping b-tagged
small jet and the reconstructed leptonic W .

If no fat jet fulfilling all the criteria exists, we instead

Leptons pT > 30 GeV

|⌘| < 4.2

Missing energy Emiss
T > 30 GeV

Small jets anti-kT R = 0.4

pT > 30 GeV , |⌘| < 2

Fat jets anti-kT R = 1.2

pT > 200 GeV , |⌘| < 2

Resolved � 4 small jets w/� 2 b-tags

Boosted � 1 fat jet, � 1 small jet w/ b-tag

TABLE II: Summary of the physics object definitions and
event selection criteria in our hadron-level analysis.

†

We choose ptT � 200 GeV as benchmark point of the boosted se-

lection as the top tagging below this threshold su↵ers from large

mistag rates and small e�ciencies.

‡

We do not consider ⌧ decays here to avoid the more involved re-

construction.

fat jet + b

resolved boosted

no yes
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FIG. 1: Transverse momentum distributions for the re-
constructed hadronic top quark candidate. The bars rep-
resent 30 fb�1 of pseudodata with

p
s = 13 TeV con-

structed with the SM-only hypothesis, while the shaded
curves include the e↵ects of four-quark operators with
Wilson coe�cients Ci = 10 TeV�2 for illustration. De-
tails of the top quark reconstruction are described in the
text.

with the Ct14 [43], Mmht14 [44] and Nnpdf3.0 [45] as
per the recommendations of the Pdf4Lhc working group
for LHC run 2 [46], and we take the full scale+PDF en-
velope as our theory band. This defines an uncertainty
on the di↵erential K-factor which we propagate into each
observable. We treat theory uncertainties as uncorrelated
with experimental systematics and take them to be fixed
as a function of luminosity unless stated otherwise.

In order to build the parameter space for the Wil-
son coe�cients Ci, instead of calculating coe�cients
on a multidimensional grid, which su↵ers from expo-
nential scaling in the number of operators, we use an
interpolation-based method, detailed in [47].

• We construct a logarithmically random-sampled 6
dimensional parameter space in the operators of
Tab. 1. The logarithmic spacing reflects that we
want our sampling to be most accurate near to the
SM point {Ci} = 0.

• We generate our theory predictions and uncertain-
ties, as detailed above, at each point in this space.

• Once the parameter space has been constructed, we
use a polynomial to interpolate between the ran-
domly chosen values of {Ci}, thus building up a
smooth functional form for the change in the pre-
diction for the observables considered with respect
to {Ci}.

Motivated by the functional form of the cross section
with respect to the Wilson coe�cient

d� ⇠ d�
SM

+ Cid�D6

+ C2

i d�D6

2 , (II.3)

we choose a polynomial dependence on {Ci} as our re-
sponse function for a single bin b.

fb({Ci}) = ↵b
0

+
X

i

�b
iCi +

X

ij

�b
i,jCi,j + . . . . (II.4)

This way operators with vanishing interference with the
SM amplitude piece can be treated separately and we
gain complete analytical control over the fit. The ellipsis
in Eq. (II.4) denotes higher order terms in {Ci}. Compar-
ing Eqs. (II.3) and (II.4), one would expect a quadratic
polynomial to capture the full dependence on {Ci}. How-
ever, when one considers observables such as asymme-
tries, or distributions normalised to the total cross sec-
tion, this simple relation is no longer valid. In order to
capture the dependence on the coe�cients as accurately
as possible, we use a fourth-order polynomial for fb.
Once fb is constructed, all that remains is to define a

goodness of fit function between theory and data, and
minimise it to obtain exclusion contours for {Ci}.

III. IMPROVING THE TOP EFT FIT AT THE
LHC

A. The impact of high pT top final states

As noted in the introduction, the bounds obtained on
top quark operators from early LHC data are rather
weak. In principle, di↵erential distributions provide
much more sensitivity to higher-dimensional operators
than inclusive rates, because they isolate the regions of
phase space where the operators are most sensitive. Typ-
ically, however, the di↵erential measurements used in the
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FIG. 1: Transverse momentum distributions for the re-
constructed hadronic top quark candidate. The bars rep-
resent 30 fb�1 of pseudodata with

p
s = 13 TeV con-

structed with the SM-only hypothesis, while the shaded
curves include the e↵ects of four-quark operators with
Wilson coe�cients Ci = 10 TeV�2 for illustration. De-
tails of the top quark reconstruction are described in the
text.

with the Ct14 [43], Mmht14 [44] and Nnpdf3.0 [45] as
per the recommendations of the Pdf4Lhc working group
for LHC run 2 [46], and we take the full scale+PDF en-
velope as our theory band. This defines an uncertainty
on the di↵erential K-factor which we propagate into each
observable. We treat theory uncertainties as uncorrelated
with experimental systematics and take them to be fixed
as a function of luminosity unless stated otherwise.

