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• “spooky action at a distance” (Einstein). Consequence 
of quantum linear superposition principle.

• Simplest bipartite entanglement

• Ψ𝐴𝐵 =  𝑛 𝑝𝑛 𝑛𝐴 |𝑛𝐵⟩

• Entanglement entropy 𝑆𝐸 = − 𝑛 𝑝𝑛 log 𝑝𝑛

• Example: EPR pair 𝑝𝑛 =
1

𝑁
, 𝑆𝐸 = log𝑁

Quantum entanglement
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• Building many-body entangled states from few-qubit 
building blocks. 

• Tensor contraction just like in Feynman diagrams

Tensor networks

𝑇1𝜇𝜈𝜏 𝜇𝜈𝜏 = 𝑉1 𝑇2𝛼𝛽𝛾 𝛼𝛽𝛾 = 𝑉2

Ψ = 𝑇1
𝜇𝜈𝜏
𝑇2𝜇
𝛼𝛾 𝜇𝜈𝛼𝛾

𝐿 = 𝑔𝜇𝛽|𝜇𝛽⟩



• Projected Entangled Pair States (PEPS)

• 1. Prepare and distribute EPR pairs. Alice, Bob and 
Charlie are all entangled with David, but not with 
each other. 

F. Verstraete, J.I. Cirac, 04’

Tensor networks: Physical interpretation
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𝐴𝐷 𝐵𝐷 |𝐶𝐷⟩



• 2. David measures the qubits he has. 

• 𝜌𝐷 → |𝑉𝑎⟩⟨𝑉𝑎| with probability 𝑝𝑎 = ⟨𝑉𝑎 𝜌𝐷 𝑉𝑎⟩

• For a given output 𝑎, David now has a pure state, but Alice, 
Bob and Charlie are entangled. (Entanglement of 
assistance, D.P. DiVincenzo et al. ‘99)

• Ψ𝐴𝐵𝐶 = 𝑉𝑎 𝐴𝐷 𝐵𝐷 |𝐶𝐷⟩

Alice

Bob

Charlie

David

Measurement

|𝑉𝑎⟩



• More generally, measurements occur on multiple 
parties, creating a complicated entangled state of the 
remaining parties that are not measured. 

Tensor networks: Physical interpretation



Why are tensor networks interesting 
states?
• Entanglement 

structure encoded in 
geometry (and the 
vertex tensors 𝑉𝑥 )

• For example, for any 
region 𝐴, 𝑆𝐴 ≤
log𝐷𝑚𝑖𝑛 𝐴

• or 𝑆𝐴 ≤ 𝛾𝐴 log 𝐷. 
|𝛾𝐴| is the minimal 
surface area 
bounding A region.

Ψ =  

𝑎=1

𝐷

Ψ𝑎
𝐴 |Ψ𝑎
𝐵⟩

⇒ 𝑟𝑎𝑛𝑘 𝜌𝐴 ≤ 𝐷, 𝑆𝐴 ≤ log𝐷



• Density matrix 
renormalization group 
(DMRG) (S. White ’92) (1D 
non-critical states)

• Multi-scale entanglement 
renormalization ansatz 
(MERA) (G Vidal ’07) (critical 
states)

• 2D PEPS (Cirac, Verstraete, Wen, 

Levin, Gu et al) (2D, gapped or 
critical)

Tensor networks in condensed matter



Holographic duality

Quantum 
gravity

Quantum 
field 

theory

AdS CFT

Black hole Thermal state

𝑍 = ∫ 𝐷𝜙𝑒−𝑆 𝑍 = ∫ 𝐷𝜓𝑒−𝑆

Boundary condition of 𝜙 〈𝑂〉 local operators

Classical equation of 
motion

RG flow

(Maldacena ’97, Witten ’98, Gubser, Klebanov & Polyakov ’98)



Area measures entanglement

A

𝛾𝐴

A

𝛾𝐴

Entanglement entropy 
𝑆𝐴

Minimal surface area
1

4𝐺𝑁
𝛾𝐴

Ryu&Takayanagi ‘06



• TNW in holography: geometry emerges from the 
entanglement structure of quantum states (Swingle ‘09)

• Various tensor network related proposals (Nozaki et al ’12, XLQ 
’13, Hartman&Maldacena ’13, Maldacena & Susskind ’13, Czech et al ’14-
15, Pastawski et al ‘15, Yang et al ’15)

• Goal: an explicit holographic mapping between bulk and 
boundary

Tensor networks and holography

Energy 
spectrum

boundary bulk



• Tensor networks with bulk and boundary indices 
provide a possible definition of holographic mapping.

