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The coarse-grained success



 On large (linear) scales, only use the hydrodynamical limit of DM

=� Any perfect fluid with           and          does the job.cs ' 0

The coarse-grained success

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫

P ' 0

Cleanest evidence for DM, but does not offer much information 
about DM microphysics



Dark matter is generally assumed to consist of subatomic 
particles (WIMPs, axions, etc.), with negligible interactions 
among themselves and with ordinary matter (other than 
gravity).
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The Conspiracy in Galaxies
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 Baryonic Tully-Fisher relation McGaugh (2015)
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Fig. 2.— Top panels: BTFR adopting ⌥⇤ = 0.5 M�/L�. Galaxies are color-coded by fg = Mg/Mb. Solid lines show error-weighted
fits. Dotted lines show fits weighted by f2

g , increasing the importance of gas-dominated galaxies. The dashed line shows the ⇤CDM initial
condition with fV = 1 and fb = 0.17 (the cosmic value). Bottom panels: residuals from the error-weighted fits versus the galaxy e↵ective
radius. The outlier is UGC 7125, which has an unusually high correction for Virgocentric infall and lies near the region where the infall
solution is triple-valued. If we consider only the correction for Local Group motion, UGC 7125 lies on the BTFR within the scatter.

3.1. Observed and Intrinsic Scatter

Figure 1 (top-left) shows that �obs decreases with ⌥⇤
and reaches a plateau at ⌥⇤ & 0.5M�/L�. This plateau
actually is a broad minimum that becomes evident by
extending the ⌥⇤-range up to unphysical values of ⇠10
M�/L� (not shown). The observed scatter is systemat-
ically lower for the accurate-distance sample, indicating
that a large portion of �obs in the full sample is driven
by distance uncertainties.
Figure1 (top-right) shows that �int is below 0.15 dex

for any realistic value of ⌥⇤. The similar intrinsic scat-
ter between the two samples suggests that our errors on
Hubble-flow distances are realistic. For a fiducial value of
⌥⇤ = 0.5 M�/L�, we find �int = 0.10± 0.02 for the full
sample and �int = 0.11 ± 0.03 for the accurate-distance
sample. As we discuss in Sect. 4, this represents a chal-
lenge for the ⇤CDM cosmological model.

3.2. Slope, Normalization, and Residuals

Figure1 (bottom panels) shows that the BTFR slope
(normalization) monotonically increases (decreases) with
⌥⇤. This is due to the systematic variation of the gas

fraction (fg = Mg/Mb) with Vf . Figure 2 (top pa-
nels) shows the BTFR for ⌥⇤ = 0.5 M�/L�, colour-
coding each galaxy by fg. Low-mass galaxies tend to
be gas-dominated (fg & 0.5) and their location on the
BTFR does not strongly depend on the assumed ⌥⇤
(Stark et al. 2009; McGaugh 2012). Conversely, high-
mass galaxies are star-dominated and their location on
the BTFR strongly depends on ⌥⇤. By decreasing ⌥⇤,
Mb decreases more significantly for high-mass galaxies
than for low-mass ones, hence the slope decreases and
the normalization increases.
For any ⌥⇤, we find no correlation between BTFR

residuals and galaxy e↵ective radius: the Pearson’s,
Spearman’s, and Kendall’s coe�cients are consistently
between ±0.4. Figure 2 (bottom panels) shows the case
of ⌥⇤ = 0.5 M�/L�. Similarly, we find no trend with
e↵ective surface brightness. We have also fitted exponen-
tials to the outer parts of the luminosity profiles and find
no trend between residuals and central surface bright-
ness or scale length. These results di↵er from those of
Zaritsky et al. (2014) due to the use of Vf instead of H I
line-widths (see also Verheijen 2001). The lack of any

a0 = 1.2⇥ 10�8 cm/s2

v4flat = a0GNMb
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 Freeman limit

Figure 8: Size and surface density. The characteristic surface density of baryons as defined in
Figure 5 is plotted against their dynamical scale length Rp in the left panel. The dark blue points
are star-dominated galaxies and the light-blue ones gas-dominated. High characteristic surface
densities at low Rp in the left panel are typical of bulge-dominated galaxies. The stellar disk
component of most spiral galaxies is well approximated by the exponential disk with Σ(R) =
Σ0e−R/Rd . This disk-only central surface density and the exponential scale length of the stellar
disk are plotted in the right panel. Galaxies exist over a wide range in both size and surface density.
There is a maximum surface density threshold (sometimes referred to as Freeman’s limit) above
which disks become very rare [265]. This is presumably a stability effect, as purely Newtonian
disks are unstable [344, 416]. Stable disks only appear below a critical surface density Σ† ≈
a0/G [300, 78].
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 Baryons dictate everything! McGaugh, Lelli & Schombert, 1609.05917
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Those are facts. 
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The acceleration scale       is in the data.a0



Those are facts. 

