Accelerating global fits with Machine Learning

Sebastian Liem

Outline

Part I Global scan of scalar DM EFT operators. Part II

Fast LHC Signal Prediction using Machine Learning

Real & Complex scalar DM

CMB, Direct detection, and Fermi dSph.

Proof-of-concept: reconstruction

Gaussian Processes

Galactic Centre Excess

Global analysis of scalar DM EFT operators

Effective field theory of dark matter: a global analysis

Sebastian Liem,^{*a*} Gianfranco Bertone,^{*a*} Francesca Calore,^{*a*} Roberto Ruiz de Austri,^{*b*} Tim M.P. Tait,^{*c*} Roberto Trotta^{*d*,*e*} and Christoph Weniger^{*a*}

^a GRAPPA, University of Amsterdam, Science Park 904, Amsterdam, 1098 XH Netherlands
^b Instituto de Física Corpuscular, IFIC-UV/CSIC, C/ Catedrático José Beltrán 2, Paterna, Valencia, E-46980 Spain
^c Department of Physics and Astronomy, University of California, Frederick Reines Hall, Irvine, CA, 92697 U.S.A.
^d Astrophysics Group & Imperial Centre for Inference and Cosmology, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ United Kingdom
^e Data Science Institute, Imperial College London, William Penney Laboratory, South Kensington Campus, London, SW7 2AZ United Kingdom

JHEP09(2016)077

Effective field theory

The idea – combine all operators

If the EFT operators span the 'theory space' then

scan all EFT op \square scan the 'theory space'.

 $\mathcal{L} \supset \sum_i \lambda_i \mathcal{O}_i$

DM-parton EFT operators

Real scalar DM operators								
Label	Coefficient	Operator	$\sigma_{ m SI}$	$\langle \sigma_{ m ann} v angle$				
R1	$\lambda_1 \sim \frac{1}{2M^2}$	$m_q \chi^2 ar q q$	\checkmark	s-wave				
$\mathbf{R2}$	$\lambda_2 \sim rac{-1}{2M^2}$	$im_q\chi^2ar q\gamma^5 q$		s-wave				
$\mathbf{R3}$	$\lambda_3 \sim rac{lpha_s}{4M^2}$	$\chi^2 G_{\mu u} G^{\mu u}$	\checkmark	s-wave				
$\mathbf{R4}$	$\lambda_4 \sim rac{lpha_s}{4M^2}$	$i\chi^2 G_{\mu u} ilde{G}^{\mu u}$		s-wave				
Complex scalar DM operators								
Label	Coefficient	Operator	$\sigma_{ m SI}$	$\langle \sigma_{ m ann} v angle$				
C1	$\lambda_1 \sim rac{1}{M^2}$	$m_q \chi^\dagger \chi ar q q$	\checkmark	s-wave				
C2	$\lambda_2 \sim rac{1}{M^2}$	$im_q\chi^\dagger\chiar q\gamma^5 q$		s-wave				
C3	$\lambda_3 \sim \frac{m_1}{M^2}$	$\chi^\dagger ar{\partial}_\mu \chi ar{q} \gamma^\mu q$	\checkmark	p-wave				
C4	$\lambda_4 \sim rac{1}{M^2}$	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu \gamma^5 q$		p-wave				
C5	$\lambda_5\simrac{lpha_s}{8M^2}$	$\chi^\dagger \chi G_{\mu u} G^{\mu u}$	\checkmark	s-wave				
C6	$\lambda_6 \sim rac{lpha_s}{8M^2}$	$i\chi^\dagger\chi G_{\mu u} ilde{G}^{\mu u}$		s-wave				

Goodman et al. arXiv:1008.1783

Data and likelihoods

Modified SuperBayeS: MultiNest, FeynRules, micrOMEGAs, PPPC 4 DM ID

 $\ln L = \ln L_{\Omega h^2}$ Gaussian. Planck determination of relic density. (1502.01589)

- $+\ln L_{
 m LUX}$ LUXCalc (1502.02667). LUX SI x-sec (1310.8214)
- $+\ln L_{
 m dSph}$ Official likelihood. Fermi **dSph** Pass 8 (1503.02641)
- $+ \ln L_{\rm CMB} \, \stackrel{\rm Planck \, {\bf CMB \, anisotropies \, (1502.01589).}}{\rm Cline \,\&\, Scott; \, Slayter \, (1301.5908, \, 1506.03811)}$

Log prior

 $\log_{10} m_{\chi} \sim \text{Uniform}(0,3)$ $\log_{10} \lambda_i \sim \text{Uniform}(-20,0)$

Dirichlet prior

 $\log_{10} m_{\chi} \sim \text{Uniform}(0,3)$ $\lambda_i = f_i A$ $\log_{10} A \sim \text{Uniform}(-20, 0)$ $\sum f_i = 1$ $\bar{f} \sim \text{Dir}(\alpha = 0.1) = \frac{\Gamma(\alpha K)}{\Gamma(K)} \prod_{i=1}^{K} f_i^{\alpha - 1}$

Two priors

Real scalar DM

Complex scalar DM

P-wave operators!

