
Y LeCun

Deep Learning

Yann Le Cun
Facebook AI Research
Center for Data Science, NYU
Courant Institute of Mathematical Sciences, NYU
http://yann.lecun.com

http://yann.lecun.com/

Y LeCun

Supervised Learning

We can train a machine on lots of examples of tables, chairs,
dog, cars, and people
But will it recognize table, chairs, dogs, cars, and people it has
never seen before?

CAR

PLANE

CAR

Y LeCun
Deep Learning = The Entire Machine is Trainable

Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Trainable
Classifier

Feature
Extractor

Mainstream Modern Pattern Recognition: Unsupervised mid-level features

Trainable
Classifier

Feature
Extractor

Mid-Level
Features

Deep Learning: Representations are hierarchical and trained

Trainable
Classifier

Low-Level
Features

Mid-Level
Features

High-Level
Features

Y LeCun
Multi-Layer Neural Nets

Multiple Layers of simple units

Each units computes a weighted sum of its inputs

Weighted sum is passed through a non-linear function

The learning algorithm changes the weights

Weight
matrix

Ceci est une voiture

ReLU (x)=max (x ,0)

Hidden
Layer

Y LeCun
Computing Gradients by Back-Propagation

● A practical Application of Chain Rule

● Backprop for the state gradients:
● dC/dXi-1 = dC/dXi . dXi/dXi-1
● dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1

● Backprop for the weight gradients:
● dC/dWi = dC/dXi . dXi/dWi
● dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi

Cost

Fn(Xn-1,Wn)

C(X,Y,Θ)

X (input) Y (desired output)

Fi(Xi-1,Wi)

F1(X0,W1)

Xi-1

Xi

dC/dXi-1

dC/dXi

dC/dWn

Wn

dC/dWi

Wi

Y LeCun
Convolutional Network Architecture [LeCun et al. NIPS 1989]

Inspired by [Hubel & Wiesel 1962] &
[Fukushima 1982] (Neocognitron):

simple cells detect local features
complex cells “pool” the outputs
of simple cells within a retinotopic
neighborhood.

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity

Y LeCun
Convolutional Network (vintage 1990)

Filters-tanh → pooling → filters-tanh → pooling → filters-tanh

Y LeCun

Deep Convolutional Nets for Object Recognition

1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun

Supervised Convolutional Nets

We can do a lot with Supervised
ConvNets

Detect and localize objects

Recognize multiple objects

Estimate the pose of articulatred
objects (human bodies)

….

Y LeCun
Very Deep ConvNet Architectures

Small kernels, not much subsampling (fractional subsampling).

VGG

GoogLeNet

ResNet

Y LeCun
Hierarchical Structure in the Visual Cortex

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT

Y LeCun
ConvNet for Driving

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

Input imageInput image Stereo LabelsStereo Labels Classifier OutputClassifier Output

(DARPA LAGR program 2005-2008)

[Hadsell et al., J. of Field Robotics 2009]

Y LeCun
Image captioning, Semantic Segmentation with ConvNets

[Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14][Karpathy 14][Donahue 14]...

[Farabet et al.
ICML 2011]

[Farabet et al.
PAMI 2013]

Y LeCun
Driving Cars with Convolutional Nets

MobilEye

NVIDIA

Y LeCun
DeepMask: ConvNet Locates and Recognizes Objects

[Pinheiro, Collobert,
Dollar ICCV 2015]

ConvNet produces
object masks and
categories

Y LeCun
DeepMask++ Proposals

https://arxiv.org/abs/1604.02135

Zagoruyko, Lerer, Lin, Pinheiro, Gross, Chintala, Dollár

Y LeCun
Image Recognition

Y LeCun
Image Recognition

https://arxiv.org/abs/1604.02135

Y LeCun
Image Recognition

Y LeCun
Image Recognition

Y LeCun
Image Recognition

Y LeCun
Image Recognition

Y LeCun
Results

Y LeCun

Spectral Networks
Convolutional Nets on Graphs

Y LeCun
Spectral Networks: Convolutional Nets on Irregular Graphs

Convolutions are diagonal operators in Fourier space

The Fourier space is the eigenspace of the Laplacian

We can compute graph Laplacians

Review paper: [Bronstein et al. 2016, ArXiv:1611.08097]