The acceleration scale       is in the data.

Can take one of 3 attitudes… 

a0



One extreme: It’s all feedback!

 Star formation model
 Stellar evolution
 Mass and metal return
 Supernovae rates
 Gas enrichment
 Cooling and heating rates

 Self-shielding
 Stellar feedback
 Local and non-local SNII feedback

 Black hole and AGN feedback

Can these feedback processes, which are inherently stochastic, 
result in tight correlation displayed in Tully-Fisher relation?
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Figure 23. Tully-Fisher relations. Left panel: Baryonic Tully-Fisher relation for the 42 disk galaxies shown in Figure 20. We compare to observational mean
trends (solid lines) with 1� scatter bands (Avila-Reese et al. 2008; Hall et al. 2012; McGaugh 2012). We note that this is only a small sub-sample of well-
resolved simulated disk galaxies. Our simulation contains, for example, 4, 177 Milky Way halo analogs with virial masses in the range 1011.5�12.5

M� which
are resolved similarly well as the galaxies presented here. We also include simulation points from a recent sample of high-resolution zoom-in simulations
from Aumer et al. (2013). Right panel: Stellar Tully-Fisher relation for the same sample compared to observations (Verheijen 2001; Pizagno et al. 2007;
Courteau et al. 2007; Dutton et al. 2011). We also show the theoretical predictions of Marinacci et al. (2014a) for the Aquila haloes.

Reese et al. 2008; Hall et al. 2012; McGaugh 2012). We measure
the total baryonic mass within r?, and for the circular velocity we
take the total mass within that radius and calculate the associated
circular velocity (see also Scannapieco et al. 2012). The r? radii
are shown as dashed brown lines in the circular velocity curves of
Figure 22, demonstrating that this radius lies already within the flat
regime of the circular velocity curve. Our results for the TFR are
therefore not very sensitive to this choice.

The BTFR of the disk galaxies in our simulation (represented
here by this small sample) agrees well with the overall observa-
tional constraints, demonstrating that the internal structure of the
stellar disks are characterised reasonably well, and that CDM mod-
els can reproduce the observed BTFR. Interestingly, our model
predicts a BTFR which is closer to the tightest observational con-
straints (McGaugh 2012) than recent state-of-the-art zoom-in sim-
ulations (Aumer et al. 2013) although our numerical resolution for
these galaxies is significantly below the resolution of the zoom-in
results. The very tight and steep BTFR is observed for a gas-rich
galaxy sample, which is expected to give a more accurate mea-
sure of the slope and the normalisation of the BTFR than obtained
from star-dominated spiral galaxies. Although our simulation re-
sults agree with the predicted scatter of Avila-Reese et al. (2008);
Hall et al. (2012) the spread of our BTFR is still much larger than
the results of McGaugh (2012). Also the slope is not as steep as
predicted by that study. We note that a more detailed exploration of
the BTFR has to take into account the full sample of well-resolved
spiral galaxies, and also take into account the actual rotation veloc-
ities.

The right panel of Figure 23 shows the stellar TFR for the
same selected disk galaxy sample compared to different observa-
tions (Verheijen 2001; Pizagno et al. 2007; Courteau et al. 2007;

Dutton et al. 2011); i.e. we plot the same velocity as in the left
panel now as a function of stellar mass instead of total baryonic
mass. We also show the theoretical predictions of Marinacci et al.
(2014a) for the Aquila haloes. Our galaxies follow a similar trend
as the high-resolution Aquila haloes: we recover the correct slope
and amount of scatter in the relation. However, it seems that our re-
sults indicate slightly too high circular velocities. This is also true
for the Aquila galaxies of Marinacci et al. (2014a).

