From the cMSSM Exclusion to Fitting the pMSSM11

Philip Bechtle

J. Schütte-Engels, T. Keller, J. Tattersal, M. Krämer, H. Dreiner, B. Sarrazin, M. Hamer, et al.

October 11th 2016

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

Excluding Supersymmetric Models

Interlude: Do we know what we have found?

Towards the Fit of the pMSSM11

- Generating the Input
- Towards a Solution only for the pMSSM11
- Towards a more Generic Solution

Excluding Supersymmetric Models

Interlude: Do we know what we have found?

- Generating the Input
- Towards a Solution only for the pMSSM11
- Towards a more Generic Solution

An Incomplete Overview of the Current Situation

• We need Dark Matter, a stable Higgs mass and an explanation for EWSB...

An Incomplete Overview of the Current Situation

• We need Dark Matter, a stable Higgs mass and an explanation for EWSB...

e.g. arXiv:0907.2589 [hep-ph]

- There obviously is a problem.
- We always used $(g 2)_{\mu}$ as a motivation for SUSY at the TeV scale. But can constrained models still accomodate this?

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

Fits for the LHC 11.10.2016

universitätho

The status of the CMSSM

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

The status of the CMSSM

pretty dull?

The status of the CMSSM

healthy?

pretty dull?

almost dead?

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

The status of the CMSSM

healthy?

pretty dull?

almost dead?

universitätbonn

Excluding Supersymmetric Models

Interlude: Do we know what we have found?

- Generating the Input
- Towards a Solution only for the pMSSM11
- Towards a more Generic Solution

Measurements

Measurements

${\cal B}(B_s o \mu^+ \mu^-)$	$(3.20 \pm 1.50 \pm 0.76) imes 10^{-9}$
${\cal B}(B^\pm o au^\pm u)$	$(0.72 \pm 0.27 \pm 0.11 \pm 0.07) \times 10^{-4}$
$\mathcal{B}(b ightarrow s \gamma)$	$(3.43 \pm 0.21 \pm 0.07 \pm 0.23) \times 10^{-4}$
Δm_s	$(17.719 \pm 0.043 \pm 4.200){ m ps}^{-1}$
$a_\mu - a_\mu^{ m SM}$	$(28.7\pm 8.0\pm 2.0)\times 10^{-10}$
Ωh^2	0.1187 ± 0.0017
m_W	$80.385 \pm 0.015 \pm 0.010$
m _t	$(173.18\pm0.94) ext{GeV}$
$\sin^2 heta_{ m eff}$	0.23113 ± 0.00021

- + all kinds of limits + Higgs mass and rate information
- P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

Higgs, Searches and Astrophysics

Direct searches for sparticles and Higgs Bosons

- Higgs limits via HiggsBounds
- Higgs signals via HiggsSignals
- LEP chargino mass limit
- ATLAS MET + jets + 0 lepton search (20fb⁻¹)

Astrophysical observables

• We require χ_1^0 to be the LSP

• Dark matter relic density: $\Omega_{\rm CDM} h^2 = 0.1187 \pm 0.0017 \pm 0.0119 \; ({\sf Planck~'13})$

• Direct detection limit LUX ('13)

"Allowed" Parameter Range in the Fit

The following results from http://arxiv.org/abs/1508.05951

Classifying the "Allowed" Regions

- $ilde{ au}_1$ coannihilation: $m_{ ilde{ au}_1}/m_{ ilde{ au}_1}^0-1 < 0.15$
- $\tilde{\chi}_1^{\pm}$ coannihilation:
- A/H funnel:
- focus point region:

$$\begin{array}{l} m_{\tilde{t}_1}/m_{\tilde{\chi}_1^0}^2 - 1 < 0.2 \\ m_{\tilde{\chi}_1^\pm}/m_{\tilde{\chi}_1^0}^2 - 1 < 0.1 \\ |m_A/2m_{\tilde{\chi}_1^0}^2 - 1| < 0.2 \\ |\mu/m_{\tilde{\chi}_1^0}^2 - 1| < 0.4 \end{array}$$

Predicted Ranges of SUSY Particle Masses

But is that stable on cosmological timescales?