	Real sca	alar DM operato	ors		
Label	Coefficient	Operator	$\sigma_{ m SI}$	$\langle \sigma_{\rm ann} v \rangle$	
R1	$\lambda_1 \sim \frac{1}{2M^2}$	$m_q \chi^2 \bar{q} q$	\checkmark	s-wave	
R2	$\lambda_2 \sim \frac{1}{2M^2}$	$im_q\chi^2ar q\gamma^5 q$		s-wave	
$\mathbf{R3}$	$\lambda_3 \sim \frac{\alpha_s}{4M^2}$	$\chi^2 G_{\mu u} G^{\mu u}$	\checkmark	s-wave	
R4	$\lambda_4 \sim rac{lpha_s}{4M^2}$	$i\chi^2 G_{\mu u} ilde{G}^{\mu u}$		s-wave	
Complex scalar DM operators					
Label	Coefficient	Operator	$\sigma_{ m SI}$	$\langle \sigma_{\rm ann} v \rangle$	
C1	$\lambda_1 \sim rac{1}{M^2}$	$m_q \chi^\dagger \chi ar q q$	\checkmark	s-wave	
Co	M^2	$im_q \chi' \chi q \gamma q$		a wave	
C3	$\lambda_3 \sim \frac{m_1}{M^2}$	$\chi^\dagger ar{\partial}_\mu \chi ar{q} \gamma^\mu q$	\checkmark	p-wave	
C4	$\lambda_4 \sim rac{1}{M^2}$	$\chi^\dagger \partial_\mu \chi ar q \gamma^\mu \gamma^5 q$		p-wave	
C0	α_s	$\chi^{\dagger}\chi C C^{\mu\nu}$		s-wave	
C6	$\lambda_6 \sim \frac{\alpha_s}{2M^2}$	$i\chi^\dagger\chi G_{\mu u} ilde{G}^{\mu u}$		s-wave	

Galactic centre excess (Galactic Bulge Emission)

Null results is not (interesting) enough.

Additional measurements required to identify operators.

- ¹⁶ Likelihood from
- \sim Calore et al.

arxiv:1409.0042

Bartels et al. Phys. Rev. Lett. 116, 051102

So far

Simplest possible combined EFT approach using cosmology, direct, and indirect detection. Measurements are key for minimal theoretical assumption approaches to be interesting in global analysis context.

Alright, cool. But what about the LHC?

The plan was to include the monojet search.

But the debate on the validity of DM EFT at LHC happened which lead to DM simplified models.

Possible workaround was suggested: Make LHC low-energy experiment by introducing a Mcut = gM and demanding that all events have Ecm < Mcut.

Decent but not satisfying. We want to be all-encompassing.

Considering the cost of simulation and we deemed it not worth it.

Cost is a limitation

Profile likelihood maps of a 15-dimensional MSSM

C. Strege 1 , G. Bertone 2 , G.J. Besjes 3,4 , S. Caron 3,4 , R. Ruiz de Austri 5 , A. Strubig 3,4 , R. Trotta 1

Effective field theory of dark matter: a global analysis

Sebastian Liem,^a Gianfranco Bertone,^a Francesca Calore,^a Roberto Ruiz de Austri,^b Tim M.P. Tait,^c Roberto Trotta^{d,e} and Christoph Weniger^a

120M points 400 CPU-years required

4.2M points

Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in $\sqrt{s} = 8$ TeV proton–proton collisions

The ATLAS Collaboration

500k points

LHC cannot currently be treated as yet another observation in global fits. We need to be clever.

Part II Fast LHC Signal Prediction using Machine Learning

Collaborators

Physics:

Machine Learning:

Gianfranco Bertone

Marc Peter Deisenroth

Roberto Ruiz de Austri

Max Welling

Jong Soo Kim

(iDark project - Sascha Caron, Tom Heskes, etc. visualisation, scanning, ML techniques, + actual computer scientists)

Do we really have to do the calculation from scratch for all points in the sample?

Not if we assume that points in parameter space that are close to each other have similar predictions. (We do.)

Iffy for cross-sections, probable for SR efficiencies.

Model parameters

Surrogate function

Replace the expensive MC calculation with a **surrogate function**.

 $\epsilon = f(\theta) + \xi$

In ML language this a supervised regression problem. Many algorithms, we will use Gaussian processes.

Gaussian Processes

Non-parametric: No need to assume a functional form.

Probabilistic: Produces posteriors, i.e. estimates its own error.

Bayesian: Needs a prior on the type of functions. Kernel/covariance function.

 $k_y(x_p, x_q) = \sigma_f^2 \exp\left(-\frac{1}{2\ell^2}(x_p - x_q)^2\right) + \sigma_n^2 \delta_{pq}.$

Picking hyperparameters is the *learning* task in Gaussian processes.

