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A Lattice Formulation for Chiral 
Gauge Theory?
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One of the great surprises of 20th century particle physics was the discovery of 
parity violation: LH and RH fermions do not carry the same gauge interactions:

PNAS 1928 14 (7) 544-549
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The SM is the only chiral gauge theory we have seen…
… but GUTs are χGTs, as are many other speculative models 
of BSM physics

Theoretically chiral gauge theories are in bad shape:

• There does not exist a nonperturbative regulator

• There isn’t an all-orders proof for a perturbative regulator

Nonperturbative definition ⇒ 

• unexpected phenomenology?

• answers to outstanding puzzles 
(e.g., CP problem)?
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Witten: “We often call the fermion path integral a ‘determinant’ or a  
 ‘Pfaffian’, but this is a term of art.” 

We mean a product of eigenvalues…  
…but there is no well-defined eigenvalue problem for a chiral theory

A chiral gauge theory consists of Weyl fermions in a complex 
representation of the gauge group.

?
Z� =

Z
[dA]e�SY M �[A]

A vector-like gauge theory like QCD consists of Dirac fermions,  
=  Weyl fermions in a real representation of the gauge group.

ZV =

Z
[dA]e�SY M

NfY

i=1

det( /D �mi)

The Problem:
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Vector-like gauge theory with Dirac fermions:

/D =

✓
0 Dµ�µ

Dµ�̄µ 0

◆✓
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Chiral gauge theory with Weyl fermions:

✓
0 Dµ�µ
0 0

◆✓
0
 L

◆
=

✓
�R

0
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So: �[A] = ei�[A]
q

| det /D|

Independent unitary basis changes in LH and RH spaces leads to 
a phase ambiguity for the determinant.
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�[A] = ei�[A]
q

| det /D|The fermion integral for a χGT:

Alvarez-Gaume et al. proposal for perturbative definition (1984,1986):

�[A] ⌘ det

✓
0 Dµ�µ

@µ�̄µ 0

◆
gauged LH Weyl fermion

neutral RH Weyl fermion

Well-defined eigenvalue problem with complex (gauge variant)  eigenvalues 

Extra RH fermions decouple 

But only perturbative…amenable to lattice regularization?
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The basic problem with regulating chiral gauge theories:

Need to render phase space for particles finite

This typically requires a mass scale

Fermion masses violate chiral symmetry…which has been gauged 

At the perturbative level, even dimensional regularization is 
problematic: chirality only exists in even spacetime dimensions 

One could break gauge symmetry explicitly…but how to restore it? 

One could introduce mirror fermions to allow mass terms…but how to 
decouple them?
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The anomaly  is key to representing chiral symmetry on the lattice 
(global or gauged)

One way of looking at anomalies:

p

ω

E ⇒➠
➠

LH RH

massless Dirac fermions in an electric field E, 1+1 dim

dnR = +
dp

2⇡
dnL = � dp

2⇡

dp = qEdt

dn5

dt
=

qE

⇡

infinite source & sink for 
fermions

quantum violation of a classical U(1)A symmetry

d=1+1 anomaly

@µj
µ
5 =

qE

⇡
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In the continuum, the Dirac sea is filled…but is a Hilbert Hotel 
which always has room for more
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Not so on the lattice:  
Can reproduce continuum physics for long wavelength modes…

E ⇒

ω

p
➠

➠

LH RH

anomalous symmetry in the continuum  

must be  

explicitly broken symmetry on the lattice

@µj
µ
5 = 0

➠➠

…but no anomalies in 
a system with a finite 
number of degrees of 
freedom
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The Nielsen-Ninomiya Theorem:

3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z
⇡/a

⇡/a

d2kp

(2⇡)4
 �p

D̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of p
µ

;

2. D(p) / �
µ

p
µ

for a|p
µ

| ⌧ 1;

3. D̃(p) invertible everywhere except p
µ

= 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �

µ

p
µ

within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �

µ

is proportional to @D̃(p)/@p
µ

, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

The Euclidian fermion action:

cannot have a kinetic operator D satisfying all four of the following 
properties simultaneously:

3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z
⇡/a

⇡/a

d2kp

(2⇡)4
 �p

D̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of p
µ

;

2. D(p) / �
µ

p
µ

for a|p
µ

| ⌧ 1;

3. D̃(p) invertible everywhere except p
µ

= 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �

µ

p
µ

within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �

µ

is proportional to @D̃(p)/@p
µ

, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
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⇐ regulated, local

⇐ Dirac 
@ long wavelength

⇐ No doubling of flavors

⇐ respects a
 chiral 

sym
metry

-

Advances in the 1990s showed us how to break global chiral symmetry in just the 
right way for QCD…but will be problematic when chiral symmetry is gauged!
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How Wilson fermions reproduce the U(1)A anomaly in QCD:

