More MasterCode?

Matthew Dolan University of Melbourne Based on 1504.03260, 1508.01173 and work in progress

Australia: Natural Home of SUSY Fits

The Global Fit Game

Experimental Constraints

We use a suite of constraints from

- Higgs Physics
- Precision Electroweak
- Direct Detection and Cosmology
- Flavour Physics
- LHC SUSY Searches

Softsusy, FEWZ, FeynHiggs, SuFla, SuperIso, MicroMegas, SSARD, HiggsSignals, HiggsBounds, ATOM, Scorpion, Fastlim

Parametrising the PMSSM

A 10 dimensional avatar of the pMSSM

 $\begin{array}{l} 3 \text{ gaugino masses} : M_{1,2,3} \,, \\ 2 \text{ squark masses} : m_{\tilde{q}_1} \,=\, m_{\tilde{q}_2} \,\neq\, m_{\tilde{q}_3}, \\ 1 \text{ slepton mass} : m_{\tilde{\ell}} \,, \\ 1 \text{ trilinear coupling} : A \,, \\ \text{Higgs mixing parameter} : \mu \,, \\ \text{Pseudoscalar Higgs mass} : M_A \,, \\ \text{Ratio of vevs} : \, \tan\beta \,. \end{array}$ (1)

- Currently (WIP) looking at an 11D pMSSM
- As above but split slepton masses $m_{\tilde{l}_1} = m_{\tilde{l}_2} \neq m_{\tilde{l}_3}$

Implementing LHC Searches

O(10⁹) points: Point-by-point event generation unfeasible Interpolation and lookup tables with simplified models

- Coloured searches: 4D grid in m_{\chi_1}, m_{\tilde{q}}, m_{\tilde{q}}, m_{\tilde{q}}, m_{\tilde{q}}
 Stop searches: \tilde{t} \rightarrow b\chi^{\pm}, \tilde{t} \rightarrow bW\chi_1^0, \tilde{t} \rightarrow b\nu\tilde{\chi}_1, \tilde{t} \rightarrow \tilde{\chi}\chi_1^0 \rightarrow \tilde{\chi}\chi_1^0, \tilde{t} \rightarrow b\nu\tilde{\chi}_1, \tilde{t} \rightarrow \tilde{\chi}\chi_1^0 \rightarrow \tilde{\chi}\chi_1^0, \tilde{t} \rightarrow b\nu\tilde{\chi}_1, \tilde{t} \rightarrow \tilde{\chi}\chi_1^0 \rightarrow \tilde{\chi}\chi_1^0, \tilde{t} \rightarrow \tilde{\chi}\tilde{\chi}\tilde{t} \rightarrow \tilde{\chi}\tilde{\chi}\tilde{t} \rightarrow \tilde{\chi}\tilde{t} \rightarrow \tilde{t} \rightarrow \tilde{t} \rightarrow \tilde{t} \rightarrow \tilde{t} \rightarrow \tilde{t} \ti} \tilde{t} \tilde{t} \ti} \t

- Greater density of points at low masses for greater accuracy/sensitivity
- 25,564 points used for coloured search grid
- Chi-squared calculated and interpolation used over rest of grid

Implementing LHC Searches

Point-by-point event generation unfeasible

Interpolation and lookup tables with simplified models

- Coloured searches: 4D grid in m_{\chi_1}, m_{\tilde{g}}, m_{\tilde{q}}, m_{\tilde{q}}, m_{\tilde{q}}
 Stop searches: \tilde{t} \rightarrow b\chi^{\pm}, & \tilde{t} \rightarrow bW\chi_1^0, & \tilde{t} \rightarrow b\nu\tilde{\chi}_1, & \tilde{t} \rightarrow \tilde{c}\chi_1^0
 Electroweak: \chi_1^{\pm}\chi_2^0 via \tilde{l}, & \chi_1^{\pm}\chi_2^0 via W, Z, & \tilde{l} \rightarrow l\chi_{1,2}^{\pm}\chi_1^{\pm}

Comparison of chi-squared from interpolation vs ATOM/Scorpion

Constraints on pMSSM10

Squark/Gluino – LSP mass planes

Constraints on pMSSM10 Stop/Chargino – LSP mass planes

Best-Fit Point Spectrum

Heavy stops for Higgs mass

Predicted Mass Ranges

Heavy coloured particles Heavy Higgses Light Ewinos and leptons

Predicted Mass Ranges

g-2 driving light Ewinos and DM Light coloured states not required by any observables To rule-out/increase chi²: target EW states below 1 TeV

Extrapolation to High Scales

• What happens if we run the pMSSM up to the GUT ($2 \cdot 10^{16}$ GeV) scale?

- Impose an anti-tachyon cut $m_0^2 > 0$

Solid: with cut. Dashed: without cut

Extrapolation to High Scales

Hard to get hierarchy between stops and

Heavy gluino and light squarks not stable RG trajectory

Solid: with cut. Dashed: without cut

Mass Universality

- Run up to GUT scale and ask: how far from soft-breaking universality are we?
- PMSSM10 disfavouring gaugino mass universality

Define RMS deviation of sum over gaugino/ scalar masses

$$\sigma_{M,m} \equiv \sqrt{\sum_{i}^{N} (m_i - \bar{m})^2 / N} \,,$$

Future Search Prospects

How much of the best-fit region can we cover at 13/14 TeV?