- Using VeVacious arXiv:1307.1477 [hep-ph]
- All minima in stable or metastable (lifetime \gg age of the universe) regions

Excluding Supersymmetric Models

Sensitivity of Direct Detection Experiments

Contributions from Direct Detection No contributions from Indirect Detection

Why are global fits of SUSY so CPU-consuming?

- ... and impossible with naively employing Minuit?
- This is an old result just for education!

Looking at any correlations for all other allowed parameters:

Why are global fits of SUSY so CPU-consuming?

- ... and impossible with naively employing Minuit?
- This is an old result just for education!

Looking at any correlations for fixed other parameters: P A0:P TanBeta:chi2 {chi2<33.5} 5000 33 4000 32.5 3000 32 2000 31.5 1000 31 n 30.5 -1000 30 -2000 29.5 52 52.5 53 53.5 54 54.5 55 55.5 P TanBeta

Looks Terrible

Is that a problem of GUT-scale models only?

- ... and impossible with naively employing Minuit?
- This is a work-in-progress result

Testing the pMSSM11 for M_1 and M_2 only:

Is that a problem of GUT-scale models only?

- ... and impossible with naively employing Minuit?
- This is a work-in-progress result

From which observable does that come?

Measuring Ωh^2 precisely makes fits harder

Can we still fit the cMSSM?

Can we still fit the cMSSM?

• Most observables are fitted fine in the CMSSM, but not $(g-2)_{\mu}$

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

To which Higgs Maesurent Set do we Fit best?

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

To which Higgs Maesurent Set do we Fit best?

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

To which Higgs Maesurent Set do we Fit best?

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

So does the Higgs do anything?

- This plot shows the variation of the χ^2 contributions for all toy fits, calculated with respect to the smeared values
- If the colored band is small: Observable has no effect on the fit
- m_h obviously has an effect, μ 's a bit.

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

So does the Higgs do anything?

- This plot shows the variation of the χ^2 contributions for all toy fits, calculated with respect to the <code>measured values</code>
- If the colored band is small: Observable has no effect on the fit
- m_h obviously has an effect, μ 's a bit.

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

universitätbonn

Effect of the Combination on the $\mathcal{P}\text{-value}$

Effect of the Combination on the $\mathcal{P}\text{-value}$

What is the \mathcal{P} -value of the CMSSM?

- For the first time, it has conclusively been shown that the most constrained popular SUSY model can be excluded
- Without $(g-2)_{\mu}$, the \mathcal{P} -value with the given observable set is $51\pm 3\%$
- But the \mathcal{P} -value without $(g-2)_{\mu}$ is meaningless. We only quoyte it because some people suddenly don't like the result anymore. universitäthe

2 Excluding Supersymmetric Models

Interlude: Do we know what we have found?

4 Towards the Fit of the pMSSM11

- Generating the Input
- Towards a Solution only for the pMSSM11
- Towards a more Generic Solution

The cMSSM is kind of dead. Conventional wisdom is that the pMSSM is boring.

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

The cMSSM is kind of dead. Conventional wisdom is that the pMSSM is boring. But is the MSSM Higgs Sector really boring?

[P. Bechtle, H. Haber, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, L. Zeune, arXiv:1608.00638]

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

Obtaining a light Higgs with SM-like couplings

[J. Gunion, H. Haber, hep-ph/0207010]

Look at CP conserving 2HDM in the Higgs basis ($\langle H_1^0 \rangle = v/\sqrt{2}$, $\langle H_2^0 \rangle = 0$):

$$\mathcal{V} \ni \dots \tfrac{1}{2} Z_1 (H_1^{\dagger} H_1)^2 + \dots + \left[\tfrac{1}{2} Z_5 (H_1^{\dagger} H_2)^2 + Z_6 (H_1^{\dagger} H_1) (H_1^{\dagger} H_2) + \text{h.c.} \right] + \dots$$

The CP-even neutral Higgs squared-mass matrix is

$$\mathcal{M}^2 = \begin{pmatrix} Z_1 v^2 & Z_6 v^2 \\ Z_6 v^2 & M_A^2 + Z_5 v^2 \end{pmatrix},$$

with mixing angle $c_{\beta-\alpha} \equiv \cos(\beta - \alpha)$.