  

• Wilson fermions eliminate doublers by giving them a big mass 

• Price paid: mass & Wilson terms explicitly break the (global) chiral 
flavor symmetries  

• fine tune m~ 1/a to continuum limit…find some of the chiral symmetry 
breaking does not decouple & correct anomalous Ward identities are 
found 

• Lost: the benefits of chiral symmetry - multiplicative mass 
renormalization, non-mixing of operators…

L =  ̄
�
/D +m+ aD2

�
 

Karsten, Smit 1980
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Domain Wall Fermions

Consider fermions in Euclidian 5d with a 4d gauge field:

Compact extra dimension: �L < s < L ,  (�L) =  (L)

mass = ⇤✏(s)

S5 =

Z
d

4
x

I
ds  ̄

⇥
/

D4 + �5@s � ⇤✏(s)
⇤
 

Q ⌘ �@s � ⇤✏(s)

Expand Ψ in terms of 4d fields:

Define:

Solve: Qfn(s) = µnbn(s) , Q†bn(s) = µnfn(s)

mass	flips	sign	at	s=0,±L

Expand:  (x, s) =
1X

n=0

[P� n(x)bn(s) + P+ n(x)fn(s)]

4d Dirac spinors
P± =

1

2
(1± �5)
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S5 =

Z
d

4
x

I
ds  ̄

⇥
/

D4 + �5@s � ⇤✏(s)
⇤
 

=
1X

n=0

Z
d

4
x  ̄n

⇥
/

D4 � µn

⇤
 n

Looks like a 4d theory with one massless fermion and an infinite tower of 
heavy states.

The massless fermion has a chiral symmetry
So what?  
In 5d, no chiral symmetry!
LH and RH parts of the massless fermion are physically separated in s!

µ0 = 0 , µ1,2,... � ⇤

 Special zero mode solutions (µ0=0):

f0 / e�
R s ds0 ⇤✏(s0) b0 / e+

R s ds0 ⇤✏(s0)

Localized at s=0 Localized at s=±L
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fermion mass
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Light fermion mass stable against 
radiative corrections. E.g. add:

Z
d

5
x

↵

4⇡
⇤ ̄ 

To O(α) the mass induced for the 
surface modes is:

In large L limit, surface modes remain massless, even with radiative corrections 

↵

4⇡
⇤

I
ds f0(s)b0(s) ' ↵

4⇡
L⇤2e�L⇤

����!
L!1

0wavefunction overlap
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extra dimension

or
di

na
ry

 d
im

en
si

on
s

LH 

+Λ-Λ

RH 

fermion mass

➠

➠

But how do anomalies work (eg, U(1)A)?

@µj
µ
5 / FF̃ , @µj

µ = 0

For effective 4d theory, must have:

…but no U(1) anomalies in 5d theory!

Callan-Harvey (1984):
•  integrating out heavy modes 

induces Chern-Simons term in bulk
• allows fermion current between 

defects

Chern-Simons current
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Callan Harvey argument:

Integrating out heavy fermion modes induces CS term.   
(For now: 5d background gauge fields)

m(s)

|m(s)|✏abdceAa@bAc@dAe

Differentiate w.r.t. A5 to get J5

J5 / m(s)

|m(s)|FF̃ =) @5J5 / [�(s)� �(s� L)]FF̃

Bulk current explains anomalous disappearance of charge on 
one defect and reappearance on the other
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Can implement on the lattice without doublers: DBK 1992

Wilson term
S5 =  ̄


@s�5 + /D4 � ⇤✏(s) +

1

⇤
(@s�5 + /D4)

2

�
 

Λ = (lattice spacing)-1

Nielsen- Ninomiya?   
  chiral symmetry is explicitly broken⇒

Only relevant effect of explicit chiral symmetry breaking?
  the U(1)A anomaly⇒

In general lattice theory can have various numbers of surface modes

The number of surface modes is determined by 
the topology of the bulk fermion dispersion 
relation in momentum space
Golterman, Jansen, DBK 1992
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So far: only discussed global chiral symmetries

extra dimension

or
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 d
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s

LH 

+Λ-Λ

RH 

fermion mass

➠

➠ Simplest: U(1) gauge theory with massless 
Dirac fermion at each defect

Or:  5*+10 for SU(5) gauge theory

Then each defect looks like a healthy (chiral) 
gauge theory by itself

Can we localize gauge fields on one defect?

