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Quantum entanglement

» “spooky action at a distance” (Einstein). Consequence

of quantum linear superposition principle.
e Simplest bipartite entanglement

* |Wyp) = Zn\/ﬁMAHnB)

* Entanglement entropy S = — )., p,, log p,,
* Example: EPR pair p,, = %,SE = log N

|EPR) =

B
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Tensor networks

* Building many-body entangled states from few-qubit
building blocks.

* Tensor contraction just like in Feynman diagrams

T1pvelpve) = V1) TaapylaBy) = |V2) L) = g*¥|upB)

W) = T{"" T, luvay)



Tensor networks: Physical interpretation

¢ ProjeCtEd Entangled Pair States (PEPS) F. Verstraete, J.1. Cirac, 04’

* 1. Prepare and distribute EPR pairs. Alice, Bob and
Charlie are all entangled with David, but not with

each other.
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Alice

David
Bob
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2. David measures the qubits he has.
* pp = |Va)(Va| with probability p, = (V,|pp|Va)

|Va)

‘ ‘ Measurement
Q Charlie@

Alice

David
avi Bob

e For a given output a, David now has a pure state, but Alice,
Bob and Charlie are entangled. (Entanglement of
assistance, p.p. Divincenzo et al. ’99)

* [Wapc) = (Vu|AD)|BD)|CD)



Tensor networks: Physical interpretation

* More generally, measurements occur on multiple
parties, creating a complicated entangled state of the
remaining parties that are not measured.
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Why are tensor networks interesting
states?

* Entanglement
structure encoded in
geometry (and the

vertex tensors |V,.)) W) = z|‘PA N WE)

* For example, for any
region A4, S, <
log Dmin(A)

*orS, < |yullogD.
V4| is the minimal

surface area
bounding A region.

= rank(pA) <D,Sy<logD



Tensor networks in condensed matter

* Density matrix
renormalization group
(DMRG) (s. white’92) (1D
non-critical states)

* Multi-scale entanglement
renormalization ansatz
(MERA) (G vidal '07) (critical
states)

e 2D PEPS (Cirac, Verstraete, Wen,
Levin, Gu et al) (2 D, gapped or
critical)



Holographic duality

Quantum
Quantum _
gravity <:> Q field
theory
CFT

AdS
Black hole Thermal state
Z = [ DgpeS Z = [ Dye=S

Boundary condition of ¢ (O) local operators

Classical equation of RG flow
motion

(Maldacena '97, Witten 98, Gubser, Klebanov & Polyakov '98)



Area measures entanglement

Minimal surface area

Entanglement entropy
L |yA| SA
4Gy

Ryu&Takayanagi ‘06



Tensor networks and holography
boundary bulk

Energy

ﬂk
spectrum . .

* TNW in holography: geometry emerges from the
entanglement structure of quantum states (Swingle ‘09)

 Various tensor network related proposals (Nozaki et al 712, XLQ
’13, Hartman&Maldacena ’13, Maldacena & Susskind ’13, Czech et al '14-
15, Pastawski et al ‘15, Yang et al '15)

e Goal: an explicit holographic mapping between bulk and
boundary




Tensor network holographic mapping

* Tensor networks with bulk and boundary indices
provide a possible definition of holographic mapping.

 The task is to find suitable tensor networks




Random tensor networks

* Entanglement quantities are hard to compute
for a given tensor networks.

 Random average greatly simplifies entanglement calculations.

* A random tensor V},,,; corresponds to
a (Haar) random state in the Hilbert space

V) = Vel V)2).
e Random tensor network state

w) = | [oxlipy
7

Link states. EPR pairs
or more general
Random vertex

states

* The link state can be EPR pairs |P) =[], |Lyy) but can also
be more general



Entanglement properties of random
tensor networks

e p = |WNY| = tr(I L |V, ){Vi| pp) is a linear function of
[V (Vx|

. : . 1 tr(p})
Renyi entropies S, = p— log ()"

* For any quantity that is polynomial in
p, such as tr(py), the random
average can be easily obtained.