The blue and red galaxy samples discussed so far were se-
lected “by eye” to be representative for distinct classes of galaxies.
In the following we would like to characterise in more detail the
morphological galaxy mix as a function of stellar mass. However,
we are severely limited by our mass resolution to properly model
and characterise galaxy types of systems that are only resolved by a
few tens of thousands of stellar resolution elements. In fact, reliably
identifying the type of a galaxy requires substantially more parti-
cles, and we will not attempt to quantify the morphological type of
galaxies for systems that are resolved with less than ⇠ 105 stellar
particles resulting in a lowest stellar mass of about ⇠ 1011 M�.
Automatically classifying galaxy types for less well-resolved ob-
jects is rather difficult and the obtained results are highly uncertain.

For the well-resolved objects with M? > 1011 M� we will
apply a kinematic bulge-to-disk decomposition. Specifically, we
follow Abadi et al. (2003) and define for every star particle with
specific angular momentum jz around a selected z-axis a circular-
ity parameter jz/j(E), where j(E) is the maximum specific an-
gular momentum possible at the specific binding energy E of the
star. We define a z-axis based on the star-forming gas, or the stars,
if there is no star-forming gas in the system, which can occur in
more massive and heavily quenched systems. Having the circular-
ities of all stellar particles of the system we can then determine

© 0000 RAS, MNRAS 000, 000–000

Vogelsberger et al.
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Figure 5. Rotation curves of four dwarf irregular galaxies of approximately the same maximum rotation speed (⇠ 80–100 km s�1) and galaxy mass,
chosen to illustrate the diversity of rotation curve shape at given V

max

. As in previous figures, coloured solid curves and shaded areas correspond to
the median (and 10th–90th percentile) circular velocity curve of simulated galaxies matching (within 10 per cent) the maximum circular velocity of
each galaxy. Note that the observed rotation curves exhibit a much wider diversity than seen in the EAGLE and LOCAL GROUPS simulations, from
galaxies like UGC 5721, which are consistent with our simulations, to galaxies like IC 2574, which show a much more slowly rising rotation curve
compared with simulations, either hydrodynamical (coloured lines) or dark matter-only (black lines).

Available simulation data are sparse but suggest that the scatter
in structural properties at fixed halo mass is no larger for alterna-
tive dark matter models than for ⇤CDM (e.g. Rocha et al. 2013;
Lovell et al. 2014, for SIDM and WDM respectively). This is in
disagreement with rotation curve data and suggests that a mech-
anism unrelated to the nature of the dark matter must be invoked
to explain the rotation curve shapes.

4.6 The “inner mass deficit” problem

The prevalence of the “inner mass deficit” problem discussed
above may be characterized by comparing the inner circular
velocities of observed galaxies with those of ⇤CDM galaxies
of matching V

max

. We show this in Fig. 6, where we use our
⇤CDM simulations, as well as the compiled rotation curve data,
to plot the circular velocity at 2 kpc against the maximum mea-
sured rotation speed, V

max

. Where data do not exist at exactly
2 kpc, we interpolate linearly between nearby data points. We
choose a fixed physical radius of 2 kpc to characterize the in-
ner mass profile because it is the minimum radius that is well
resolved in all of our simulations for systems in the mass range

of interest here. It is also a radius that is well resolved in all
observed galaxies included in our compilation.

The grey symbols in the top left panel of Fig. 6 show the
results of our DMO simulations. The tight correlation between
these quantities in the DMO case is a direct consequence of the
nearly self-similar nature of ⇤CDM haloes: once the cosmo-
logical parameters are specified, the circular velocity at 2 kpc
may be used to predict V

max

, and vice versa. Variations in en-
vironment, shape and formation history result in some scatter,
but overall this is quite small. For given V

max

, the circular ve-
locity at 2 kpc has a standard deviation of only ⇠ 0.1 dex.
Our results are in good agreement with earlier DMO simula-
tion work. The solid black line (and shaded region) in the figure
indicates the expected correlation (plus 1-� scatter) for NFW
haloes with the mass-concentration relation corresponding to
the cosmological parameters adopted in our simulations (Lud-
low et al. 2014). Note that the simulated data approach the 1:1
line for V

max

< 30 km/s: this is because those halos are intrinsi-
cally small; the radius where circular velocity profiles peak de-
creases steadily with decreasing circular velocity, from 4.6 kpc
to 1.9 kpc when V

max

decreases from 30 to 15 km/s.
The inclusion of baryons modifies these correlations, as

c
� 0000 RAS, MNRAS 000, 000–000

Oman et al. (2016)“The unexpected diversity of dwarf galaxy 
rotation curves”



Modified Newtonian Dynamics (MOND)
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The other extreme: it’s all modified gravity!
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The middle ground:

 Dark matter exists and behaves like a cold, collisionless 
fluid on large scales.

