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GRANULAR WORLD
‣ Collection of macroscopic objects 

‣ Purely repulsive, contact interactions. No 

thermal fluctuations to restore broken 

contacts 

‣ Friction: Forces are independent degrees of 

freedom 

‣ States controlled by driving at the 

boundaries or body forces: shear, gravity 

‣ Non-ergodic in the extreme sense: stays in 

one configuration unless driven



LOOKING INSIDE SAND



Stress Metric



Local force & torque balance satisfied for 

every grain

Imposed stresses determine sum of stresses over all grains

Friction law on each contact !! ≤ !!! !

Positivity of all forces !! ≥ 0!

Statics of Granular Media:  Constraints of mechanical equilibrium 
determine collective behavior



 Imposing force balance (2D)

Forces on every grain sum to zero:

Newton’s third law dictates:



Height Representation

h

The conditions of mechanical equilibrium ensure the 
uniqueness of the height representation

Ball & Blumenfeld, 2003

~hg,v2

~hg,v1

r · �̂ = 0 ! Vector potential

The heights live on a random network



Force Tilings

For systems where all normal forces are 
repulsive, we have a single sheet



TWO REPRESENTATIONS

http://www.aps.org/meetings/march/vpr/2015/videogallery/index.cfm

http://www.aps.org/meetings/march/vpr/2015/videogallery/index.cfm


Two problems: 

•Stress Transmission in Static Granular Aggregates

•Discontinuous Shear Thickening in 

Dense Suspensions

Procaccia group:  Numerical Simulations (2016)



 How do granular materials respond to applied forces?

“Forces are carried primarily by a tenuous 
network that is a fraction of the total 
number of grains”  Geng et al, PRL (2001)

Ensemble averaged patterns are 
sensitive to nature of underlying 
spatial disorder



 Theoretical Models

q-model (Coppersmith et al (1996)):  Scalar force balance on an ordered network. 
Disorder incorporated at contacts: how forces get transmitted at contacts.  In 
continuum, reduces to the diffusion equation.

In response to a localized 
force at the top of a pile, 
the pressure profile  at the 
bottom has a peak with 
width proportional to the 
square root of the height.

Broad distribution of forces.



 Theoretical Models

Continuum models with prescribed constitutive law relating stress components. 
determined by history  of preparation.  For example,
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Stresses propagate/ get transmitted along lines 

More elaborate closure relations: (Review:  J.-P. Bouchaud Les Houches Lectures)

Missing stress-geometry equation: no well defined strain field/compatibility relations



h

Geometry of contact network 
represented by the network Laplacian

Random matrix: diagonal elements contain 
the number of contacts, otherwise the 
adjacency matrix 

 Force Response of a network to a perturbation
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Framework

Different from q model:  On a given contact network, how the force perturbation 
gets distributed among contacts is completely determined by the constraints of 
force balance
Constitutive Law determined by statistical properties of the ensemble of Laplacians

Disorder of contact network represented by network Laplacian
Diffusion on a random network:  Localization ?
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i Equation defining the auxiliary fields

Given a contact network and a set of body forces, solution is unique

If the solution violates torque balance/static friction condition, network will rearrange
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Response of a frictionless granular solid



h

Lowest eigenvalue: 
delocalized 

Highest eigenvalue: 
strongly localized 



h

Ensemble average: Spectral properties

Inverse Participation Ratio
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Density of States
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•Maps granular response problem to the localization problem

 “Absence of Diffusion in Certain Random Lattices”

      P. W. Anderson (1958) 

•Theory relates response to the disorder in the underlying 

network

•Random Matrix Ensembles: Characterizing Jammed Networks

•Many Body Localization:   Strongly Interacting System

Stress Localization



Discontinuous Shear Thickening

21



22

A	  Thickening	  Scenario
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Phase	  Diagram	  from	  Rheology:	  	  Abhi	  Singh	  &	  Jeff	  Morris

Is	  this	  a	  cri*cal	  point	  ?



Clustering/Clumping	  	  	  of	  points

Clustering	  of	  points	  



#	  of	  clusters



• Role of inverse temperature is played by the packing fraction 
• Density is controlled by imposed stress

Mapping to Shear Thickening

V(h)

• Clumping Transition: Many points clustered close together. 
•  These  clumps/clusters form a crystalline or amorphous arrangement

� / 1/T

“Equibrium” Model
• Repulsive interaction between heights with a single stress scale 
• Simplest: If height points are closer than this scale, they repel
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A	  tricri*cal	  point	  ?
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•Dual Networks:  Contacts and Force Tilings

•History Dependence:  

Including forces in defining microstates takes away that indeterminacy

Contact Networks are random but can characterize ensembles

•Pattern formation in height fields:  Distinguish phases

Statistical Mechanics of Granular Media
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Cluster	  Analysis
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Response in a frictionless jammed packing