In order to build the parameter space for the Wil-
son coe�cients Ci, instead of calculating coe�cients
on a multidimensional grid, which su↵ers from expo-
nential scaling in the number of operators, we use an
interpolation-based method, detailed in [47].

• We construct a logarithmically random-sampled 6
dimensional parameter space in the operators of
Tab. 1. The logarithmic spacing reflects that we
want our sampling to be most accurate near to the
SM point {Ci} = 0.

• We generate our theory predictions and uncertain-
ties, as detailed above, at each point in this space.

• Once the parameter space has been constructed, we
use a polynomial to interpolate between the ran-
domly chosen values of {Ci}, thus building up a
smooth functional form for the change in the pre-
diction for the observables considered with respect
to {Ci}.

Motivated by the functional form of the cross section
with respect to the Wilson coe�cient
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we choose a polynomial dependence on {Ci} as our re-
sponse function for a single bin b.

fb({Ci}) = ↵b
0

+
X

i

�b
iCi +

X

ij

�b
i,jCi,j + . . . . (II.4)

This way operators with vanishing interference with the
SM amplitude piece can be treated separately and we
gain complete analytical control over the fit. The ellipsis
in Eq. (II.4) denotes higher order terms in {Ci}. Compar-
ing Eqs. (II.3) and (II.4), one would expect a quadratic
polynomial to capture the full dependence on {Ci}. How-
ever, when one considers observables such as asymme-
tries, or distributions normalised to the total cross sec-
tion, this simple relation is no longer valid. In order to
capture the dependence on the coe�cients as accurately
as possible, we use a fourth-order polynomial for fb.
Once fb is constructed, all that remains is to define a

goodness of fit function between theory and data, and
minimise it to obtain exclusion contours for {Ci}.

III. IMPROVING THE TOP EFT FIT AT THE
LHC

A. The impact of high pT top final states

As noted in the introduction, the bounds obtained on
top quark operators from early LHC data are rather
weak. In principle, di↵erential distributions provide
much more sensitivity to higher-dimensional operators
than inclusive rates, because they isolate the regions of
phase space where the operators are most sensitive. Typ-
ically, however, the di↵erential measurements used in the
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FIG. 2: Individual 95% bounds on the operators consid-
ered here, from the boosted analysis and the resolved fat jet
analysis, and the combined constraint from both, assuming
20% systematics and 30 fb�1 of data. We also show existing
constraints from unfolded 8 TeV pT distributions published
in [48] and [49], showing the sizeable improvement even for a
modest luminosity gain.

fit have been based on standard top reconstruction tech-
niques, which, while providing good coverage of the low
pT ‘threshold’ region, su↵er from poor statistical and sys-
tematic uncertainties in the tails of distributions, pre-
cisely the region of phase space we aim to isolate.

Moreover, the measurements used were typically un-
folded; that is, the final-state objects were corrected for
detector e↵ects and the actual measured ‘fiducial’ cross
section extrapolated to the full phase space, without cuts.
This includes the treatment of reducible as well as ir-
reducible backgrounds, which we implicitly understand
as part of experimental systematic uncertainties in the
following. Unfolded distributions substantially ease the
workflow of our fit, since we can compare them directly
to parton level quantities without the need for shower-
ing, hadronisation and detector simulation at each point
in the parameter space. However, the extrapolation from
the fiducial to full phase space, which makes use of com-
paring to Monte Carlo simulations, necessarily biases the
unfolded distributions towards SM-like shapes. It also
introduces additional correlations between neighbouring
bins, broadening the �2.