Y LeCun
Spectral Networks: Convolutional Nets on Irregular Graphs

Compute graph Laplacian

Compute transformation into its
eigenspace

Fourier transform

Learn “smooth” pointwise
multipliers in Fourier space

Localized kernels

Applicable to any function on
graphs

Chemistry, text, images
with holes, image on non-
euclidean surfaces...
[Bruna et al.
Arxiv:1312.6203]
[Henaff et al.
Arxiv:1506.05163]

Y LeCun

Why Doesn’t
Deep Learning
Get Trapped

In Local Minima?

Y LeCun
Deep Nets with ReLUs and Max Pooling

Stack of linear transforms interspersed with Max operators

Point-wise ReLUs:

Max Pooling
“switches” from one layer to the next

14

22

3

31

W14,3

W22,14

W31,22

Z3

ReLU (x)=max (x ,0)

Y LeCun
The Objective Function of Multi-layer Nets is Non Convex

1-1-1 network
Y = W1*W2*X

Objective: identity function with quadratic loss

One sample: X=1, Y=1 L(W) = (1-W1*W2)^2

Solution

Saddle point
Solution X

Z

Y

W2

W1

Y LeCun
Deep Nets with ReLUs

Single output:

Wij: weight from j to i

P: path in network from input to output
P=(3,(14,3),(22,14),(31,22))

di: 1 if ReLU i is linear, 0 if saturated.

Xpstart: input unit for path P.

Ŷ=∑
P

δP (W , X)(∏
(ij)∈P

W ij)X P start

14

22

3

31

W14,3

W22,14

W31,22

Z3
Dp(W,X): 1 if path P is “active”, 0 if inactive

Input-output function is piece-wise linear

Polynomial in W with random coefficients

Ŷ=∑
P

δP (W , X)(∏
(ij)∈P

W ij)X P start

Y LeCun
Deep Convolutional Nets (and other deep neural nets)

Training sample: (Xi,Yi) k=1 to K

Objective function (with margin-type loss = ReLU)

Polynomial in W of degree l (number of adaptive layers)

Continuous, piece-wise polynomial with “switched” and partially random
coefficients

Coefficients are switched in an out depending on W

L (W)=∑
k

ReLU (1−Y k∑
P

δP(W , X k
)(∏

(ij)∈P

W ij)X P start

k
)

L (W)=∑
k
∑
P

(X P start

k Y k)δP (W , X k
)(∏

(ij)∈P

W ij)

L (W)=∑
P

[∑
k

(X P start

k Y k)δP (W , X k)](∏
(ij)∈P

W ij)

L (W)=∑
P

C p(X ,Y ,W)(∏
(ij)∈P

W ij)

Y LeCun

Deep Nets with ReLUs:
Objective Function is Piecewise Polynomial

If we use a hinge loss, delta now depends on label Yk:

Piecewise polynomial in W with random
coefficients

A lot is known about the distribution of critical
points of polynomials on the sphere with random
(Gaussian) coefficients [Ben Arous et al.]

High-order spherical spin glasses
Random matrix theory

14

22

3

31

W14,3

W22,14

W31,22

Z3

L(W)

Histogram of minima

L (W)=∑
P

C p(X ,Y ,W)(∏
(ij)∈P

W ij)

Y LeCun

Deep Nets with ReLUs:
Objective Function is Piecewise Polynomial

Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial
conditions. Measure loss on test set.

[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]

Y LeCun
Spherical Spin Glass theory

Critical Points

Distribution of critical points (saddle points, minima, maxima)
K=number of negative eigenvalues of Hessian (K=0 minimum)→

Zoomed:

Y LeCun

Orthogonal
Recurrent Neural Nets
[Henaff, Szlam, LeCun ICML 2016]

[ArXiv:1602.06662]

Y LeCun
Recurrent neural net, and the vanishing gradient problem

When the dynamics is not invertible, gradient back-propagation fails

Idea 1: make the W matrix orthogonal

Idea 2: perform L2 pooling over pairs of coordinates

QM!