- If $Z_1 < Z_5 + M_A^2/v^2$ and $Z_6 = 0$, then $c_{\beta-\alpha} = 0$ and h is identical to SM Higgs boson (*alignment limit*).
- If $M_A^2 \gg Z_i v^2$, then $m_h^2 \simeq Z_1 v^2$ and $|c_{\beta-\alpha}| \ll 1 \Rightarrow h$ becomes SM-like (*decoupling limit*).

The pMSSM8 Parameter Scan

	Light Hi	ggs case	Heavy H	iggs case
Parameter	Minimum	Maximum	Minimum	Maximum
M_A [GeV]	90	1000	90	200
aneta	1	60	1	20
$M_{\tilde{q}_3}$ [GeV]	200	5000	200	1500
$M_{\tilde{\ell}_3}$ [GeV]	200	1000	200	1000
$M_{\tilde{\ell}_{1,2}}$ [GeV]	200	1000	200	1000
μ [GeV]	$-3 M_{\tilde{q}_3}$	3 <i>M</i> _{q̃3}	-5000	5000
A_f [GeV]	$-3 M_{\tilde{q}_3}$	3 <i>M</i> _{q̃3}	$-3 M_{\tilde{q}_3}$	3 <i>M</i> _{q̃3}
M_2 [GeV]	200	500	200	500

Fix $M_{ ilde{q}_{1,2}}=5\,\mathrm{TeV}$ and leave M_1 free

External Constraints

Observable	Experimental value	SM value	MSSM uncertainty
$BR(B \to X_s \gamma)$	$(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$ [94]	$(3.40 \pm 0.22) \times 10^{-4}$	\pm 0.15 \times 10 ⁻⁴
$BR(B_s \to \mu^+ \mu^-)$	$(2.8 \pm 0.7) \times 10^{-9} \ [97, 98]$	$(3.54\pm 0.2) imes 10^{-9}$	_
$BR(B^+ \to \tau^+ \nu_\tau)$	$(9.1 \pm 1.9 \pm 1.1) \times 10^{-5}$ [100, 101]	$(8.09\pm0.7) imes10^{-5}$	-
δa_{μ}	$(30.2 \pm 9.0) \times 10^{-10} [117 - 119]$	-	-
M_W	$(80.385 \pm 0.015) \text{ GeV } [111, 112]$	$(80.358\pm 0.007)~{\rm GeV}$	$\pm~0.003~{\rm GeV}$

Table 2: The experimental values and SM theory predictions for the low-energy observables (LEOs) that are used in the pMSSM 8 scan. The last column lists additional uncertainties intrinsic to the MSSM predictions.

Leave out Ωh^2 and leave M_1 free in turn

So can we fit the h and the H?

full fit			fit without a_{μ}			fit witho	ut all	LEOs	
Case	χ^2/ u	$\chi^2_{ u}$	p	χ^2/ u	χ^2_{ν}	p	χ^2/ u	$\chi^2_{ u}$	p
SM	83.7/91	0.92	0.69	72.4/90	0.80	0.91	70.2/86	0.82	0.89
h	68.5/84	0.82	0.89	68.2/83	0.82	0.88	67.9/79	0.86	0.81
H	73.7/85	0.87	0.80	71.9/84	0.86	0.82	70.0/80	0.88	0.78

Table 3: Global χ^2 results with ν degrees of freedom from the fits of the SM and the MSSM with either *h* or *H* as the LHC signal, the reduced $\chi^2_{\nu} \equiv \chi^2/\nu$, and the corresponding *p*-values. The number of degrees of freedom, ν , are estimated by subtracting the number of free model parameters from the number of observables.

Pulls and Best Fit Parameters

	Light Higg	s case	Heavy Higg	gs case
Observable	Prediction	Pull	Prediction	Pull
$M_{h/H}$ [GeV]	125.20	+0.034	124.15	-0.29
$BR(B \to X_s \gamma)$	$3.55 imes 10^{-4}$	+0.185	4.17×10^{-4}	+1.138
$BR(B_s \to \mu^+ \mu^-)$	3.03×10^{-9}	+0.247	3.48×10^{-9}	+0.731
$BR(B^+ \to \tau^+ \nu)$	$7.53 imes 10^{-5}$	-0.424	7.38×10^{-5}	-0.465
δa_{μ}	28.8×10^{-10}	-0.151	27.6×10^{-10}	-0.289
M_W [GeV]	80.383	-0.080	80.373	-0.480

Table 4: Pull table for the best-fit (BF) points of the two MSSM Higgs interpretations.