* For example, second Renyi

tr(p;) = tr(p @ pX,)

= tr(pp @ pplXs @ [y [Vi)(Vi| & Vi) (Vi lD
* Random average [V ) (Vo] ® IV)(Vel = 57y (I + X)

* Random average < sum over an Ising variable at each x




Summary of the key results

* For a random tensor network

) tr(pﬁ) — ZA = Z{O'x=i1} e_dq[{a-x}]

* Al{o,}| = S{o, = —1}; pp) “the second Renyi
entropy of g,, = —1 domain for state pp = |P){P|”

* Boundary condition: spin | in 4 and T elsewhere

Random
average

>

* The second Renyi entropy S, =~ — logz—A is the “cost of
)
free energy” of flipping spins in A from T to |.



RT formula

 If |P) = ny‘l'x ) consists of maximally entangled EPR
pairs with rank ﬁ,

1
* Al{oy}] = _ElogD ny Ox0y

—1,x €A

Boundary cond. g, = {+1,x c i

* The action is proportional to
the domain wall area.

° t’l"(pi) = ZVNAe_longﬂ i A

e D > 00 =
low T limit of Ising model

A
» S =~ —logtr(p3) = logD |y4| (RT formula)



Other properties of RTN

 The random average technique applies
to more general networks

e Other properties of RTN:

* Higher Renyi entropies

e RT formula with quantum correction N
(agree with raulkner, Lewkowycz & Maldacena’13)

Sa = 1ogD |yl + S(Ea, [ (Wp1). '
e RT formula for higher Renyi entropies

* Quantum error correction properties
(Almheiri, Dong, Harlow ‘14)

¢, can be reconstructed on boundary
region Aifx € E,4.

* Scaling dimension of operators w
* (040p) x <¢x¢y>bulk A B

(For more details see our paper 1601.01694)



Superposition of geometries

* RTN represent ansatz states” with various
holographic properties

* To describe quantum gravity, we need to allow
superposition of geometries

* RTN with geometry fluctuation
can be defined by
considering link qudits

* la) = Lggla)| )

* a controls the entanglement
of this link

04 a p
® (.zzﬁ




Geometry coherent states .
* S, increases witha =0,1,2,...,D; — 1 o L o

* (a|b) = 6,. |a = 0) = |0)|0) corresponds to a
disconnected link

* Random tensors map each weighted graph a,,, to a
boundary state

|W[a]) = [1(Vl ny |axy> HxEB |xX).

* |W]a]) are “"geometry states”
satisfying RT formula.

* Question: Do |W]a]) form an
(over-)complete basis?
Short answer: Yes. |[¥|a]) are
“"geometry coherent states”




Boundary-to-bulk isometry

* With enough number of bulk vertices, |[¥|a]) is an
overcomplete basis satisfying

2 |Plal¥la]| =1
* Boundary-to-bulk isometry
 Random average=> Ising model
on the complete graph
. c/lh= — ﬁngi SxSy
_EZxSx + ElogD ZxSx-
* Isometry condition

V(v —1)
> > Vglog D, JVy, > 2logD — (V—1)logD;

dim(bulk)> dim(boundary) Bound on mutual information J of each link

log D,



Classical geometries

* |W|a]) are not orthogonal
* Cqp = (Plal[¥[b])

* |C,p|? can be studied by the random average technique

1
o« |C,p|? < o zUvlatlylp)

* ¥: minimal area surface enclosing the region a # b.

* Macroscopically different geometries are almost
orthogonal




Small fluctuations

* If we take D; to be large, we can define small
fluctuation around a classical geometry.

* |Y[ay + dal)
o [6al < A
* In the limit D; — oo, finite

A, there is an isometry
from bulk to boundary.

* Emergent local degrees
of freedom

e The small fluctuations

form a “code subspace”
H,.




Comparison with boson coherent states

* Boson coherent state of a superfluid |¢p(x)) =
oJ d9xp()b* () )

* Overcomplete basis [ Dop|p)(p| = I
» Overlap [{¢|p")| = exp(—J d%x|p(x) -



Summary and open questions

 Random tensor networks form a basis of “geometry
coherent states” with holographic properties.

* A generic boundary states is mapped to a
superposition of geometries ),, ¢, |¥|[a])

* The basis is overcomplete but different classical
geometries are almost orthogonal.

* Small fluctuations are mapped to boundary
isometrically, with error correction properties. They
are local bulk quantum fields.

* Open question:
- Optimization of geometry for a given boundary state.
- Einstein equation from boundary dynamics?



