🗳 Checkmating theories at the LHC 🗳

A. Biekoetter, D. Dercks, N. Desai, M. Drees, H. K. Dreiner, J. S. Engel, T. C. Keller, J. S. Kim, F. Poncza, K. Rolbiecki, J.Tattersall, T. Weber

http://checkmate.hepforge.org

RWTH Aachen University

Testing theories

- ${}^{\vartriangle}$ Theorists have been busy for the past ${\sim}40$ years
 - 〇〇 Massive number of models invented
- △ LHC collaborations cannot possibly cover all of this space

H. Murayama

* Testing theories

Experimental probes

- A Electroweak precision
- Higgs observables
- Collider searches
- 🎍 Dark Matter
- 🖄 and many more...

Huge amount of work for any theorist!

* Testing theories

Experimental probes

- A Electroweak precision
- Higgs observables
- Collider searches
- 🎍 Dark Matter
- 🖄 and many more...

Huge amount of work for any theorist! \rightarrow Automate!

Write the Lagrangian down

Write the Lagrangian down

Press "Enter"

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables

🖄 Overview

🖄 Overview

🗳 General Structure

TTK Interest of Protocol Action Protocol Actional Protocol Action Protocol Act

Enter Lagrangian into SARAH/FeynRules (or use pre-existing model)

🖄 General Structure

TTK Institute for Particle Physics Interesting UNIVERSITY

Enter Lagrangian into SARAH/FeynRules (or use pre-existing model)

Calculate matrix element with MadGraph

🖄 General Structure

TTK Interest of Descent of Descen

Enter Lagrangian into SARAH/FeynRules (or use pre-existing model)

Calculate matrix element with MadGraph

Shower and hadronise events with Pythia

🗳 General Structure

TTK Interest for Particle Presson UNIVERSITY

Enter Lagrangian into SARAH/FeynRules (or use pre-existing model)

Calculate matrix element with MadGraph

Shower and hadronise events with Pythia

CheckMATE runs on events and returns answer

🖄 General Structure

Enter Lagrangian into SARAH/FeynRules (or use pre-existing model)

CheckMATE 2

Calculate matrix element with MadGraph

Shower and hadronise events with Pythia

CheckMATE runs on events and returns answer

🖄 Simulation Program Flow

🖄 Simulation Program Flow

Jamie Tattersall — Checkmating theories at the LHC

Available Analyses

8 TeV Analyses

#Name	NSR	Description	Lumi		
atlas_1308_1841	13	ATLAS, 0 lepton $+ \geq 7$ jets $+$ etmiss	20.3		
atlas_1308_2631	6	ATLAS, 0 leptons + 2 b-jets + etmiss	20.1		
atlas_1402_7029	20	ATLAS, 3 leptons + etmiss (chargino+neutralino)	20.3		
atlas_1403_4853	12	ATLAS, 2 leptons + etmiss (direct stop)	20.3		
atlas_1403_5294	13	ATLAS, 2 leptons + etmiss, (SUSY electroweak)	20.3		
atlas_1403_5294_CR	4	ATLAS, 2 leptons + etmiss CR, (SUSY electroweak)	20.3		
atlas_1404_2500	5	ATLAS, Same sign dilepton or 31	20.3		
atlas_1405_7875	15	ATLAS, 0 lepton + 2-6 jets + missingET	20.3		
atlas_1407_0583	27	ATLAS, 1 lepton + (b-)jets + etmiss (stop)	20.3		
atlas_1407_0600	9	ATLAS, 3 b-jets + 0-1 lepton + etmiss	20.1		
atlas_1407_0608	3	ATLAS, Monojet or charm jet (stop)	20.3		
atlas_1411_1559	1	ATLAS, monophoton plus MET	20.3		
atlas_1502_01518	9	ATLAS, Monojet plus missing energy	20.3		
atlas_1503_03290	1	ATLAS, 2 leptons + jets + missingET	20.3		
atlas_conf_2012_104	2	ATLAS, 1 lepton $+ \ge 4$ jets $+$ etmiss	5.8		
atlas_conf_2012_147	4	ATLAS, Monojet + etmiss	10.0		
atlas_conf_2013_021	4	ATLAS, WZ standard model (3 leptons + etmiss)	13.0		
atlas_conf_2013_024	3	ATLAS, 0 leptons + 6 (2 b-)jets + etmiss	20.5		
atlas_conf_2013_031	2	ATLAS, Higgs spin measurement (WW)	20.7		
atlas_conf_2013_036	5	ATLAS, 4 leptons + etmiss	20.7		
atlas_conf_2013_049	9	ATLAS, 2 leptons + etmiss	20.3		
atlas_conf_2013_061	9	ATLAS, 0-1 leptons + >= 3 b-jets + etmiss	20.1		
atlas_conf_2013_062	19	ATLAS, 1-2 leptons + 3-6 jets + etmiss	20.1		
atlas_conf_2013_089	12	ATLAS, 2 leptons (razor)	20.3		
atlas_conf_2014_014	1	ATLAS, 2 leptons + b-jets (stop)	20.3		
atlas_conf_2014_033	3	ATLAS, WW standard model measurement	20.3		
atlas_conf_2014_056	1	ATLAS, ttbar spin correlation measurement	20.3		
atlas_conf_2015_004	1	ATLAS, invisible Higgs decay in VBF	20.3		