W

Non-linearity

V

W

Non-linearity

VXt-1

W

Non-linearity

VXt

W

Non-linearity

VXt+1

Y LeCun

Learning to Perform
Approximate Inference

LISTA

Y LeCun
Sparse Modeling: Sparse Coding + Dictionary Learning

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)

Inference is expensive: ISTA/FISTA, CGIHT, coordinate descent....

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE

Y LeCun

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

ISTA/FISTA reparameterized:

LISTA (Learned ISTA): learn the We and S matrices to get fast solutions

Y LeCun

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y LeCun
Learning ISTA (LISTA) vs ISTA/FISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun
LISTA with partial mutual inhibition matrix

Proportion of S matrix elements that are non zero

R
ec

on
st

ru
ct

io
n

Er
ro

r

Smallest elements
removed

Y LeCun
Learning Coordinate Descent (LcoD): faster than LISTA

Number of LISTA or FISTA iterations

R
ec

on
st

ru
ct

io
n

Er
ro

r

Y LeCun

Obstacles to AI

Y LeCun
Obstacles to Progress in AI

Machines need to learn/understand how the world works

Physical world, digital world, people,….

They need to acquire some level of common sense

They need to learn a very large amount of background knowledge

Through observation and action

Machines need to perceive the state of the world

So as to make accurate predictions and planning

Machines need to update and remember estimates of the state of the world

Paying attention to important events. Remember relevant events

Machines neet to reason and plan

Predict which sequence of actions will lead to a desired state of the world

Intelligence & Common Sense =

Perception + Predictive Model + Memory + Reasoning & Planning

Y LeCun
What is Common Sense?

“The trophy doesn’t fit in the suitcase because it’s
too large/small”

(winograd schema)

“Tom picked up his bag and left the room”

We have common sense because we know how the
world works

How do we get machines to learn that?

Y LeCun
Common Sense is the ability to fill in the blanks

Infer the state of the world from partial information

Infer the future from the past and present

Infer past events from the present state

Filling in the visual field at the retinal blind spot

Filling in occluded images

Fillling in missing segments in text, missing words in speech.

Predicting the consequences of our actions

Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from whatever
information is available.

That’s what predictive learning is

But really, that’s what many people mean by unsupervised learning

Y LeCun
The Necessity of Unsupervised Learning / Predictive Learning

The number of samples required to train a large learning machine (for any
task) depends on the amount of information that we ask it to predict.

The more you ask of the machine, the larger it can be.

“The brain has about 10^14 synapses and we only live for about 10^9
seconds. So we have a lot more parameters than data. This motivates the
idea that we must do a lot of unsupervised learning since the perceptual
input (including proprioception) is the only place we can get 10^5
dimensions of constraint per second.”

Geoffrey Hinton (in his 2014 AMA on Reddit)
(but he has been saying that since the late 1970s)

Predicting human-provided labels is not enough

Predicting a value function is not enough

Y LeCun
How Much Information Does the Machine Need to Predict?

“Pure” Reinforcement Learning (cherry)
The machine predicts a scalar
reward given once in a while.
A few bits for some samples

Supervised Learning (icing)
The machine predicts a category
or a few numbers for each input
Predicting human-supplied data
10 10,000 bits per sample→

Unsupervised/Predictive Learning (cake)
The machine predicts any part of
its input for any observed part.
Predicts future frames in videos
Millions of bits per sample

Unsupervised learning is the Dark Matter (or Dark Energy) of AI

Y LeCun

The Architecture
Of an

Intelligent System

Y LeCun

AI System: Learning Agent + Immutable Objective

● The agent gets percepts from the world

● The agent acts on the world

● The agents tries to minimize the long-term
expected cost.

