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Y LeCun

Supervised Learning

We can train a machine on lots of examples of tables, chairs, 
dog, cars, and people
But will it recognize table, chairs, dogs, cars, and people it has 
never seen before?

CAR

PLANE

CAR
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Deep Learning = The Entire Machine is Trainable

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Trainable 
Classifier

Feature 
Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Trainable 
Classifier

Feature 
Extractor

Mid-Level
Features

Deep Learning: Representations are hierarchical and trained

Trainable 
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features
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Multi-Layer Neural Nets

Multiple Layers of simple units

Each units computes a weighted sum of its inputs

Weighted sum is passed through a non-linear function

The learning algorithm changes the weights

Weight 
matrix

Ceci est une voiture

ReLU (x )=max (x ,0)

Hidden
Layer
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Computing Gradients by Back-Propagation

● A practical Application of Chain Rule

● Backprop for the state gradients:
● dC/dXi-1 = dC/dXi . dXi/dXi-1 
● dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1 

● Backprop for the weight gradients:
● dC/dWi = dC/dXi . dXi/dWi 
● dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi 

Cost

Fn(Xn-1,Wn)

C(X,Y,Θ)

X (input) Y (desired output)

Fi(Xi-1,Wi)

F1(X0,W1)

Xi-1

Xi

dC/dXi-1

dC/dXi

dC/dWn

Wn

dC/dWi

Wi
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Convolutional Network Architecture [LeCun et al. NIPS 1989]

Inspired by [Hubel & Wiesel 1962] & 
[Fukushima 1982] (Neocognitron): 

simple cells detect local features
complex cells “pool” the outputs 
of simple cells within a retinotopic 
neighborhood. 

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity



Y LeCun
Convolutional Network (vintage 1990) 

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh
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Deep Convolutional Nets for Object Recognition

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.
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Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Supervised Convolutional Nets

We can do a lot with Supervised 
ConvNets

Detect and localize objects

Recognize multiple objects

Estimate the pose of articulatred 
objects (human bodies)

….
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Very Deep ConvNet Architectures

Small kernels, not much subsampling (fractional subsampling).

VGG

GoogLeNet

ResNet
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Hierarchical Structure in the Visual Cortex

[picture from Simon Thorpe]

[Gallant & Van Essen] 

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT ....
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ConvNet for Driving

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

(DARPA LAGR program 2005-2008)

[Hadsell et al.,  J. of Field Robotics 2009]
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Image captioning, Semantic Segmentation with ConvNets

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14][Karpathy 14][Donahue 14]...

[Farabet et al. 
ICML 2011]

[Farabet et al. 
PAMI 2013]
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Driving Cars with Convolutional Nets

MobilEye

NVIDIA
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DeepMask: ConvNet Locates and Recognizes Objects

[Pinheiro, Collobert, 
Dollar ICCV 2015]

ConvNet produces 
object masks and 
categories
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DeepMask++ Proposals

https://arxiv.org/abs/1604.02135

Zagoruyko, Lerer, Lin, Pinheiro, Gross, Chintala, Dollár
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Image Recognition
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Image Recognition

https://arxiv.org/abs/1604.02135
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Image Recognition
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Image Recognition
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Image Recognition
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Image Recognition
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Results
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Spectral Networks
Convolutional Nets on Graphs
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Spectral Networks: Convolutional Nets on Irregular Graphs

Convolutions are diagonal operators in Fourier space

The Fourier space is the eigenspace of the Laplacian

We can compute graph Laplacians

Review paper: [Bronstein et al. 2016, ArXiv:1611.08097]
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Spectral Networks: Convolutional Nets on Irregular Graphs

Compute graph Laplacian

Compute transformation into its 
eigenspace 

Fourier transform

Learn “smooth” pointwise 
multipliers in Fourier space

Localized kernels

Applicable to any function on 
graphs

Chemistry, text, images 
with holes, image on non-
euclidean surfaces... 
[Bruna et al. 
Arxiv:1312.6203]
[Henaff et al. 
Arxiv:1506.05163]
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Why Doesn’t 
Deep Learning
Get Trapped

In Local Minima?
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Deep Nets with ReLUs and Max Pooling

Stack of linear transforms interspersed with Max operators

Point-wise ReLUs:

Max Pooling
“switches” from one layer to the next

14

22

3

31

W14,3

W22,14

W31,22

Z3

ReLU (x )=max (x ,0)



Y LeCun
The Objective Function of Multi-layer Nets is Non Convex

1-1-1 network 
Y = W1*W2*X 

Objective: identity function with quadratic loss

One sample: X=1, Y=1  L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution X

Z

Y

W2

W1
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Deep Nets with ReLUs

Single output:

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated. 