Available Analyses

8 TeV continued

NSR	Description	Lumi				
5	ATLAS, stop production with Z boson and b-jets	20.3				
12	ATLAS, di-lepton and 2b-jets+lepton at 8 TeV	20.0				
59	CMS, alpha_T + b-jets	11.7				
1	CMS, WW standard model measurement	3.5				
57	CMS, Various chargino and neutralino	19.5				
7	CMS, monojet + MET	19.7				
6	CMS, 2 leptons, jets, missingET (only on-Z)	19.4				
1	CMS, 1 lep, >=3 j, >=1 b-j, etmiss (DM +2top)	19.7				
4	CMS, WZ standard model (3 leptons + etmiss)	19.6				
1	CMS, OS lep 3+ b-tags	19.5				
4	CMS, 2 leptons, >= 2 jets + etmiss (dilep edge)	19.4				
	******* NSR 5 12 59 1 57 7 6 1 4 1 4	<pre>NSR Description 5 ATLAS, stop production with Z boson and b-jets 12 ATLAS, di-lepton and 2b-jets+lepton at 8 TeV 59 CMS, alpha_T + b-jets 1 CMS, WW standard model measurement 57 CMS, Various chargino and neutralino 7 CMS, tarious chargino and neutralino 7 CMS, status chargino and neutralino 7 CMS, status chargino and neutralino 7 CMS, 1 lep, >=3 j, >=1 b-j, etmiss (DM +2top) 4 CMS, WZ standard model (3 leptons + etmiss) 1 CMS, 0S lep 3 b-tags 4 CMS, 2 leptons, >= 2 jets + etmiss (dilep edge)</pre>				

7 TeV Analyses

###	
Ш	
##	
##	
##	
##	
#	
#	
Т	
Ľ	
#	
#	
I	
L	
#	
#	
П	
1	
L	
#	
#	
#	
#	
#	
#	
1	
1	
E	
I.	
#	
#	
#	
#	
Ξ	
1	
I	
Т	
##	
1	
1	
E	
Ľ	
#	
#	
#	
I	
Т	
E	
E	
E	
Ľ	
Ľ	
I.	
#	
#	
#	
#	
#	
#	
#	
i	

•Name		
	 - m	
	 auu	

atlas_1210_2979 cms_1306_1126_WW

SR	Description	Lumi
	ATLAS, WW measurement with 2 leptons	4.6
	CMS, WW standard model measurement	4.9

🗳 Available Analyses

13 TeV Analyses

#Name	NSR	Description	Lumi		
atlas_1602_09058	4	ATLAS, 2 ss leptons or 3 leptons	3.2		
atlas_1604_07773	13	ATLAS, monojet	3.2		
atlas_1604_01306	1	ATLAS, photon + MET search at 13 TeV	3.2		
atlas_1605_03814	7	ATLAS, 2-6 jets + Etmiss	3.2		
atlas_1605_04285	7	ATLAS, 1 lepton + jets + Etmiss	3.3		
atlas_1605_09318	8	ATLAS, >= 3 b-jets + 0-1 lepton + Etmiss	3.3		
atlas_1606_03903	3	ATLAS, 1-lepton + jets + etmiss (stop)	3.2		
atlas_conf_2015_082	1	ATLAS, leptonic Z + jets + Etmiss	3.2		
atlas_conf_2016_013	10	ATLAS, 4 top quark (1 lepton + jets, VLQ search)	3.2		
atlas_conf_2016_050	5	ATLAS, 1-lepton + jets + etmiss (stop)	13.3		
atlas_conf_2016_076	6	ATLAS, 2 leptons + jets + etmiss	13.3		