 MOND empirical law originates in the fundamental 
nature of dark matter. It emerges from new interactions 
(beyond gravity) with ordinary matter. 

e.g. in this talk: DM superfluidity

Blanchet (2006); Bruneton et al. (2008);

Ho, Minic & Ng (2009); JK (2014); Verlinde (2016)
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Naturally distinguishes between galaxies (where MOND works) 
and galaxy clusters (where MOND doesn’t work).

=� =�Superfluid NO Superfluid
=� MOND =� NO MOND

Galaxies 
Galaxy clusters

Temperature set by how rapidly DM particles move

Tcluster ⇠ 10 mKT
galaxy

⇠ 0.1 mK

T ⇠ mv2



Effective Description of Superfluids

A superfluid phase is defined as:

 Global U(1) symmetry, spontaneously broken

✓ ! ✓ + cGoldstone boson=� ✓

Greiter, Wilczek & Witten (1989)
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Effective Description of Superfluids

A superfluid phase is defined as:

 Global U(1) symmetry, spontaneously broken

✓ ! ✓ + cGoldstone boson=�

 State has finite charge density, 

By redefining field, can set

hJ0i ⇠ h✓̇i 6= 0

✓ = µt+ �

chemical potential phonons

✓

Greiter, Wilczek & Witten (1989)

Hence, at lowest order in derivatives the EFT of phonons is

L = P (X) ; X = µ+ �̇� (~r�)2

2m



Superfluid phonons
At lowest order in derivatives, the zero temperature 
effective action is

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

L = P (X) ; X = µ+ �̇� (~r�)2

2m



Superfluid phonons
At lowest order in derivatives, the zero temperature 
effective action is

Greiter, Wilczek & Witten (1989); Son and Wingate (2005)

Conjecture: DM superfluid phonons are governed by MOND action

PMOND(X) =
2⇤(2m)3/2
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 Cold Atoms Analogue?

Son & Wingate (2005)

LUFG ⇠ m3/2X5/2
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Condensate properties
Action uniquely fixes properties of the condensate through 
standard thermodynamics

P
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=
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3
(2mµ)3/2 Pressure:

 Number density: n
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@µ
= ⇤(2m)3/2µ1/2

In the non-relativistic approx’n,                         , therefore:⇢
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= mn
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P
cond
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⇢3
cond

12⇤2m6

P
cond

⇠ ⇢2
cond

Sin (1994), Goodman (2000), Peebles (2000), Boehmer & Harko (2007)

 Polytropic equation of state, with index n = 1/2

 Different than BEC DM, where 



Density profile
Assuming hydrostatic equilibrium,
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Cored density profile
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Rotation curves w. L. Berezhiani & B. Famaey (to appear)
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Galaxy clusters
Hodson, Zhao, Khoury & Famaey, 1611.05876
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Observational Signatures



Vortices

When spun faster than critical velocity, 
superfluid develops vortices.

!cr ⇠
1

mR2
⇠ 10�41s�1

For a halo of density    ,⇢

! ⇠ �
p

GN⇢ ⇠ 10�18� s�1 ; 0.01 < � < 0.1

=� Vortex formation is unavoidable

Line density: �v ⇠ m! ⇠ 102� AU�2

Observational consequences?

cf. Silverman & Mallett (2002); 
Rindler-Daller & Shapiro (2012)



Vortices

When spun faster than critical velocity, 
superfluid develops vortices.