For top pair production, being a 2 ! 2 process, the
relevant observables which span the partonic phase space
are scattering angle and partonic centre-of-mass energy.
All other observables are functions of these parameters,
of which the top quark transverse momentum is crucial
observable which determines quality and e�ciency of the
boosted top tagging approach [50–56] which we will em-
ploy in the following. The advantage of selecting high
pT objects is thus twofold [57]. Firstly, by making use of

sophisticated reconstruction techniques for boosted ob-
jects, we move to the region of phase space where the
e↵ects of heavy new degrees of freedom will be most pro-
nounced, as illustrated in Fig. 1, and secondly, jet sub-
structure techniques require, by definition, a hadron-level
analysis, so we avoid the model-dependence that fitting
parton-level distributions to unfolded measurements suf-
fers from.
The sting in the tail for analyses selecting high pT ob-

jects is, of course, low rates. At 13 TeV, for instance, we
find that 90% of the cross section comes from the resolved
region ptT < 200 GeV.† We thus aim to quantify at what
stage in the LHC programme, if at all, the increased sen-
sitivity in this region can compensate for the relatively
poor statistics. Our analysis setup, as implemented in
Rivet [58], is as follows:
Restricting ourselves to the semileptonic top pair de-

cay channel, we first require a single charged lepton with
pT > 30 GeV‡, and find the Emiss

T vector which we require
to have a magnitude > 30 GeV. The leptonic W -boson
is reconstructed from these by assuming it was produced
on-shell. Jets are then clustered using the anti-kT al-
gorithm [59] using FastJet [60] in two separate groups
with R = (0.4, 1.2) requiring pT > (30, 200) GeV respec-
tively, and jets which overlap with the charged lepton are
removed. The R = 1.2 fat jets are required to be within
|⌘| < 2, and the R = 0.4 small jets are b-tagged within
the same ⌘ range with an e�ciency of 70% and fake rate
of 1% [61].

If at least one fat jet and one b-tagged small jet which
does not overlap with the leading fat jet exists, we per-
form a boosted top-tag of the leading fat jet using HEP-
TopTagger [50, 51, 62] and reconstruct the leptonic top
candidate using the leading, non-overlapping b-tagged
small jet and the reconstructed leptonic W .

If no fat jet fulfilling all the criteria exists, we instead

Leptons pT > 30 GeV

|⌘| < 4.2

Missing energy Emiss
T > 30 GeV

Small jets anti-kT R = 0.4

pT > 30 GeV , |⌘| < 2

Fat jets anti-kT R = 1.2

pT > 200 GeV , |⌘| < 2

Resolved � 4 small jets w/� 2 b-tags

Boosted � 1 fat jet, � 1 small jet w/ b-tag

TABLE II: Summary of the physics object definitions and
event selection criteria in our hadron-level analysis.

†

We choose ptT � 200 GeV as benchmark point of the boosted se-

lection as the top tagging below this threshold su↵ers from large

mistag rates and small e�ciencies.

‡

We do not consider ⌧ decays here to avoid the more involved re-

construction.
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FIG. 3: Fractional improvement on the 95% confidence intervals for the operators considered here, with various combinations
of luminosity and experimental systematics considered. We take the width of the 95% confidence limit obtained from 20 %
systematic uncertainty and 30 fb�1 of data as a baseline (green bar), and normalise to this, i.e. we express constraints as a
fractional improvement on this benchmark. The purple and blue bars represent respectively, 300 fb�1 and 3 ab�1 of data, also
at 20% systematics, while the yellow, orange and red are the analogous data sample sizes for 10% systematics.

require at least 2 b-tagged small jets and 2 light small
jets. If these exist we perform a resolved analysis by
reconstructing the hadronic W -boson by finding the light
small jet pair that best reconstructs the W mass, and
reconstruct the top candidates by similarly finding the
pairs of reconstructed W -boson and b-tagged small jet
that best reconstruct the top mass.

Finally, regardless of the approach used, we require
both top candidates to have |m

cand

�m
top

| < 40 GeV. If
this requirement is fulfilled the event passes the analysis.

B. Results

Impact of experimental precision

Using a sample size of 30 fb�1 with a flat 20%
systematic uncertainty (motivated by typical estimates
from existing experimental analyses by ATLAS [63] and
CMS [64]) on both selections as a first benchmark, the
1-dimensional 95% confidence intervals on the opera-
tors considered here are presented in Fig. 2. All the
bounds presented here are ‘one-at-a-time’, i.e. we do not
marginalise over the full operator set. Our purpose here
is to highlight the relative contributions to the allowed
confidence intervals here, rather than to present a global
operator analysis.