• The task is to find suitable tensor networks

Tensor network holographic mapping

boundary bulk

|𝜓〉 𝑀+|𝜓⟩

𝑂 𝑀+𝑂𝑀



• Entanglement quantities are hard to compute
for a given tensor networks.

• Random average greatly simplifies entanglement calculations.

• A random tensor 𝑉𝜇𝜈𝜏 corresponds to
a (Haar) random state in the Hilbert space 
𝑉 = 𝑉𝜇𝜈𝜏 𝜇 𝜈 |𝜏⟩. 

• Random tensor network state

• The link state can be EPR pairs P =  𝑥𝑦 |𝐿𝑥𝑦⟩ but can also 
be more general

Random tensor networks

Ψ = 

𝑥

⟨𝑉𝑥| |𝑃⟩

Random vertex 
states

Link states. EPR pairs 
or more general



• 𝜌 = |Ψ⟩⟨Ψ| = 𝑡𝑟  𝑥 𝑉𝑥 𝑉𝑥 𝜌𝑃 is a linear function of 
|𝑉𝑥⟩⟨𝑉𝑥|. 

• Renyi entropies 𝑆𝐴 =
1

1−𝑛
log
𝑡𝑟 𝜌𝐴
𝑛

𝑡𝑟 𝜌 𝑛

• For any quantity that is polynomial in
𝜌, such as 𝑡𝑟 𝜌𝐴

𝑛 , the random 
average can be easily obtained. 

• For example, second Renyi
𝑡𝑟 𝜌𝐴
2 = 𝑡𝑟 𝜌 ⊗ 𝜌𝑋𝐴

= 𝑡𝑟 𝜌𝑃⊗𝜌𝑃 𝑋𝐴⊗ 𝑥 |𝑉𝑥⟩⟨𝑉𝑥| ⊗ |𝑉𝑥⟩⟨𝑉𝑥|

• Random average |𝑉𝑥⟩⟨𝑉𝑥| ⊗ |𝑉𝑥⟩⟨𝑉𝑥| =
1

𝐷𝑥
2+𝐷𝑥
𝐼𝑥 + 𝑋𝑥

• Random average ⇔ sum over an Ising variable at each x

Entanglement properties of random 
tensor networks



• For a random tensor network

• 𝑡𝑟 𝜌𝐴
2 = 𝑍𝐴 =  𝜎𝑥=±1 𝑒

−𝒜 𝜎𝑥

• 𝒜 𝜎𝑥 = 𝑆 𝜎𝑥 = −1 ; 𝜌𝑃 “the second Renyi
entropy of 𝜎𝑥 = −1 domain for state 𝜌𝑃 = |𝑃⟩⟨𝑃|”

• Boundary condition: spin ↓ in 𝐴 and ↑ elsewhere

• The second Renyi entropy 𝑆𝐴 ≃ − log
𝑍𝐴

𝑍∅
is the “cost of 

free energy” of flipping spins in 𝐴 from ↑ to ↓. 

Summary of the key results

Random 
average



• If 𝑃 =  𝑥𝑦 𝐿𝑥𝑦 consists of maximally entangled EPR 
pairs with rank 𝐷, 

• 𝒜 𝜎𝑥 = −
1

2
log 𝐷  𝑥𝑦 𝜎𝑥𝜎𝑦

• Boundary cond. 𝜎𝑥 = {
−1, 𝑥 ∈ 𝐴

+1, 𝑥 ∈  𝐴
• The action is proportional to

the domain wall area.

• 𝑡𝑟 𝜌𝐴
2 =  𝛾~𝐴 𝑒

− log 𝐷 𝛾

• 𝐷 → ∞ ⇒
low T limit of Ising model

• 𝑆 ≃ − log 𝑡𝑟 𝜌𝐴
2 ≃ log𝐷 𝛾𝐴 (RT formula)

RT formula

𝛾𝐴

𝐴

𝛾



• The random average technique applies
to more general networks

• Other properties of RTN:

• Higher Renyi entropies

• RT formula with quantum correction
(agree with Faulkner, Lewkowycz & Maldacena’13)
𝑆𝐴 ≃ log𝐷 𝛾𝐴 + 𝑆 E𝐴, Ψ𝑏 Ψ𝑏 ).

• RT formula for higher Renyi entropies

• Quantum error correction properties
(Almheiri, Dong, Harlow ‘14)
𝜙𝑥 can be reconstructed on boundary 
region 𝐴 if 𝑥 ∈ 𝐸𝐴.