Xpstart: input unit for path P.

Ŷ=∑
P

δP (W , X )( ∏
(ij)∈P

W ij )X P start

14

22

3

31

W14,3

W22,14

W31,22

Z3
Dp(W,X): 1 if path P is “active”, 0 if inactive

Input-output function is piece-wise linear

Polynomial in W with random coefficients

Ŷ=∑
P

δP (W , X )( ∏
(ij)∈P

W ij )X P start
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Deep Convolutional Nets (and other deep neural nets)

Training sample: (Xi,Yi)  k=1 to K

Objective function (with margin-type loss = ReLU)

Polynomial in W of degree l (number of adaptive layers) 

Continuous, piece-wise polynomial with “switched” and partially random 
coefficients

Coefficients are switched in an out depending on W

L (W )=∑
k

ReLU (1−Y k∑
P

δP(W , X k
)( ∏

(ij)∈P

W ij )X P start

k
)

L (W )=∑
k
∑
P

(X P start

k Y k )δP (W , X k
)(∏

(ij)∈P

W ij)

L (W )=∑
P

[∑
k

(X P start

k Y k )δP (W , X k )]( ∏
(ij)∈P

W ij )

L (W )=∑
P

C p(X ,Y ,W )( ∏
(ij)∈P

W ij )
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random 
coefficients

A lot is known about the distribution of critical 
points of polynomials on the sphere with random 
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L(W)

Histogram of minima

L (W )=∑
P

C p(X ,Y ,W )( ∏
(ij)∈P

W ij )
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Deep Nets with ReLUs: 
Objective Function is Piecewise Polynomial

Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial 
conditions. Measure loss on test set.

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]
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Spherical Spin Glass theory

Critical Points

Distribution of critical points (saddle points, minima, maxima)
K=number of negative eigenvalues of Hessian (K=0  minimum)→

Zoomed:
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Orthogonal 
Recurrent Neural Nets
[Henaff, Szlam, LeCun ICML 2016]

[ArXiv:1602.06662]
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Recurrent neural net, and the vanishing gradient problem

When the dynamics is not invertible, gradient back-propagation fails

Idea 1: make the W matrix orthogonal

Idea 2: perform L2 pooling over pairs of coordinates

QM!

W

Non-linearity

V

W

Non-linearity

VXt-1

W

Non-linearity

VXt

W

Non-linearity

VXt+1
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Learning to Perform
Approximate Inference

LISTA
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Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy  = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z )=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES 

∑ j
.

Y → Ẑ=argmin Z E (Y , Z )

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE
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ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions
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Think of the FISTA flow graph as a recurrent neural net where We and S are 
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices 
to give a good approximation quickly



Y LeCun
Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
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LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
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io
n 
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ro

r

Smallest elements
removed
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Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations
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Obstacles to AI
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Obstacles to Progress in AI

Machines need to learn/understand how the world works

Physical world, digital world, people,….

They need to acquire some level of common sense

They need to learn a very large amount of background knowledge

Through observation and action

Machines need to perceive the state of the world

So as to make accurate predictions and planning

Machines need to update and remember estimates of the state of the world

Paying attention to important events. Remember relevant events

Machines neet to reason and plan

Predict which sequence of actions will lead to a desired state of the world

Intelligence & Common Sense = 

Perception + Predictive Model + Memory + Reasoning & Planning
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What is Common Sense?

“The trophy doesn’t fit in the suitcase because it’s 
too large/small”

(winograd schema)

“Tom picked up his bag and left the room” 

We have common sense because we know how the 
world works 

How do we get machines to learn that?
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Common Sense is the ability to fill in the blanks

Infer the state of the world from partial information

Infer the future from the past and present

Infer past events from the present state

Filling in the visual field at the retinal blind spot

Filling in occluded images

Fillling in missing segments in text, missing words in speech.

Predicting the consequences of our actions

Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from whatever 
information is available.

That’s what predictive learning is

But really, that’s what many people mean by unsupervised learning
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The Necessity of Unsupervised Learning / Predictive Learning

The number of samples required to train a large learning machine (for any 
task) depends on the amount of information that we ask it to predict.