As a general rule, the increased sensitivity to the Wil-
son coe�cients o↵ered by the boosted selection is over-
powered by the large experimental systematic uncertain-
ties in this region, and the combined limits are dom-
inated by the resolved top quarks. The exception to
this rule is the coe�cient CG from the operator OG =

fABCG
µ,A
⌫ G⌫,B

� G�,C
µ . Expanding out the field strength

tensors leads to vertices with up to six powers of momen-
tum in the numerator, more than enough to overcome
the näıve 1/ŝ2 unitarity suppression. Large momentum
transfer final states thus give stronger bounds on this
coe�cient, even with comparatively fewer events.

With these constraints as a baseline, it is then natural
to ask by how much they can be improved upon when
refinements to experimental precision are made. The
constraints are presented in Fig. 3 for di↵erent combi-
nations of systematic and statistical uncertainties. We
take the width of the 95% confidence interval in Fig. 2 as
our normalisation (the green bars), and express the frac-
tional improvements on the limits that can be achieved
relative to this baseline, for each operator. The right
bars (green, purple, blue) represent 20% systematic un-
certainties with, respectively 30, 300 and 3 ab�1 of data.
The left bars (yellow, orange, red) represent the same
respective data sample sizes, but with 10% systematic
uncertainties.

Beginning with the resolved selection, we find that the
limits on the coe�cient CG can be improved by 40%
by going from 30 fb�1 to 300 fb�1, and by a further
20% when the full LHC projected data sample is col-
lected. Systematic uncertainties have a more modest ef-
fect on this operator: at 3 ab�1 the limit on CG is only
marginally improved by a 10% reduction in systematic
uncertainty. This merely reflects that CG mostly impacts
the high pT tail, so it can only be improved upon in the
threshold region by collecting enough data to overcome
the lack of sensitivity. 8 TeV measurements are already
constraining the relevant phase space region e�ciently
and the expected improvement at 13 TeV is only mild
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require at least 2 b-tagged small jets and 2 light small
jets. If these exist we perform a resolved analysis by
reconstructing the hadronic W -boson by finding the light
small jet pair that best reconstructs the W mass, and
reconstruct the top candidates by similarly finding the
pairs of reconstructed W -boson and b-tagged small jet
that best reconstruct the top mass.

Finally, regardless of the approach used, we require
both top candidates to have |m

cand

�m
top

| < 40 GeV. If
this requirement is fulfilled the event passes the analysis.

B. Results

Impact of experimental precision

Using a sample size of 30 fb�1 with a flat 20%
systematic uncertainty (motivated by typical estimates
from existing experimental analyses by ATLAS [63] and
CMS [64]) on both selections as a first benchmark, the
1-dimensional 95% confidence intervals on the opera-
tors considered here are presented in Fig. 2. All the
bounds presented here are ‘one-at-a-time’, i.e. we do not
marginalise over the full operator set. Our purpose here
is to highlight the relative contributions to the allowed
confidence intervals here, rather than to present a global
operator analysis.

As a general rule, the increased sensitivity to the Wil-
son coe�cients o↵ered by the boosted selection is over-
powered by the large experimental systematic uncertain-
ties in this region, and the combined limits are dom-
inated by the resolved top quarks. The exception to
this rule is the coe�cient CG from the operator OG =

fABCG
µ,A
⌫ G⌫,B

� G�,C
µ . Expanding out the field strength

tensors leads to vertices with up to six powers of momen-
tum in the numerator, more than enough to overcome
the näıve 1/ŝ2 unitarity suppression. Large momentum
transfer final states thus give stronger bounds on this
coe�cient, even with comparatively fewer events.

With these constraints as a baseline, it is then natural
to ask by how much they can be improved upon when
refinements to experimental precision are made. The
constraints are presented in Fig. 3 for di↵erent combi-
nations of systematic and statistical uncertainties. We
take the width of the 95% confidence interval in Fig. 2 as
our normalisation (the green bars), and express the frac-
tional improvements on the limits that can be achieved
relative to this baseline, for each operator. The right
bars (green, purple, blue) represent 20% systematic un-
certainties with, respectively 30, 300 and 3 ab�1 of data.
The left bars (yellow, orange, red) represent the same
respective data sample sizes, but with 10% systematic
uncertainties.