World

Agent

Percepts /
Observations

Actions/
Outputs

Objective

Cost

State

Y LeCun

AI System: Predicting + Planning = Reasoning

● The essence of intelligence is the ability to
predict

● To plan ahead, we simulate the world

● The action taken minimizes the predicted cost

World

Agent

Percepts

Objective Cost

Agent State

Actions/
Outputs

Agent
World

Simulator

Actor

Predicted
Percepts

Critic
Predicted
Cost

Action
Proposals

Inferred
World State

Actor State

Y LeCun

AI System: Predicting + Planning = Reasoning

● The essence of intelligence is the ability to predict

● To plan ahead, we must simulate the world

● The action taken minimizes the predicted cost

Agent
World

Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

World
Simulator

Actor

Critic

Perception

Y LeCun

Learning
Predictive Forward Models

Of the World

Y LeCun
Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of
falling blocks
Uses the Unreal game engine.

Y LeCun
Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of
falling blocks
Uses the Unreal game engine.

Y LeCun
Learning Physics (PhysNet)

[Lerer, Gross, Fergus arxiv:1603.01312]
ConvNet produces object masks that predict the trajectories of
falling blocks
Uses the Unreal game engine.

Y LeCun

Unsupervised Learning

Y LeCun
Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2

Y LeCun

Capturing Dependencies Between Variables
with an Energy Function

The energy surface is a “contrast function” that takes low values on the data
manifold, and higher values everywhere else

Special case: energy = negative log density
Example: the samples live in the manifold

Y1

Y2

Y 2=(Y 1)
2

Y LeCun

Energy-Based Unsupervised Learning

● Energy Function: Takes low value on data manifold, higher values everywhere else

● Push down on the energy of desired outputs. Push up on everything else.

● But how do we choose where to push up?

Plausible futures

 (low energy)

Implausible futures

 (high energy)

Y LeCun
Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?

Y LeCun
Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun

#1: constant volume of low energy
Energy surface for PCA and K-means

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥W TWY−Y∥
2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=minz∑i
∥Y−W i Z i∥

2

Y LeCun

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Sparse Decomposition

Y LeCun

Adversarial Training

Y LeCun
But in the real world, the future is uncertain…

Naïve predictive learning
Minimize the prediction error
Predict the average of all
plausible futures
Blurry results

Better predictive learning
Learning the loss function
Predict one plausible future
among many
Sharper results

Y LeCun
The Hard Part: Prediction Under Uncertainty

Invariant prediction: The training samples are merely representatives of a
whole set of possible outputs (e.g. a manifold of outputs).

Percepts

Hidden State
Of the World

Y LeCun
Energy-Based Unsupervised Learning

Energy Function: Takes low value on data manifold, higher values everywhere else

Push down on the energy of desired outputs. Push up on everything else.

But how do we choose where to push up?

Y LeCun

Y

F(X,Y)

Adversarial Training:
the key to predicting under uncertainty

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],

Energy-Based GAN [Mathieu et al. 2016]

Generator
G(X,Z)

Discriminator
F(X,Y)

X

Past: X

YZ

F: minimize
Dataset

T(X)

Y

X

Discriminator
F(X,Y)

Past: X

F: maximize

Actual future

Predicted future

Y LeCun

Adversarial Training:
the key to predicting under uncertainty

Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],

Energy-Based GAN [Mathieu et al. 2016]

Generator
G(X,Z)

Discriminator
F(X,Y)

X

Past: X

YZ

F: minimize
Dataset

T(X)

Y

X

Discriminator
F(X,Y)

Past: X

F: maximize

Actual future

Predicted future

Y

F(X,Y)

Y LeCun
DCGAN: “reverse” ConvNet maps random vectors to images

DCGAN: adversarial training to generate images.

[Radford, Metz, Chintala 2015]
Input: random numbers; output: bedrooms.

Y LeCun

Navigating
the Manifold

DCGAN:
adversarial training
to generate
images.

Trained on Manga
characters

Interpolates
between characters

Y LeCun
Face Algebra (in DCGAN space)

DCGAN: adversarial training to generate images.
[Radford, Metz, Chintala 2015]

Y LeCun

EBGAN Loss function

● Loss functions for Discriminator and Generator. Assume D(x) is positive.

LD(x , z)=f (D (x))+f ([m−D (G (z))]+)

LG (z)=f (D (G (z)))

● f must be strictly increasing & convex, with f(0)=0

– Examples: half-wave rectification, square

Y LeCun

EBGAN solutions are Nash Equilibria

● Loss functions for Discriminator and Generator. D(x) is positive.