!cr ⇠
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mR2
⇠ 10�41s�1
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=� Vortex formation is unavoidable

Line density: �v ⇠ m! ⇠ 102� AU�2

Observational consequences?

cf. Silverman & Mallett (2002); 
Rindler-Daller & Shapiro (2012)

Sreenivasan’s group at U. Maryland



Galaxy mergers Elder, JK, Mota & Winther, in progress

Superfluid cores should pass through 
each other with negligible dissipation if

vinfall ⇠< cs

(Landau’s criterion)



Galaxy mergers
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Longer merger time scale 
+ multiple encounters

Merged halo thermalize and 
settle back to condensate
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rp bin in the projected correlation function wp (rp) we convert the
excess flux count for that separation to an excess of galaxy
counts in the sample. The square of this quantity will be the
excess in galaxy pairs allocated to that separation bin. We then
correct our projected correlation function by this factor for each
given separation (Fig. 1; Table 1). The result for the second case
with galaxies of different magnitudes is close enough to the first
case that we use only the first case to correct our sample.

3.4. Real-Space Correlation Function

The projected correlation functionwp(rp) can be ‘‘deprojected’’
to get !(r) by

!(r) ¼ " 1

"

Z 1

r

drp
dwp(rp)

drp
(r 2p " r 2)"1=2 ð7Þ

(e.g., Davis & Peebles 1983). We calculate this integral ana-
lytically by linear interpolation between the binned wp(rp)
values, following Saunders et al. (1992). This method under-
estimates !(r) due to the linear interpolation. We improved this
by first linearly interpolating logwp( log rp) at many interme-
diate points between each pair of bins and then running the
Saunders et al. (1992) algorithm. This improves the result be-
cause wp(rp) is indeed very close to a power law. At the end, this
estimate is only accurate to a few percent, due to limitations of
the interpolation.

Figure 4 shows the real-space correlation function, obtained in
this fashion, combined with the real-space correlation function
!(r) on intermediate scales fromZehavi et al. (2005a) and redshift-
space correlation function !(s) on large scales from Eisenstein
et al. (2005) for the LRG sample. Also shown are the power law
!(r) ¼ ½r /(10 h"1 Mpc)&"2:0 and the ‘‘one-halo term’’ of the cor-
relation function (which only counts pairs of galaxies within the
same dark matter halo) calculated for the HOD parameters given
by Zehavi et al. (2005b) for theMr <"22 SDSSMAIN sample,
which is close to the LRG sample.

Figure 5 shows the real-space correlation function divided by
a r"2 power law to accentuate the deviations from a power law.
The dip at 1 Mpc is described and quantified by the halo model
as the transition from the two-halo to the one-halo term (Zehavi

et al. 2004). The upturn at 0.03 Mpc could be real, but is not
highly significant. Finally, the drop of the innermost point at
0.01 Mpc is most probably due to deblending issues.

3.5. Merger Rate

If we interpret the LRG correlation function !(r), measured at
small scales as a quasi–steady state inflow leading to the mergers
of pairs of LRGs, we can straightforwardly turn the measured
!(r) into a merger rate. We assume that there is a length scale rf
inside of which dynamical friction is so effective that pairs at this
separation merge in a dynamical time tdyn, where the dynamical
time is

tdyn '
2"rf
vcirc

ð8Þ

Fig. 3.—Recovered Petrosian flux to input Sérsic flux as a function of the
separation of the two galaxies in the pair. The blue dots show the 3 # outlier–
rejected average of the recovered flux for different separations. It can be seen
that the pipeline completely fails for galaxies closer than 300 and that on
average there is an excess in the recovered flux of galaxies separated by less
than 2000.

Fig. 4.—Real-space correlation function !(r) for the LRG sample ("23:2 <
Mg < "21:2 and 0:16 < z < 0:36) calculated as described in the text on small
scales, combined with real-space correlation function on intermediate scales
from Zehavi et al. (2005a) and redshift-space correlation function !(s) on large
scales from Eisenstein et al. (2005; data points from Zehavi results are shifted by
5% in the radial direction for illustration purposes). The gray diamonds show the
result without photometric correction as in Fig. 1. The blue line shows the one-
halo term of the correlation function calculated for the HOD parameters given
by Zehavi et al. (2005b).

Fig. 5.—Same as Fig. 4, but !(r) divided by a r"2 power law to accentuate
the deviations from a power law. Note that the difference between Zehavi et al.
(2005a) and Eisenstein et al. (2005) is solely due to the difference between
redshift space and real-space correlation functions.

MASJEDI ET AL.58 Vol. 644

Reduced dynamical fraction?

“This is surprising, as one might expect 
the direct interactions between galaxies 
(e.g., dynamical friction, galaxy merger, 
tidal impulses, etc.) to create features in 
the correlation function.”