Beginning with the resolved selection, we find that the
limits on the coe�cient CG can be improved by 40%
by going from 30 fb�1 to 300 fb�1, and by a further
20% when the full LHC projected data sample is col-
lected. Systematic uncertainties have a more modest ef-
fect on this operator: at 3 ab�1 the limit on CG is only
marginally improved by a 10% reduction in systematic
uncertainty. This merely reflects that CG mostly impacts
the high pT tail, so it can only be improved upon in the
threshold region by collecting enough data to overcome
the lack of sensitivity. 8 TeV measurements are already
constraining the relevant phase space region e�ciently
and the expected improvement at 13 TeV is only mild

10%
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FIG. 4: Left: 68%, 95% and 99% confidence intervals for CG and C33
uG, the lines are obtained using experimental (20%

systematics and 30 fb�1 of data) uncertainties along with theoretical uncertainties, the filled contours using only experimental
uncertainties. Right: the same plot, but using 10% systematics and 3 ab�1 of data, showing the much stronger impact of
theory uncertainties in this region.

(see below).
For the chromomagnetic dipole operator O33

uG, improv-
ing the experimental systematics plays much more of a
role. A 10% improvement in systematics, coupled with
an increase in statistics from 30 fb�1 to 300 fb�1 leads to
stronger limits that maintaining current systematics and
collecting a full 3 ab�1 of data. Similar conclusions apply
for the four-quark operators, to varying degrees, i.e. re-
ducing systematic uncertainties can provide comparable
improvements to collecting much larger data samples.

For the boosted selection, the situation is quite di↵er-
ent. For all the operators we consider, improving system-
atic uncertainties by 10% has virtually no e↵ect on the
improvement in the limits. This simply indicates that
statistical uncertainties dominate the boosted region at
30 fb�1. For CG, at 300 fb�1 some improvement can
be made if systematics are reduced, however we then see
that systematic uncertainties saturate the sensitivity to
CG, i.e. there is no improvement to be made by collect-
ing more data. For C33

uG, a modest improvement can also
be made both by reducing systematics by 10% and by in-
creasing the dataset to 300 fb�1. However, going beyond
this, the improvement is minute. The four-quark oper-
ators again follow this trend, although C2

u shows much
more of an improvement when going from 300 fb�1 to
3 ab�1.

The role of theoretical uncertainties

The other key factor in the strength of our constraints
is the uncertainties that arise from theoretical modelling.

The scale and PDF variation procedure outlined in Sec.
II typically leads to uncertainties in the 10-15% range.
Recently, fully di↵erential K-factors for top pair produc-
tion at NNLO QCD (i.e. to order O(↵4

s)) have become
available, which have substantially reduced the scale un-
certainties. The numbers quoted in Refs. [4, 65] are for
the Tevatron and 8 TeV LHC, and available only for the
low to intermediate ptT range (ptT < 400 GeV). However,
if similar theoretical precision can be achieved for the
13 TeV calculation, and used in the boosted regime, it
is worthwhile to ask what impact such an improvement
could have on the constraints.

We put this question on a firm footing by showing in
Fig. 4 the 2D exclusion contours for the coe�cients CG
and C33

uG, as obtained from combining the boosted and
resolved limits, at fixed luminosity and experimental sys-
tematics, first using our NLO theory uncertainty, and
also using no theory uncertainty at all. For 30 fb�1 the
improvement is limited, indicating that at this stage in
the LHC programme the main goal should be to first im-
prove experimental reconstruction of the top quark pair
final state. However, at 3 ab�1 the improvement is sub-
stantial, indicating that it will also become necessary to
improve the theoretical modelling of this process, if the
LHC is to augment its kinematic reach for non-resonant
new physics.

In addition to SM theoretical uncertainties, there are
uncertainties relating to missing higher-order terms in
the EFT expansion. Uncertainties due to to loop cor-
rections and renormalisation-group flow of the opera-

tors O(6)

i are important for measurements at LEP-level
precision[66, 67] where electroweak e↵ects are also re-

• solid: exp. systematics only

30/fb 3000/fb



Summary

☛ we’ve started to explore the top sector better than at the Tevatron 

☛ constraints do not tell us an awful lot at the moment 

☛ expect improvement with more data, but probably not much room 
for theoretical improvements

based on [Buckley , CE, Ferrando, Miller, Moore, Russell, White `15]2 
[CE, Moore, Nordstrom, Russell `16]