The more you ask of the machine, the larger it can be.

“The brain has about 10^14 synapses and we only live for about 10^9 
seconds. So we have a lot more parameters than data. This motivates the 
idea that we must do a lot of unsupervised learning since the perceptual 
input (including proprioception) is the only place we can get 10^5 
dimensions of constraint per second.”

Geoffrey Hinton (in his 2014 AMA on Reddit)
(but he has been saying that since the late 1970s)

Predicting human-provided labels is not enough

Predicting a value function is not enough
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How Much Information Does the Machine Need to Predict?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar 
reward given once in a while.
A few bits for some samples

Supervised Learning (icing)
The machine predicts a category 
or a few numbers for each input
Predicting human-supplied data
10 10,000 bits per sample→

Unsupervised/Predictive Learning (cake)
The machine predicts any part of 
its input for any observed part.
Predicts future frames in videos
Millions of bits per sample

Unsupervised learning is the Dark Matter (or Dark Energy) of AI
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The Architecture
Of an

Intelligent System
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AI System: Learning Agent + Immutable Objective

● The agent gets percepts from the world

● The agent acts on the world

● The agents tries to minimize the long-term 
expected cost.

World

Agent

Percepts /
Observations

Actions/
Outputs

Objective

Cost

State
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AI System: Predicting + Planning = Reasoning

● The essence of intelligence is the ability to 
predict

● To plan ahead, we simulate the world

● The action taken minimizes the predicted cost

World

Agent

Percepts

Objective Cost

Agent State

Actions/
Outputs

Agent
World

Simulator

Actor

Predicted
Percepts

Critic
Predicted 
Cost

Action
Proposals

Inferred
World State

Actor State
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AI System: Predicting + Planning = Reasoning

● The essence of intelligence is the ability to predict

● To plan ahead, we must simulate the world

● The action taken minimizes the predicted cost

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception
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Learning 
Predictive Forward Models

Of the World
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Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of 
falling blocks
Uses the Unreal game engine.
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Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of 
falling blocks
Uses the Unreal game engine.
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Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of 
falling blocks
Uses the Unreal game engine.



Y LeCun

Unsupervised Learning
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Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2
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Capturing Dependencies Between Variables 
with an Energy Function

The energy surface is a “contrast function” that takes low values on the data 
manifold, and higher values everywhere else

Special case: energy = negative log density
Example: the samples live in the manifold 

Y1

Y2

Y 2=(Y 1)
2
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Energy-Based Unsupervised Learning 

● Energy Function: Takes low value on data manifold, higher values everywhere else

● Push down on the energy of desired outputs. Push up on everything else. 

● But how do we choose where to push up?

Plausible futures

       (low energy)

Implausible futures

 (high energy)
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Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?
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Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation, 
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points 
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder
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#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y )=∥W TWY−Y∥
2

PCA K-Means,  
Z constrained to 1-of-K code

E (Y )=minz∑i
∥Y−W i Z i∥

2
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#6. use a regularizer that limits 
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition
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Adversarial Training
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But in the real world, the future is uncertain…

Naïve predictive learning
Minimize the prediction error
Predict the average of all 
plausible futures
Blurry results

Better predictive learning
Learning the loss function
Predict one plausible future 
among many
Sharper results
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The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a 
whole set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State
Of the World
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Energy-Based Unsupervised Learning 

Energy Function: Takes low value on data manifold, higher values everywhere else

Push down on the energy of desired outputs. Push up on everything else. 

But how do we choose where to push up?
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Y

F(X,Y)

Adversarial Training: 
the key to predicting under uncertainty

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014], 

Energy-Based GAN [Mathieu et al. 2016]

Generator
G(X,Z)

Discriminator
F(X,Y)

X

Past: X

YZ

F: minimize
Dataset

T(X)

Y

X

Discriminator
F(X,Y)

Past: X

F: maximize

Actual future

Predicted future
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Adversarial Training: 
the key to predicting under uncertainty

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014], 

Energy-Based GAN [Mathieu et al. 2016]

Generator
G(X,Z)

Discriminator
F(X,Y)

X

Past: X

YZ

F: minimize
Dataset

T(X)

Y

X

Discriminator
F(X,Y)

Past: X

F: maximize

Actual future

Predicted future

Y

F(X,Y)
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DCGAN: “reverse” ConvNet maps random vectors to images

DCGAN:  adversarial training to generate images. 

