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Global analysis of scalar 
DM EFT operators
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Effective field theory



The idea – combine all operators

If the EFT operators span the ‘theory space’ then 

scan all EFT op         scan the ‘theory space’.



DM-parton EFT operators

Goodman et al. 
arXiv:1008.1783
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 Gaussian. Planck determination of relic density. 
(1502.01589)

LUXCalc (1502.02667). LUX SI x-sec (1310.8214) 

Official likelihood. Fermi dSph Pass 8 (1503.02641)

Planck CMB anisotropies (1502.01589).
Cline & Scott; Slayter (1301.5908, 1506.03811)

Data and likelihoods Modified SuperBayeS: MultiNest, 
FeynRules, micrOMEGAs, PPPC 4 DM ID 



Two priors

Log prior
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Dirichlet prior



Real scalar DM

10







Complex scalar DM
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P-wave operators!
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Galactic centre excess
(Galactic Bulge Emission)
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Null results is not
(interesting) enough.
Additional measurements required to identify 
operators.

Likelihood from  
Calore et al.
arxiv:1409.0042

Bartels et al.
Phys. Rev. Lett. 116, 051102 







So far

Simplest possible combined 
EFT approach using 
cosmology, direct, and 
indirect detection.

Measurements are key for 
minimal theoretical 
assumption approaches to 
be interesting in global 
analysis context.
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Alright, cool. 
But what about 
the LHC?
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The plan was to include the monojet search. 

But the debate on the validity of DM EFT at LHC happened 
which lead to DM simplified models.

Possible workaround was suggested: Make LHC low-energy 
experiment by introducing a Mcut = gM and demanding that 
all events have Ecm < Mcut.

Decent but not satisfying. We want to be all-encompassing.

Considering the cost of simulation and we deemed it not 
worth it.

22



Cost is a limitation

LHC cannot currently be treated as yet another observation 
in global fits. We need to be clever.
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120M points

400 CPU-years

required

4.2M points 500k points



Part II
Fast LHC Signal Prediction

using Machine Learning
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Collaborators
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Physics:

Gianfranco Bertone

Roberto Ruiz de Austri

Jong Soo Kim

Machine Learning:

Marc Peter Deisenroth

Max Welling

(iDark project - Sascha Caron, Tom Heskes, etc. visualisation, scanning, ML 
techniques, + actual computer scientists)



Typical setup

Repeated for every point
in your sample!
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Cross
section

Detector 
simulation

Event 
generator

Model parameters

Analysis 
cuts



Do we really have to do the 
calculation from scratch for 
all points in the sample?

Not if we assume that points in 
parameter space that are close to 
each other have similar 
predictions. (We do.)

Iffy for cross-sections, probable for 
SR efficiencies. 
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Surrogate function

Replace the expensive MC calculation with a 

surrogate function.

In ML language this a supervised regression 

problem. Many algorithms, we will use Gaussian 

processes.

Cross
section

Detector 
simulation

Event 
generator

Model parameters

Analysis 
cuts

ML
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Gaussian 
Processes

Non-parametric: No need to assume a 
functional form.
Probabilistic: Produces posteriors, i.e. 
estimates its own error.
Bayesian: Needs a prior on the type of 
functions. Kernel/covariance function.

Picking hyperparameters is the learning 
task in Gaussian processes.

To deal with large training dataset, we 
use Distributed Gaussian Processes
Deisenroth & Ng, arXiv:1502.02843

“Gaussian Processes for Machine Learning”
Rasmussen & Williams, 2006
www.gaussianprocess.org

29Online demo, http://www.tmpl.fi/gp/

http://www.tmpl.fi/gp/
http://www.tmpl.fi/gp/


THE GOAL:
Predict SR efficiencies 
from theory parameters.
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INPUT:
Natural SUSY

Natural because it stabilizes the 
electroweak scale without fine-tuning.

Only few SUSY states needs to be light.

Low-dimensional yet realistic theory.

We already had the training data from 
previous paper. 

“Natural SUSY: Now or Never?” Kim et al. arXiv:1606.06738 
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OUTPUT: Two Signal Regions

1-lepton

MET > 750 GeV

m
T

(lepton, MET) > 550 GeV

Total bkg: 21.1 ± 5.9

0-lepton

MET > 800 GeV

m
T

(b-jet, MET) > 400 GeV

Total bkg: 12.2 ± 3.9

Defined in ATLAS-PHYS-PUB-2013-011

Looking direct stop production with HL-LHC, 14 TeV with 3000 fb-1

Stops decay typically to top or b quarks, W/Z or Higgs bosons, and a LSP.

Multiple jets, b-jets, large MET, possibly leptons.
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Some Machine Learning Lingo

We have a dataset with inputs and outputs. Which is randomly split into

TRAINING DATA which is used to inform the Gaussian process about the 

functional relationship between our theory parameter and SR efficiency.

TESTING DATA which is not use to train the Gaussian process. We use 

predict the output from the inputs of this data and compare with the true 

value as defined by the MC.
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Training the Gaussian Processes

18647 models split into 16647 

models for training and 2000 models 

for testing.

O(10 min) to train per signal region.

The lunch is not free, just cheaper!

SPheno, Pythia, NLLFAST, 

CheckMATE, Delphes etc. still 

needed to generate training data.

Models uniformly sampled from 

these ranges:

All models avoid LEP-II chargino 

limit, and have reasonable Higgs 

boson mass.
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Is it fast?
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0.06 sec/pred
4 GHz single core, unoptimized Python
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Is it right?
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How to evaluate the trained GPs?
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0-lepton signal region

39

1-lepton signal region



Proof-of-concept:
Reconstruction
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Schematic view of our reconstruction exercise
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1. Pick a benchmark point 2. Generate mock data

3. Reconstruct 
the benchmark



Reconstruction, 4D scan

No MC performed! No event gen. No detector sim.
~154k likelihood eval
~18h on 10 CPUs
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PRELIMINARY



Outlook

Active learning

Multi-output prediction

Extend to MSSM and other theories

More SRs

Cross-sections

Robust public code library
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To conclude...

Using LHC data is a bottleneck.

Gaussian processes makes it really really fast.

Bypasses event generation, detector simulation.

The speed enables a fast reconstruction of theory parameters, 
and eventually dark matter properties.

The method is completely generic, with many possible 
applications.
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Backup slides
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Proof-of-concept
  Reconstruction
Assume one particular model is true, 
and measured at the LHC.

Try to reconstruct the parameters 
using our two signal regions.

Reasonable Higgs mass, LEP 
chargino limit.

Benchmark model has

63.2 events in 0-lepton SR

161.8 events in 1-lepton SR

(Bkg: 12.2 ± 3.9 and 21.1 ± 5.9)
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Distributed 
Gaussian 
Processes

The standard Gaussian process 

scales badly with N the size of the 

training dataset. It involves 

inverting NxN matrices.

We use distributed Gaussian 

processes to avoid this. The data 

is randomly partitioned and on 

each partition a Gaussian process 

is defined. Predictions from each 

process is then combined.

“Distributed Gaussian Processes” 

Deisenroth & Ng, arXiv:1502.02843
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Benchmark
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