Masjedi et al. (2006)



Reduced dynamical fraction?

 Bulgeless galaxies

 Galactic bars
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Globular 
clusters

Tidal 
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Ibata et al. (2011) Lelli et 
al. (2015)



No DM          No MOND=�

Globular 
clusters

Tidal 
dwarfs

Ultra-diffuse 
galaxies

van Dokkum et al. (2015); 

Koda et al. (2015)

No superfluid          No external field effect=�

Ibata et al. (2011) Lelli et 
al. (2015)
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Take-home messages

 Cold, collisionless DM works exquisitely well on 
largest scales, but something is going on with galaxies

4

Fig. 2.— Top panels: BTFR adopting ⌥⇤ = 0.5 M�/L�. Galaxies are color-coded by fg = Mg/Mb. Solid lines show error-weighted
fits. Dotted lines show fits weighted by f2

g , increasing the importance of gas-dominated galaxies. The dashed line shows the ⇤CDM initial
condition with fV = 1 and fb = 0.17 (the cosmic value). Bottom panels: residuals from the error-weighted fits versus the galaxy e↵ective
radius. The outlier is UGC 7125, which has an unusually high correction for Virgocentric infall and lies near the region where the infall
solution is triple-valued. If we consider only the correction for Local Group motion, UGC 7125 lies on the BTFR within the scatter.

3.1. Observed and Intrinsic Scatter

Figure 1 (top-left) shows that �obs decreases with ⌥⇤
and reaches a plateau at ⌥⇤ & 0.5M�/L�. This plateau
actually is a broad minimum that becomes evident by
extending the ⌥⇤-range up to unphysical values of ⇠10
M�/L� (not shown). The observed scatter is systemat-
ically lower for the accurate-distance sample, indicating
that a large portion of �obs in the full sample is driven
by distance uncertainties.
Figure1 (top-right) shows that �int is below 0.15 dex

for any realistic value of ⌥⇤. The similar intrinsic scat-
ter between the two samples suggests that our errors on
Hubble-flow distances are realistic. For a fiducial value of
⌥⇤ = 0.5 M�/L�, we find �int = 0.10± 0.02 for the full
sample and �int = 0.11 ± 0.03 for the accurate-distance
sample. As we discuss in Sect. 4, this represents a chal-
lenge for the ⇤CDM cosmological model.

3.2. Slope, Normalization, and Residuals

Figure1 (bottom panels) shows that the BTFR slope
(normalization) monotonically increases (decreases) with
⌥⇤. This is due to the systematic variation of the gas

fraction (fg = Mg/Mb) with Vf . Figure 2 (top pa-
nels) shows the BTFR for ⌥⇤ = 0.5 M�/L�, colour-
coding each galaxy by fg. Low-mass galaxies tend to
be gas-dominated (fg & 0.5) and their location on the
BTFR does not strongly depend on the assumed ⌥⇤
(Stark et al. 2009; McGaugh 2012). Conversely, high-
mass galaxies are star-dominated and their location on
the BTFR strongly depends on ⌥⇤. By decreasing ⌥⇤,
Mb decreases more significantly for high-mass galaxies
than for low-mass ones, hence the slope decreases and
the normalization increases.
For any ⌥⇤, we find no correlation between BTFR

residuals and galaxy e↵ective radius: the Pearson’s,
Spearman’s, and Kendall’s coe�cients are consistently
between ±0.4. Figure 2 (bottom panels) shows the case
of ⌥⇤ = 0.5 M�/L�. Similarly, we find no trend with
e↵ective surface brightness. We have also fitted exponen-
tials to the outer parts of the luminosity profiles and find
no trend between residuals and central surface bright-
ness or scale length. These results di↵er from those of
Zaritsky et al. (2014) due to the use of Vf instead of H I
line-widths (see also Verheijen 2001). The lack of any
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nels) shows the BTFR for ⌥⇤ = 0.5 M�/L�, colour-
coding each galaxy by fg. Low-mass galaxies tend to
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BTFR does not strongly depend on the assumed ⌥⇤
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Galaxies are giving us strong hints about the fundamental 
nature of dark matter…



Galaxies are giving us strong hints about the fundamental 
nature of dark matter…

Nature is singing loud and clear!

Mother Nature Cosmologist



How does dark energy fit into the picture?