• Scaling dimension of operators

• 𝑂𝐴𝑂𝐵 ∝ 𝜙𝑥𝜙𝑦 𝑏𝑢𝑙𝑘

Other properties of RTN 

𝑥

𝐴

 𝐴

𝐸𝐴

AdS

𝐵𝐴

𝐸𝐴 𝐸𝐵

(For more details see our paper 1601.01694)



• RTN represent ``ansatz states” with various 
holographic properties

• To describe quantum gravity, we need to allow 
superposition of geometries

• RTN with geometry fluctuation 
can be defined by 
considering link qudits

• 𝑎 = 𝐿𝛼𝛽
𝑎 𝛼 𝛽

• 𝑎 controls the entanglement
of this link

Superposition of geometries

𝛼 𝛽𝑎
= 𝐿𝛼𝛽
𝑎



• 𝑆𝑎 increases with 𝑎 = 0,1,2, … , 𝐷𝐿 − 1

• 𝑎 𝑏 = 𝛿𝑎𝑏. 𝑎 = 0 = 0 |0⟩ corresponds to a 
disconnected link

• Random tensors map each weighted graph 𝑎𝑥𝑦 to a 
boundary state
Ψ[a] =  𝑥 𝑉𝑥  𝑥𝑦 |𝑎𝑥𝑦⟩ 𝑥∈𝐵 |𝑥𝑋⟩. 

• |Ψ 𝑎 ⟩ are ``geometry states”
satisfying RT formula. 

• Question: Do |Ψ 𝑎 ⟩ form an 
(over-)complete basis?
Short answer: Yes. |Ψ 𝑎 ⟩ are 
``geometry coherent states”

Geometry coherent states
𝑎



• With enough number of bulk vertices, |Ψ 𝑎 ⟩ is an 
overcomplete basis satisfying
 𝑎 |Ψ 𝑎 ⟩⟨Ψ[𝑎]| = 𝕀

• Boundary-to-bulk isometry

• Random average Ising model
on the complete graph

• 𝒜 = −
𝐽

4
 𝑥𝑦 𝑠𝑥𝑠𝑦

−
ℎ

2
 𝑥 𝑠𝑥 +

1

2
log 𝐷  𝑥 𝑠𝑥.

• Isometry condition

log 𝐷𝐿
𝑉 𝑉 − 1

2
> 𝑉𝐵log 𝐷, 𝐽𝑉𝑏 > 2 log𝐷 − 𝑉 − 1 log𝐷𝐿

Boundary-to-bulk isometry

dim(bulk)> dim(boundary) Bound on mutual information 𝐽 of each link



• |Ψ 𝑎 ⟩ are not orthogonal 

• 𝐶𝑎𝑏 = Ψ 𝑎 Ψ 𝑏

• 𝐶𝑎𝑏
2 can be studied by the random average technique

• 𝐶𝑎𝑏
2 ≤ 𝑒−

1

2
𝛾 𝑎+ 𝛾 𝑏

• 𝛾:minimal area surface enclosing the region 𝑎 ≠ 𝑏.

• Macroscopically different geometries are almost 
orthogonal

Classical geometries

𝛾 𝛾



• If we take 𝐷𝐿 to be large, we can define small 
fluctuation around a classical geometry. 

• |Ψ 𝑎0 + 𝛿𝑎 ⟩

• 𝛿𝑎 ≤ Λ

• In the limit 𝐷𝐿 → ∞, finite
Λ, there is an isometry
from bulk to boundary.

• Emergent local degrees
of freedom

• The small fluctuations
form a “code subspace”
ℍ𝑎.

Small fluctuations



• Boson coherent state of a superfluid 𝜙 𝑥 =

𝑒∫ 𝑑
𝑑𝑥𝜙 𝑥 𝑏+ 𝑥 |0⟩

• Overcomplete basis ∫ 𝐷𝜙|𝜙⟩⟨𝜙| = 𝕀

• Overlap 𝜙 𝜙′ = exp −∫ 𝑑𝑑𝑥|𝜙 𝑥 −

Comparison with boson coherent states



• Random tensor networks form a basis of “geometry 
coherent states” with holographic properties.

• A generic boundary states is mapped to a 
superposition of geometries  𝑎𝜙𝑎|Ψ 𝑎 ⟩

• The basis is overcomplete but different classical 
geometries are almost orthogonal.

• Small fluctuations are mapped to boundary 
isometrically, with error correction properties. They 
are local bulk quantum fields. 

• Open question: 
- Optimization of geometry for a given boundary state. 
- Einstein equation from boundary dynamics? 

Summary and open questions