● (1) there is a Nash equilibrium, (2) if it is reached, the distributions are equal

LD(x , z)=f (D (x))+f ([m−D (G (z))]+)

LG (z)=f (D (G (z)))

● f must be strictly increasing & convex with f(0)=0

Y LeCun

EBGAN in which D is a Ladder Network

● Ladder Network: auto-encoder with skip connections [Rasmus et al 2015]

● Permutation-invariant MNIST (fully connected nets)

784

1000

500

250

250

250

10

784

1000

500

250

250

250

10L2

L2

Y LeCun

Energy-Based GAN [Zhao, Mathieu, LeCun: arXiv:1609.03.126]

● Architecture: discriminator is an auto-encoder

● Loss functions

Y LeCun
Multi-Scale ConvNet for Video Prediction

Examples

Input frames

Y LeCun
Energy-Based GAN trained on ImageNet at 128x128 pixels

Y LeCun
Energy-Based GAN trained on ImageNet at 256x256 pixels

Trained on dogs

Y LeCun

Video Prediction
(with adversarial training)

[Mathieu, Couprie, LeCun ICLR 2016]
arXiv:1511:05440

Y LeCun
Multi-Scale ConvNet for Video Prediction

4 to 8 frames input → ConvNet → 1 to 8 frames output
Multi-scale ConvNet, without pooling
If trained with least square: blurry output

Predictor (multiscale ConvNet Encoder-Decoder)

Y LeCun
Predictive Unsupervised Learning

Our brains are “prediction machines”

Can we train machines to predict the future?

Some success with “adversarial training”
[Mathieu, Couprie, LeCun arXiv:1511:05440]

But we are far from a complete solution.

Y LeCun
Video Prediction: predicting 5 frames

Y LeCun
Video Prediction: predicting 5 frames

Y LeCun
Video Prediction: predicting 50 frames

Y LeCun

Style Transfer
(Mathieu et al. NIPS 2016)

Y LeCun
Style transfer architecture

X1 and X1’ have same “label” (or known features)

X2 can have any label

S1 and S1’ are meant to represent the “label” (the known part of the representation)

Z1, Z1’ and Z2 are the unspecified part (eg the pose)

Y LeCun
Style transfer results

Transfer category from top row to style of left column

Y LeCun
Style transfer: interpolation

Interpolate between top left and bottom right characters

Style changes vertically, identity changes horizontally.

Y LeCun
Style transfer results

Transfer category from top row to style of left column

Y LeCun
Style transfer results

Transfer category from top row to style of left column

Y LeCun
Style transfer: interpolation

Interpolate between top left and bottom right characters

Style changes vertically, identity changes horizontally.

Y LeCun
Pose transfer results

Transfer category from top row to orientation of left column

Y LeCun
Pose transfer results

Transfer category from top row to orientation of left column

Y LeCun
Let's be inspired by nature, but not too much

It's nice imitate Nature,
But we also need to understand

How do we know which
details are important?

Which details are merely the
result of evolution, and the
constraints of biochemistry?

For airplanes, we developed
aerodynamics and compressible
fluid dynamics.

We figured that feathers and
wing flapping weren't crucial

QUESTION: What is the
equivalent of aerodynamics
for understanding
intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

His “Eole” took off from the ground in 1890,

13 years before the Wright Brothers, but you

probably never heard of it (unless you are french).

Y LeCun
What will future AI systems be like?

Human and animal behavior has basic “drives” hardwired by evolution
Fight/flight, hunger, self-preservation, pain avoidance,
desire for social interaction, etc…

Humans do bad things to each other because of these drives (mostly)
Violence under threat, desire for material resource and social power…

But an AI system will not have these
drives unless we build them into it.

It's difficult for us humans to imagine
an intelligent entity without these
drives

But they are specific to humans
We have plenty of different forms
of intelligence in the animal world

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 89
	Slide 90
	Slide 91
	Slide 95
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 102
	Slide 103
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133