Suppose we arrange charges and chiralities 
of zeromodes so that the bulk CS current 
vanishes for the gauge current 

Still have CS current for global symmetry charges
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Aside: translator for communication between particle & condensed matter 
physicists:

Material with topologically determined 
surface modes, but mass gap in the bulk  
= “topological insulator”

Quantized Chern-Simons current in the bulk 
= “integer quantum Hall current”

Dirac fermion surface modes with only bulk U(1)A 
current 
= “Quantum spin Hall effect” 
(Kane-Mele model, 2005)
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Two main routes toward trying to put chiral gauge theories on the lattice:

Start with Dirac fermions = LH chiral fermions + RH mirror fermions and:

Break the gauge symmetry explicitly 
to give the mirror fermions mass

Make mirror fermions decouple 
in a gauge invariant way

Either way must fail if the LH chiral fermions are in an anomalous rep of gauge 
symmetry, since then the continuum theory does not exist.
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Two main routes toward trying to put chiral gauge theories on the lattice:

Start with Dirac fermions = LH chiral fermions + RH mirror fermions and:

Make mirror fermions decouple 
in a gauge invariant way

This talk: 

• Use domain wall fermions to 
separate LH and RH modes in 5th 
dimension

• include 4d gauge fields that depend 
on extra dimension so that RH 
mirror modes don’t couple
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D� =

✓
0 Dµ�µ

@µ�̄µ 0

◆
Motivation: 

RH 
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LH 

localized 
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1st attempt: localizing gauge fields
near one domain wall

Requires “Higgs” field at boundary
to maintain gauge invariance

Higgs

Alvarez-Gaume et al. (1984,1986)
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+Λ-Λ

LH 
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➠

➠
Never works.
One finds a Dirac fermion & vector-like 
gauge theory.

Golterman, Jansen, Vink 1993

Higgs
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New proposal:  “localize” gauge fields using gradient flow

Ricci flow:

Gradient flow smooths out fields by evolving them classically in 
an extra dimension via a heat equation

➟t

Dorota Grabowska, D.B.K.   
• Phys.Rev.Lett. 116 211602 (2016) [arXiv:1511.03649] 
• Phys.Rev. D94 (2016) no.11, 114504 [arXiv:1610.02151]

4d
 w

or
ld

➟
t

lives on 4d boundary of 5d world

lives in 5d bulk

Aµ(x)

@Āµ(x, t)

@t

= �D⌫ F̄µ⌫

Āµ(x, 0) = Aµ(x)

Āµ(x, t)

covariant flow eq.

boundary condition
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Gradient flow (continuum version):

Aµ ⌘ @µ! + ✏µ⌫@⌫� @t!̄ = 0 , @t�̄ = ⇤�̄⇒

4d
 w

or
ld

➟
t

lives on 4d boundary of 5d world

lives in 5d bulk

Aµ(x)

@Āµ(x, t)

@t

= �D⌫ F̄µ⌫

Āµ(x, 0) = Aµ(x)

Āµ(x, t)

covariant flow eq.

boundary condition

This will allow λ(p) to be localized near t=0 while maintaining gauge invariance

Evolution in t damps out high momentum 
modes in physical degree of freedom only �̄(p, t) = �(p)e�p2t
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gradient flow
gauge fields t

Combining gradient flow gauge fields with domain wall fermions:

• quantum gauge field Aμ(x) lives at 
defect at s=0 where LH fermions live

• gauge field Aμ(x,s) defined as solution 
to gradient flow equation with BC: 
Aμ(x,0)= Aμ(x)

• flow equation is symmetric on both 
sides of defect

• RH mirror fermions behave as if with 
very soft form factor… “Fluff”…and 
decouple from gauge bosons

• gauge invariance maintained

RH 

LH 

➠

➠
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• Mirror top quark 
(fluff) 

• mass = 170 GeV 
• couples only to 
radio waves?

• lattice gauge theorist
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Decoupling mirror fermions as soft fluff in a gauge 
invariant way: 

• Can show that this could only lead to a local 4d quantum field 
theory if the fermion representation has no gauge anomalies  

• …but exp(-p2t) form factors are a problem in Minkowski 
spacetime! 

• gradient flow doesn’t damp out instantons, which can induce 
interactions with fluff

🙂

☹

🤔

Suggests taking L ➝ ∞ limit first, before lattice spacing —> 0 
…gradient flow like a projection operator A ➝ A★ 

➟t
@Āµ(x, t)

@t

= �D⌫ F̄µ⌫
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Is L ➝ ∞ limit even practical?  Yes, using “the overlap operator”

We now have one weird theory in L —> ∞ limit !