Case	M_A (GeV)	an eta	μ (GeV)	$\begin{array}{c} A_t \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{q}_3} \\ (\text{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{\ell}_3} \\ (\mathrm{GeV}) \end{array}$	$\begin{array}{c} M_{\tilde{\ell}_{1,2}} \\ (\text{GeV}) \end{array}$	M_2 (GeV)
$egin{array}{c} h \ H \end{array}$	929 172	$\begin{array}{c} 21.0 \\ 6.6 \end{array}$	$7155 \\ 4503$	$4138 \\ -71$	$2957 \\ 564$	698 953	$\begin{array}{c} 436 \\ 262 \end{array}$	$358 \\ 293$

Table 5: MSSM parameters for the BF points found for the light Higgs (h) and heavy Higgs (H) interpretation in the full fit.

Interlude: Do we know what we have found?

Best-Fit (heavy Higgs case) – Higgs signal rates

Where are the other Higgs states?

- Light Higgs *h* with mass $m_h \sim (60 100)$ GeV has extremely reduced coupling to vector bosons \Rightarrow beyond LEP reach!
- LHC searches for $gg \rightarrow h \rightarrow \gamma \gamma$ are also not (yet) sensitive.
- Charged Higgs H^{\pm} lies at kinematic threshold of $t \to H^{\pm}b$. $H^{\pm} \to \tau \nu_{\tau}$ decay rate suppressed by competing decay $H^{\pm} \to hW^{\pm}$

Interlude: Do we know what we have found?

Heavy Higgs case: Charged Higgs Decays

2 Excluding Supersymmetric Models

3 Interlude: Do we know what we have found?

Towards the Fit of the pMSSM11

- Generating the Input
- Towards a Solution only for the pMSSM11
- Towards a more Generic Solution

Options for the LHC Parametrization

• For the cMSSM it was rather easy to parametrize the LHC results. We had only 4 dimensions, and for the largest part of the parameter space, only $M_{1/2}$ and M_0 were relevant

P. Bechtle: cMSSM Exclusion to pMSSM11 Fits

Building up a neural network

Recurrent neural networks not considered

Example of pMSSM-11 network

- A lot free parameters in net \rightarrow hyperparameter optimization
- neural network: highly nonlinear interpolator
- All neural nets implemented with TensorFlow

Generating the Input

Generating Events at Random Parameter Points

- $m_{\chi_1^\pm}$ >103.5 GeV (from LEP)
- For m_W , Δm_s , $\mathcal{B}(B_s \to \mu \mu)$, $\mathcal{B}(b \to s\gamma)$, $\mathcal{B}(B_u \to \tau \nu)$ require

$$5 imes \sqrt{\sigma^2_{ ext{experiment}} + \sigma^2_{ ext{theory}}} > | ext{theory value- experimental value} |.$$

Generating Events at Random Parameter Points

PMSSM11 Parameter	Range
M1 (Bino mass)	$\pm 0 - 4000~{\rm GeV}$
M2 (Wino mass)	$100-4000~{\rm GeV}$
M3 (gluino Mass)	$\pm 400 - 4000~{\rm GeV}$
M_{sq1} (1st and 2nd gen. scalar squark mass)	$300-5000~{\rm GeV}$
M_{sq3} (3rd gen. scalar squark mass)	$100-5000~{\rm GeV}$
M_{sl1} (1st and 2nd gen. scalar slepton mass)	$100-3000~{\rm GeV}$
M_{sl3} (3rd gen. scalar slepton mass)	$100-4000~{\rm GeV}$
M_A (Pseudoscalar Higgs pole mass)	$0-4000~{\rm GeV}$
A (Third generation trilinear coupling)	$\pm 0 - 5000 \text{ GeV}$
μ (Higgsino mass parameter)	$\pm 100 - 5000 \mathrm{GeV}$
$tan(\beta)$ (Higgs doublet vacuum expectation value)	$1-60~{\rm GeV}$

pMSSM11 Parameter PDF used for Training

• If we used a flat pdf, almost all points would be on the edge

Number of Parameter Points

scanned points:

\sqrt{s}	scanned points
8 TeV	700000
13 TeV	140000

Disjoint signal regions:

\sqrt{s}	disjoint SRs
8 TeV	47
13 TeV	65

Towards a Solution only for the pMSSM11

LHC χ^2 for 8 TeV

hyperparameter	scanned values
number of hidden layers	2,3,4,5
number neurons in hidden layers	50, 150, 450
cost function	quadratic,cross
exponential damping	on / of
batch size	80 ,500, 3000
λ	0.001 , 0.0001, 0.00001,0.000001
learning rate	0.1, 0.01, 0.001, 0.0001
dropout probability 1	0.9,0.95, 1.0
dropout probability 2	0.9,0.95, 1.0
activation in last layer	tanh / linear

best found hyperparameter configurations:

# h. layer	#neurons	cost	damp.	batch size	λ	learn. rate	dropout 1/2	activation
4	150	quadratic	1.0	500	10^{-5}	0.001	1.0/1.0	tanh
4	150	quadratic	0.0	500	10^{-5}	0.001	1.0/1.0	tanh
4	50	quadratic	1.0	500	10^{-6}	0.001	1.0/1.0	tanh
5	450	quadratic	0.0	80	10^{-5}	0.0001	1.0/1.0	tanh
4	50	quadratic	0.0	500	10-4	0.001	1.0/1.0	tanh

Towards a Solution only for the pMSSM11

LHC χ^2 for 8 TeV:

Towards a Solution only for the pMSSM11

LHC χ^2 for 8 TeV:

LHC χ^2 for 8 TeV:

$0 < \chi^{-} \le 200$	$0 < \chi^{-} \le 31$	$31 < \chi 2 \le 34$	$34 < \chi_2 \le 120$	$120 < \chi^2 \leq 200$
3.4 (0.05)	6.3 (0.21)	0.77 (0.024)	8.1 (0.14)	9.1 (0.055)

Rare Target Learning Problem (RTLP): solution strategies:

- ۰ sample in the rare target areas
- ۰ artificial extension
- ۲ sequence learning

Towards a Solution only for the pMSSM11

Towards the Fit of the pMSSM11

LHC χ^2 for 8 TeV

Second hyperparameterscan:

hyperparameter	scanned values
use data sampled in rare target areas	yes/no
extend data artificially	yes/no
use sequence learning	yes/no
multiply number of neurons in first hidden layer by (x_1)	1.0 , 1.5, 2.0
multiply number of neurons in hidden layer 2,3,4 by (x_2)	1.0, 1.5, 2.0
multiply batch size by (x_3)	1.0, 1.5

best hyperparameters:

extra sampling	artificial extension	seq. learning	x1	x2	x3
yes	no	yes	2.0	2.0	1.5
yes	no	yes	2.0	1.0	1.0

Results:

$0 < \chi^2 \le 200$	$0 < \chi^2 \le 31$	$31 < \chi 2 \leq 34$	$34 < \chi 2 \leq 120$	$120 < \chi 2 \leq 200$
3.25 (0.049)	5.7 (0.18)	0.81 (0.024)	7.94 (0.13)	8.57 (0.052)
3.4 (0.05)	6.3 (0.21)	0.77 (0.024)	8.1 (0.14)	9.1 (0.055)

Towards a Solution only for the pMSSM11

LHC χ^2 for 13 TeV

Towards a Solution only for the pMSSM11

LHC χ^2 for 13 TeV

$$\chi^2 = (\mathcal{O}_{\text{meas}} - \mathcal{O}_{\text{pred}})^T \textit{cov}^{-1} (\mathcal{O}_{\text{meas}} - \mathcal{O}_{\text{pred}}) + \chi^2_{\text{limits}},$$

Best fit point

Total scanned 2.6 million points. Only 1.4 million points have $\chi^2_{LO} < 1000$.

M_1	M ₂	M3	$m_{\tilde{Q}_{12}}$	$m_{\tilde{Q}_3}$	m _{<i>L</i>12}	m _{Ĩ3}	m _{A0}	A ₀	μ	$\tan\beta$
-196	3739	2396	2512	5083	361	709	3145	275	-4163	15.4

Table: All quantities are given in GeV (except tan β).

Preliminary!

- Need to scan more points
- pMSSM-11 parameters for neural nets defined at 1 TeV, but all other pMSSM-11 parameters are defined at 1.5 TeV.