[Radford, Metz, Chintala 2015]
Input: random numbers;  output: bedrooms.
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Navigating
the Manifold

DCGAN:  
adversarial training 
to generate 
images. 

Trained on Manga 
characters

Interpolates 
between characters
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Face Algebra (in DCGAN space)

DCGAN:  adversarial training to generate images.
[Radford, Metz, Chintala 2015]
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EBGAN Loss function

● Loss functions for Discriminator and Generator. Assume D(x) is positive. 

LD(x , z)=f (D (x))+f ([m−D (G ( z ))]+)

LG (z )=f (D (G ( z)))

● f must be strictly increasing & convex, with f(0)=0

– Examples: half-wave rectification, square
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EBGAN solutions are Nash Equilibria

● Loss functions for Discriminator and Generator. D(x) is positive. 

● (1) there is a Nash equilibrium, (2) if it is reached, the distributions are equal

LD(x , z)=f (D (x))+f ([m−D (G ( z ))]+)

LG (z )=f (D (G ( z)))

● f must be strictly increasing & convex with f(0)=0
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EBGAN in which D is a Ladder Network

● Ladder Network: auto-encoder with skip connections [Rasmus et al 2015]

● Permutation-invariant MNIST (fully connected nets)

784

1000

500

250

250

250

10

784

1000

500

250

250

250

10L2

L2
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Energy-Based GAN [Zhao, Mathieu, LeCun: arXiv:1609.03.126 ] 

● Architecture: discriminator is an auto-encoder

● Loss functions
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Multi-Scale ConvNet for Video Prediction

Examples

Input frames
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Energy-Based GAN trained on ImageNet at 128x128 pixels
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Energy-Based GAN trained on ImageNet at 256x256 pixels

Trained on dogs
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Video Prediction
(with adversarial training)

[Mathieu, Couprie, LeCun ICLR 2016] 
arXiv:1511:05440
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Multi-Scale ConvNet for Video Prediction

4 to 8 frames input → ConvNet → 1 to 8 frames output
Multi-scale ConvNet, without pooling
If trained with least square: blurry output

Predictor (multiscale ConvNet Encoder-Decoder)
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Predictive Unsupervised Learning

Our brains are “prediction machines”

Can we train machines to predict the future?

Some success with “adversarial training” 
[Mathieu, Couprie, LeCun arXiv:1511:05440]

But we are far from a complete solution.
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Video Prediction: predicting 5 frames 
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Video Prediction: predicting 5 frames 
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Video Prediction: predicting 50 frames 
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Style Transfer
(Mathieu et al. NIPS 2016)
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Style transfer architecture

X1 and X1’ have same “label” (or known features)

X2 can have any label

S1 and S1’ are meant to represent the “label” (the known part of the representation)

Z1, Z1’ and Z2 are the unspecified part (eg the pose)
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Style transfer results

Transfer category from top row to style of left column
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Style transfer: interpolation

Interpolate between top left and bottom right characters

Style changes vertically, identity changes horizontally.
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Style transfer results

Transfer category from top row to style of left column
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Style transfer results

Transfer category from top row to style of left column
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Style transfer: interpolation

Interpolate between top left and bottom right characters

Style changes vertically, identity changes horizontally.
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Pose transfer results

Transfer category from top row to orientation of left column
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Pose transfer results

Transfer category from top row to orientation of left column



Y LeCun
Let's be inspired by nature, but not too much

It's nice imitate Nature,
But we also need to understand

How do we know which 
details are important?

Which details are merely the 
result of evolution, and the 
constraints of biochemistry?

For airplanes, we developed 
aerodynamics and compressible 
fluid dynamics.

We figured that feathers and 
wing flapping weren't crucial

QUESTION: What is the 
equivalent of aerodynamics 
for understanding 
intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

His “Eole” took off from the ground in 1890,

13 years before the Wright Brothers, but you 

probably never heard of it (unless you are french).
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What will future AI systems be like?

Human and animal behavior has basic “drives” hardwired by evolution
Fight/flight, hunger, self-preservation, pain avoidance, 
desire for social interaction, etc…

Humans do bad things to each other because of these drives (mostly)
Violence under threat, desire for material resource and social power…

But an AI system will not have these 
drives unless we build them into it.

It's difficult for us humans to imagine 
an intelligent entity without these 
drives

But they are specific to humans
We have plenty of different forms 
of intelligence in the animal world 
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