To deal with large training dataset, we use Distributed Gaussian Processes Deisenroth & Ng, arXiv:1502.02843

Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel (b) shows the situation after two datapoints have been observed. The mean prediction is shown as the solid line and four samples from the posterior are shown as dashed lines. In both plots the shaded region denotes twice the standard deviation at each input value x.

"Gaussian Processes for Machine Learning" Rasmussen & Williams, 2006 www.gaussianprocess.org

Online demo, http://www.tmpl.fi/gp/

THE GOAL: Predict SR efficiencies from theory parameters.

INPUT: Natural SUSY

Natural because it stabilizes the electroweak scale without fine-tuning.

Only few SUSY states needs to be light.

$$heta = \{ aneta, \ \mu, \ M_3, \ m_{ ilde{Q}_t}, \ m_{ ilde{t}_R}, \ A_t \}$$

Low-dimensional yet realistic theory.

We already had the training data from previous paper.

FIG. 1. The minimal natural SUSY mass spectrum on the left while the remaining supersymmetric particles are decoupled on the right.

"Natural SUSY: Now or Never?" Kim et al. arXiv:1606.06738

OUTPUT: Two Signal Regions

Defined in ATLAS-PHYS-PUB-2013-011

Looking direct stop production with HL-LHC, 14 TeV with 3000 fb⁻¹

Stops decay typically to top or b quarks, W/Z or Higgs bosons, and a LSP. Multiple jets, b-jets, large MET, possibly leptons.

1-lepton

p

0-lepton

MET > 750 GeV m_T(lepton, MET) > 550 GeV MET > 800 GeV m_T(b-jet, MET) > 400 GeV

Total bkg: 21.1 ± 5.9

Total bkg: 12.2 ± 3.9

Some Machine Learning Lingo

We have a dataset with inputs and outputs. Which is randomly split into

TRAINING DATA which is used to inform the Gaussian process about the functional relationship between our theory parameter and SR efficiency.

TESTING DATA which is **not** use to train the Gaussian process. We use predict the output from the inputs of this data and compare with the true value as defined by the MC.

Training the Gaussian Processes

18647 models split into 16647 models for training and 2000 models for testing.

O(10 min) to train per signal region.

The lunch is not free, just cheaper!

SPheno, Pythia, NLLFAST, CheckMATE, Delphes etc. still needed to generate training data. Models uniformly sampled from these ranges:

```
\begin{array}{ll} 0.1 \, {\rm TeV} \leq \ |\mu| \ \leq 1.0 \, {\rm TeV}, \\ 0.1 \, {\rm TeV} \leq m_{\tilde{Q}_t} \leq 2.0 \, {\rm TeV}, \\ 0.1 \, {\rm TeV} \leq m_{\tilde{t}_R} \leq 2.0 \, {\rm TeV}, \\ 0.1 \, {\rm TeV} \leq |M_3| \leq 3.0 \, {\rm TeV}, \\ |A_t| \leq 3.0 \, {\rm TeV}, \\ 1 \leq \tan\beta \leq 20. \end{array}
```

All models avoid LEP-II chargino limit, and have reasonable Higgs boson mass. Is it fast?

0.06 sec/pred

4 GHz single core, unoptimized Python

Is it right?

How to evaluate the trained GPs?

0-lepton signal region

1-lepton signal region

Proof-of-concept: Reconstruction

Schematic view of our reconstruction exercise

No MC performed! No event gen. No detector sim. ~154k likelihood eval ~18h on 10 CPUs

Reconstruction, 4D scan

Outlook

Active learning

Multi-output prediction

Extend to MSSM and other theories

More SRs

Cross-sections

Robust public code library

To conclude...

Using LHC data is a bottleneck.

Gaussian processes makes it really really fast.

Bypasses event generation, detector simulation.

The speed enables a fast reconstruction of theory parameters, and eventually dark matter properties.

The method is completely generic, with many possible applications.

Backup slides

Proof-of-concept Reconstruction

Assume one particular model is true, and measured at the LHC.

Try to reconstruct the parameters using our two signal regions.

Reasonable Higgs mass, LEP chargino limit.

Benchmark model has
63.2 events in 0-lepton SR
161.8 events in 1-lepton SR
(Bkg: 12.2 ± 3.9 and 21.1 ± 5.9)

Distributed Gaussian Processes

The standard Gaussian process scales badly with **N** the size of the training dataset. It involves inverting **N**x**N** matrices.

We use **distributed** Gaussian processes to avoid this. The data is randomly partitioned and on each partition a Gaussian process is defined. Predictions from each process is then combined.

Figure 1. Computational graphs of hierarchical PoE models. Main computations are at the leaf nodes (GP experts, black). All other nodes recombine computations from their direct children. The top node (blue) computes the overall prediction.

"Distributed Gaussian Processes" Deisenroth & Ng, arXiv:1502.02843

Benchmark

$$\mu = -192.5$$
$$M_3 = 2100$$
$$m_{\tilde{Q}_3} = 1300$$
$$m_{\tilde{t}_R} = 1200$$
$$\tan \beta = 8.43$$
$$A_t = 2000$$