14 TeV (High-Lumi) Analyses

#Name	NSR	Description	Lumi			
atlas_phys_pub_2013_011	4	ATLAS, hadronic and leptonic stop search	3000.0			
atlas_phys_2014_010_300	10	ATLAS, 2-6 jets + met	300.0			
atlas_phys_2014_010_sq_hl	10	ATLAS, 2-6 jets + met	3000.0			
atlas_2014_010_h1_31	1	ATLAS, 3 leptons + etmiss (char+neut)	3000.0			
checkmate_dilepton_hl	9	custom slepton/chargino dilepton search	3000.0			
atl_phys_pub_2014_010_sbottom	6	0 leptons + 2 b-jets + Etmiss	300.0			

🗳 Analyses

Good coverage of E_{miss}^{T} and SUSY

- \triangle Over 50 analyses implemented (including 11 at 13 TeV)
- Over 300 individual signal regions
- $\textcircled{\sc line 0}$ New analyses being added all the time

CheckMATE 2

- A MadGraph and Pythia now integrated
 - 2 Code improvements \rightarrow 2X faster on single core
 - \blacksquare Hugely improved cluster performance \rightarrow easy scans
- A Combination of analyses now possible
- 🖄 High-lumi analyses now included
- Beta version now available for download
 - Manual will be public soon

🖄 Analysis Manager

What if you want a different analysis?

- Ask us first!
 - We are often working on many analyses that are not yet public

AnalysisManager (arXiv:1503.01123)

- Automatised tool for adding analyses
 - All possible final states types
 - Library of kinematical variables
 - Statistics automatically calculated
- 響 User is only required to implement set of cuts in C++
 - A Many CheckMATE analyses have now been coded by external users
- Also perfect for prototyping new analyses

🖄 Validation Example

atlas_conf_2013_047 (0 leptons + 2-6 jets + ∉_T, 8 TeV, 20.3 fb⁻¹)

Process	ãã direct			
Did	qq difect			
Point	m(q) =	: 450 GeV	m(q) =	= 662 GeV
	$m(\tilde{\chi}_1^0) =$	= 400 GeV	$m(ilde{\chi}^0_1)$ =	= 287 GeV
Signal Region	Ā-m	edium	Č-m	nedium
Source	ATLAS	Checkmate	ATLAS	Checkmate
Generated events	20000	50000	5000	50000
In	100	100	100	100
Jet Cleaning *	99.7		99.6	
0-lepton *	89.9		98.2	
$E_T^{m\bar{s}s} > 160 \text{ GeV }^*$	15		80.7	
$p_{\rm T}(j_1) > 130 {\rm GeV}$	12.9	12.9	80.0	79.3
$p_{\rm T}(j_2) > 130 {\rm GeV}$	9.0	8.4	75.6	75.3
$p_{\rm T}(j_3) > 0.60 {\rm GeV}$	9.0	8.4	35.3	35.6
$p_{\rm T}(j_4) > 0.60 {\rm GeV}$	9.0	8.4	11.5	11.3
$\Delta\phi(j_i > 40, E_T^{miss}) > 0.4$	7.0	6.8	10.1	9.9
$\Delta\phi(j_i > 40 \text{ GeV}, E_T^{miss}) > 0 - 0.2$	7.0	6.8	9.3	9.2
$E_T^{miss}/\sqrt{H_T} > 0-15$	2.6	1.8	9.3	9.2
$E_T^{miss}/m_{eff}(N_j) > 0.15 - 0.4$	2.6	1.8	7.2	6.8
$m_{eff}(\text{incl.}) > 1 - 2.2 \text{ TeV}$	0.1 ± 0.02	0.08 ± 0.01	3.0 ± 0.2	3.1 ± 0.1

🖄 Validation Example

ATLAS, $1 \ell + \not \in_T$

ATLAS, $0 \ell + 2-6$ jets + $\not \in_T$

Overall Statement

Generally good agreement, sometimes more conservative
 All validation notes on website (now with MC cards)

🗳 Where next?