Towards a Solution only for the $\mathsf{pMSSM11}$

SUSY spectrum at best fit point

mass in GeV	particle
2557	\tilde{d}_L
2559	₫ _R
2556	ũL
2560	ũ _R
2557	ŝL
2559	ŝ _R
2556	<i>č</i> L
2560	€ _R
5105	\tilde{b}_1
5142	\tilde{b}_2
5135	\tilde{t}_1
5164	\tilde{t}_2
2587	ĝ

mass in GeV	particle
217	ẽ∟−
358	ẽ _R −
203	$\tilde{\nu}_{e,L}$
216	$\tilde{\mu}_L$
359	μ _R
203	$\tilde{\nu}_{\mu,L}$
569	$\tilde{\tau}_1$
748	$\tilde{\tau}_2$
637	$\tilde{\nu}_{\tau,L}$

mass in GeV	particle
126	h^0
3145	H ⁰
3145	A ⁰
3146	H^+
195	$\tilde{\chi}_1^0$
3738	$\tilde{\chi}_2^0$
4202	$\tilde{\chi}_{3}^{0}$
4207	$\tilde{\chi}_4^0$
3738	$\tilde{\chi}_1^+$
4207	$\tilde{\chi}_2^+$

Towards a Solution only for the pMSSM11

LHC χ^2 in the global fit

Profile plots of all scanned points.

Towards a Solution only for the pMSSM11

pMSSM-11 neural network to predict pMSSM-19 χ^2

$$m_{\tilde{Q}_{12}} = \frac{m_{\tilde{Q}_{L,12}} + m_{\tilde{u}_{R,12}} + m_{\tilde{d}_{R,12}}}{3}$$

$$m_{\tilde{Q}_{3}} = \frac{m_{\tilde{Q}_{L,3}} + m_{\tilde{u}_{R,3}} + m_{\tilde{d}_{R,3}}}{3}$$

$$m_{\tilde{L}_{12}} = \frac{m_{\tilde{L}_{L,12}} + m_{\tilde{I}_{R,12}}}{2}$$

$$m_{\tilde{L}_{3}} = \frac{m_{\tilde{L}_{L,3}} + m_{\tilde{I}_{R,3}}}{2}$$

$$A_{0} = \frac{A_{t} + A_{b} + A_{\tau}}{3}$$

Finding more generic Pseudo-Observables

Finding more generic Pseudo-Observables

- $<< N_X >_D >_P$ (9 total)
- $< \sigma(N_X)_D >_P (9 \text{ total})$
- $<< N_{\rm R}>_D>_P$ (5 total)
- $< \sigma(N_{\rm R})_D >_P (5 \text{ total})$
- $<<\sum_{i}\frac{1}{N_{X_i}}max(E_{X_i})>_D>_P$ (9 total)
- $< \sigma(\sum_{i} \frac{1}{N_{X_i}} max(E_{X_i}))_D >_P (9 \text{ total})$
- $<<\sum_{i} \frac{1}{N_{R_i}} max(E_{R_i}) >_D >_P (5 \text{ total})$
- $< \sigma(\sum_{i} \frac{1}{N_{R_i}} max(E_{R_i}))_D >_P (5 \text{ total})$
- X=jets, b-jets, e^{\pm} , μ^{\pm} , τ^{\pm} , any E_{Miss}^{T} particle
- R=Intermediate t,W,Z
- D=Average over decay chains
- P=Average over production processes

Towards a more Generic Solution

The Present Performance on the pMSSM11

mean absolute error(mean % error)	pheno. parameters	PMSSM11 parameters
8 TeV	2.68(1.75%)	2.89(2.0%)
13 TeV	4.54(3.0%)	$5.70(3.5 \ \%)$

31

The Performance on the cMSSM

Conclusions

- We sold SUSY to the world using $(g 2)_{\mu}$ so we cannot drop $(g 2)_{\mu}$ now that we don't like the exact same result anymore.
- We now established that the combination of m_h , SUSY limits at the LHC and $(g-2)_{\mu}$ kills the cMSSM
- We want to be able to play those games also for more complex models, but this requires to understand the LHC limit for them
- NN regressions are a promising tool to parametrize them
- Need to strongly improve on the rare details learning problem
 - Restrict the parametrized $\chi 2$ range even further
 - Generate many more points using a narrow pdf around the RDLP points and iterate

Backup Slides