Future Search Prospects

Coloured by dominant decay branching ratio

Future Search Prospects

Low smuon masses favoured by g-2 will be probed

New g-2 results from 2019(?)

Linear Collider Prospects

Likelihood functions for various thresholds

Dark Matter Phenomenology

Fits provide a rich dataset

How is relic density set in pMSSM?

How does LHC probe pMSSM by mechanism?

Direct detection prospects?

Relic Density Mechanisms

Relic density depletion requires relations between sparticle masses

In the MSSM this happens through resonant DM annihilation ('funnel') or co-annihilation

Resonant/funnel/s-channel

Co-annihilation/t-channel

Credit: Cohen/Wacker 2013

Relic Density Mechanisms

Also for

- Light Higgs h
- Heavy Higgs A/H

Resonant/funnel/s-channel

Also for

- Stau co-annihilation
- Chargino Co-annihilation

Co-annihilation/t-channel

Credit: Cohen/Wacker 2013

Relic Density Mechanisms

How to quantify this?

$$\begin{split} \tilde{\tau}_{1} \text{ coann. (pink)} : & \left(\frac{m_{\tilde{\tau}_{1}}}{m_{\tilde{\chi}_{1}^{0}}} - 1\right) < 0.15 \,, \\ \tilde{\chi}_{1}^{\pm} \text{ coann. (green)} : & \left(\frac{m_{\tilde{\chi}_{1}^{\pm}}}{m_{\tilde{\chi}_{1}^{0}}} - 1\right) < 0.1 \,, \\ \tilde{t}_{1} \text{ coann. (grey)} : & \left(\frac{m_{\tilde{t}_{1}}}{m_{\tilde{\chi}_{1}^{0}}}\right) - 1 < 0.2 \,, \\ A/H \text{ funnel (blue)} : & \left|\frac{M_{A}}{m_{\tilde{\chi}_{1}^{0}}} - 2\right| < 0.4 \,, \\ \text{focus point (cyan)} : & \left(\frac{\mu}{m_{\tilde{\chi}_{0}^{0}}}\right) - 1 < 0.3 \,. \end{split}$$

$$\begin{array}{ll} h \text{ funnel (magenta)}: & \left| \frac{M_h}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4 \,, \\ \\ Z \text{ funnel (orange)}: & \left| \frac{M_Z}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4 \,. \end{array}$$

Conditions cross-checked from MicroMegas output

pMSSM results

Lightest chargino-neutralino mass plane

pMSSM results Stop neutralino mass plane

Current and projected SMS limits for different decay channels

pMSSM results

Co-annihilation requires LSP and other sparticle to be degenerate.

Possibility of long-lived particles?

We don't find this in the pMSSM10

Work in Progress: SU5 GUTs

Embed matter fields in SU5 GUT

 $(q_L, u_L^c, e_L^c)_i \in \mathbf{10}_i, \ (\ell_L, d_L^c)_i \in \mathbf{\overline{5}}_i,$

• Scan over $m_{1/2}, m_5, m_{10}, m_{H_u}, m_{H_d}, A_0$

Work in Progress: SU5 GUTs

- New co-annihilation mechanism pops out
- Can be understood with RGE cancellations

Direct Detection Phenomenology

Work in Progress: SU5 GUTs

- New co-annihilation mechanism pops out
- Can be understood with RGE cancellations

Indirect Detection

- As for pMSSM10 but with non-universal slepton masses $m_{\tilde{l}_1} = m_{\tilde{l}_2} \neq m_{\tilde{l}_3}$
- Implementing 13/fb results from ICHEP 2016
- Although note 30/fb and counting on tape...
- Also currently looking at SU5 GUTs and mAMSB

Lightest chargino mass

Much larger range: richer possibilities for co-annihilation?

Lightest stau mass

Much larger range: richer possibilities for co-annihilation?

Lightest smuon mass

Very similar: driven by g-2

 Stop masses: light stop window more closed (FeynHiggs?)

LZ projected reach

(early 2020s)

• Direct detection projections

Future Plans

- Vacuum stability constraints (vevacious?)
- Stau production limits
- Heavy Higgs production and other ICHEP results (low mass gluinos?)
- LUX + PandaX DD constraints
- Metastable charged particle searches: coannihilation regions
- Indirect detection?

Shameless Advertising: (Re)Interpreting LHC Results Forum

• Recasting tools, infrastructure, physics studies

• Platform for theory/experiment interaction

 2nd workshop to be held at CERN 12-14 December

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

Summary

Is SUSY alive and well?

Alive and well	16	29.6%
Alive but not well	30	55.6%
Almost dead	6	11.1%
Well dead	2	3.7%

- 2.96 of out 10 cats think SUSY is alive and well
- The rest: SUSY needs a doctor or a priest
- PMSSM fits: expect a rich spectrum of EW states below 1 TeV
- Coloured states could be anywhere

https://workshops.ift.uam-csic.es/susyaaw/Survey