- A Want to perform fit with many free parameters
- Signal regions may have very low acceptance
- $\textcircled{\sc op}$ 2d scans already have CPU as limiting factor

Simplified Models

🕆 Simplified Model Tools

Simplified Models

- ≜ Set limits on specific topology instead
- 罩 Assume 100% branching ratio
- ∅ Easily rescaled to model

🖄 Simplified Model Tools

Available Tools

- A FastLim (10 analyses) (Papucci, Sakurai, Weiler, Zeune; 2014)
- SModelS (46 analyses) (Kraml, Kulkarni, Laa, Lessa, Magerl, Waltenberger et al; 2014)
- 2 XQCAT (5 analyses) (Barducci, Belyaev, Buchkremer, Cacciapaglia, Deandrea et al; 2014)

Advantages

- ^² Fast! (few seconds per point)
- Use actual experimental results

Disadvantages

- 創 Based around a particular model (usually MSSM)
- 🖄 Limits conservative (sometimes very)
 - 響 More than 1-step decays difficult
 - $\ensuremath{ \ensuremath{ \en$
- Probably difficult to apply to fitting a signal

* Can we do better?

Moving from $P \rightarrow P'$, need:

- A Final state cross-sections (including branching ratios)
- Distributions

Aim

- ^{*i*} Per point evaluation → $\mathcal{O}(secs)$
- $\texttt{Accuracy} \rightarrow 10\%$ on acceptance
- Arbitrary BSM models

Parameter scans

Matrix element method for arbitrary BSM scans

(Gainer, Lykken, Matchev, Mrenna, Park; 2014)

- \triangle Central idea \rightarrow Re-use events via re-weighting
 - Experiments generate large samples of unweighted events for arbitrary topologies
 - ☑ Full parton shower and detector simulation performed
 - 創 BSM events by reweighting ME at same phase space point

Parameter scans

Key practical issues

Parameter scans

Key practical issues

$\textcircled{\sc line 0}$ Only allows changes in couplings and spins

Crucially masses must be the same

Our idea

Optimise for speed

- In No matrix element evaluation
- ☑ Re-use parton shower
- 🆄 Re-use detector sim
- W Re-use jet algorithm
- Allow masses to vary
- Keep spins the same
- 🖄 Model agnostic

谢 Couplings

First order effects

- A Total Cross-Sections
- Branching Ratios

Second order effects \rightarrow ignore

- A Kinematical Distributions
- ℤ Requires
 - Interference terms small
 - ▲ Narrow width approximation satisfied

🗳 Couplings

First order effects

- ≜ Total Cross-Sections
- Branching Ratios

Second order effects \rightarrow ignore

- A Kinematical Distributions
- I Requires
 - Interference terms small
 - 盒 Narrow width approximation satisfied

Solution

- $\ensuremath{ \ensuremath{ \ensuremath{ \& \ensuremath{ \ensuremath{ \ensuremath{ \& \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \& \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \& \ensuremath{ \ensurem$
- Generally, acceptances only weakly depend on coupling structures

Easy part

- \triangle Total Cross-Section \rightarrow Reweight
- \blacksquare Branching Ratios \rightarrow Reweight

More difficult

Kinematical Distributions

創 Clearly not a sub-leading effect for mass changes

Guiding principle

- \triangle Production: $\vec{p} \rightarrow \vec{p}, m \rightarrow m'$
 - Ensures we sample full phase space
 - ô 'Off-shellness' constant
- A Decays: Rest frame angles conserved
 - All kinematics specified by momentum conservation
- △ Final state particles: Matched to hard event
 - Kinematics determined by hard partons
 - Smeared in proportion to original event particles

Reweighting

- Å 1/s: Leading cross-section behaviour
- PDFs: Leading LHC angular distribution behaviour
- $\bigtriangleup \alpha_s$: If QCD production (and ISR)

$\stackrel{\text{\tiny (b)}}{=} Z'$ example

Z' toy model

 \blacksquare Transform $m_{Z'} = 500$ GeV events to $m_{Z'} = 1$ TeV

♦ Breit-Wigner is reproduced

Without PDF reweighting

 \triangle At higher \sqrt{s} production becomes more central

With PDF reweighting

PDF reweighting corrects production angles

Muon rapidity

🖄 Top production example

Toy top model

- A Double top mass
- All distributions reproduced to high accuracy

$\stackrel{\text{\tiny (f)}}{=}$ Decay distributions, $t \to W^{\pm}b$

Toy top model

- △ Decays are also reproduced accurately
- Again reweighting is vital in addition to the kinematic transformations

🗳 Future plans

Works well for Z' and toy top model

- Apply to SUSY and recalculate exclusions
- ∅ Completely testable for any parameter point

Generalise

- ${\ensuremath{ \ensuremath{ \e$
- ∅ User simply supplies FeynRules model and parameter ranges
- Offer matrix element evaluation as an option

Optimise

 \triangle Currently $\rightarrow \sim 5$ secs for 100,000 events

🗳 (Very-) High dimensional fits

Lack of SUSY signal at LHC

- \triangle Probably means we should look beyond simplest models
- 罩 Increasingly popular are PMSSM-11 (or -19)
- Can we be more intelligent?

🗳 (Very-) High dimensional fits

Lack of SUSY signal at LHC

- \triangle Probably means we should look beyond simplest models
- Increasingly popular are PMSSM-11 (or -19)
- 2 Naively means we need to sample $\sim 10^{19}$ parameter points
 - Obviously impossible!

Deep learning

- Deep learning is the new buzzword in silicon valley!
 - Use many layered neural net to learn complex functions

🖄 Basics of neural nets

Ideas

Input parameters connected to output by layers of nonlinear functions

Essentially a highly nonlinear multivariate interpolator

Work in progress with Philip Bechtle, Matthias Hamer, Michael Kraemer, Tim Keller, Jan Schuette-Engel and Bjoern Sarrazin Jamie Tattersall – Checkmating theories at the LHC ______34

🖄 Two different methods

Want to predict the combined χ^2 of many LHC signal regions

🖄 Two different methods

Want to predict the combined χ^2 of many LHC signal regions

Direct approach

- ≜ Input are SUSY model parameters
- Optimise for speed

🖄 Two different methods

Want to predict the combined χ^2 of many LHC signal regions

 $m_{\tilde{l}_{1,2}}$

 $taneta m_{A^0}$

Transformation to physical parameters p1,p2,... M_1 M_2 M_3 M_3 $M_{\bar{q}_{1,2}}$

Direct approach

- △ Input are SUSY model parameters
- Optimise for speed

Reparameterised approach

- A First calculate physical parameters
- Generalise to other models

🖄 Reparameterisation method

Physical parameters

- A Calculate average number (and standard deviation) of particles produced at LHC in BSM model
- Also calculate average maximum energy (and standard deviation) of each particle
- Including on-shell SM resonances

🗳 Results

SUSY parameter net

 $\& \chi^2$ lies in range 80-250

Net is vast improvement over nearest neighbour interpolator

Training

Adjust weights and biases Minimise:

$$\sum_{\text{training data}} (\chi^2_{\text{output}} - \chi^2_{\text{desired}})^2$$

Validation

Check net generalises with validation set

 $\sum (\chi^2_{\text{output}} - \chi^2_{\text{desired}})^2$

validation set

曾 Results

Does reparameterisation help?

15

- ^⁸ Final results are very similar
- \blacksquare SUSY parameter net is far faster (ms vs ~ 6s)
- ${\textcircled{\sc online 0.5ex}}$ Net has best performance in region of interest

riangle Reparameterisation o Other models

$CMSSM \rightarrow 4$ (+ sign) parameters

- ▲ Neural Net does reproduce χ^2 well → up to 50% error
- \blacksquare NOT a subset of PMSSM-11 \rightarrow RGE's split scalar masses
- ♦ Can we understand physically why the net fails?

riangle Reparameterisation ightarrow Other models

AMSB \rightarrow 3 parameters

- \triangle Again Neural Net fails \rightarrow up to 80% error
- Source is stop-sbottom mass splitting
 - 100% $\tilde{g} \rightarrow \tilde{t}t$ decay in this model
 - $m_{\tilde{t}} = m_{\tilde{b}}$ means this never happens in PMSSM-11
 - Neural net never samples points with $\langle N_t \rangle = 4$

In the case, solution is trivial to move to PMSSM-12

Automatic model testing now a reality

≜ Tools simple and easy to use

Simplified Models

Rapid model testing

Fast simulation

- 🖄 Model agnostic
- 盒 Allows for fitting to LHC signals

New ideas still needed for speed and accuracy

🖄 Machine Learning is another option

Are you ready ...

... to CheckMATE?