Ordinary chiral gauge theory + mirror fermions

• mirror fermions have infinitely soft form 
factors (very nonlocal interactions) so they 
decouple from gauge bosons 

• …but still couple to gauge field topology 

• …but not in an extensive way (configuration 
with 201 instantons + 200 anti-instantons 
flows to 1 instanton)
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L —> ∞

Remarkable 4D effective theory exists for  surface modes for 
ordinary ordinary domain wall fermions (vector-like gauge theories) 
in L —> ∞  limit: 

S4 =

Z
d

4
x  ̄DV  

DV = 1 + �5✏ ✏ ⌘ ✏(Hw) =
Hwp
H2

w

4

fermions far from the domain walls and without includ-
ing the e↵ects of the regulator; in Ref. [18] it was shown
that regulation of the theory was required to uncover the
topological mature of the zeromodes, yet the analysis was
still an inherently five-dimensional description only ac-
curate far from the domain walls and for smooth gauge
fields. A truly four-dimensional lattice description was
derived in a series of brilliant papers by Narayanan and
Neuberger (NN) who realized that the domain wall par-
tition function in the L ! 1 limit could be described
in terms of the overlap of vacua of two di↵erent four-
dimensional Hamiltonians, and from that they were able
to derive a four-dimensional kinetic operator which satis-
fies the GW equation. Their clever construction which re-
moves the bulk modes is not a conventional e↵ective field
theory description where they have integrated out short
wavelength states: in fact, their overlap operator has a
lattice cuto↵ at the same scale as the cuto↵ in the orig-
inal five-dimensional theory. Rather, they transformed
the calculation by considering the fifth dimension to be
time, so that the L ! 1 limit reduces the problem to
consideration of the overlap of appropriate ground states
living on four-dimensional surfaces far from the domain
walls. With an expression for the fermion determinant in
hand, they were able to reconstruct the fermion kinetic
operator, known as the overlap operator, and show that
it solved the GW equation. In fact, their operator is the
only known explicit solution to the GW equation. Sub-
sequent to their result, Lüscher showed that by virtue of
being a solution of the GW equation the overlap operator
correctly reproduces the index theorem relating fermion
zeromodes to gauge topology, accounting for the physics
of the Chern-Simons operator in the 5-dimensional for-
mulation; he also showed that the overlap operator would
possess an exact U(1) symmetry even at finite lattice
spacing, ensuring that fermion masses could only be mul-
tiplicatively renormalized and thereby provided the last
piece of the puzzle.

We first briefly review the NN construction for vector-
like theories, and then show how it can be generalized
to find an e↵ective description for the 5-dimensional the-
ory in Ref. [14], leading us to a chiral overlap operator
D

�

where left- and right-handed fermions interact with
di↵erent gauge fields. We will show that the resulting
chiral overlap operator D

�

has three important features.
First of all, it has a generally complex determinant, and
yet there is no phase ambiguity in defining it. Second of
all, it obeys the Ginsparg-Wilson equation, and therefore
correctly reproduces the U(1) anomaly. Thirdly, it has
the continuum limit one would expect for a right-handed
Weyl fermion in a gauge field A and a left-handed Weyl
fermion in a gauge field A

?

, namely

lim
a!0

D
�

=

✓
0 �

µ

D
µ

(A)
�̄
µ

D
µ

(A
?

) 0

◆
. (9)

Note that if A
?

vanished, this would reproduce the chiral
operator in Eq. (1).

Our starting point is the Shamir form of the 5-

dimensional lattice theory on a slab to better make con-
nection with much of the literature on overlap fermions,
in particular Refs. [23–25]. The domain wall theory for
vector-like gauge theories is pictured in Fig. 2, corre-
sponding to the lattice action2

S =
X

x,s

 ̄ [�P�r5 + P+r⇤
5 + �5H] (10)

where

�5H =
⇥
1
2�µ(rµ

+r⇤
µ

)� 1
2rµ

r⇤
µ

�m
⇤

(11)

with µ = 1, . . . , 4,

P± =
1± �5

2
, (12)

and r
↵

being the covariant forward derivative,

r
↵

 n = (U
↵

(n) 
n+↵̂

�  
n

) , (13)

where U
↵

are the s-independent gauge links in the â di-
rection with U5 = 1; r⇤ is the corresponding backward
derivative. The fermions satisfy the boundary conditions

P+ (x, 0) = P� (x, L+ 1) = 0 . (14)

Assuming 0 < m < 1 the spectrum of the theory includes
zeromodes bound to the surfaces at s = 0, L which be-
come massless exponentially fast in the large L limit,
with the negative chirality mode at s = 0 and the posi-
tive chirality mode at s = L. In addition to the fermions
we add Pauli-Villars fields with identical action but anti-
periodic boundary conditions at s = 0, L [23]. Regarding
the discrete s coordinate as a flavor index, the L ! 1
limit corresponds to N

f

! 1, and the role of the Pauli-
Villars fields, first introduced in Ref. [26], is to cancel
contributions from the bulk fermions that would lead to
divergences in this limit.
The e↵ective kinetic operator for the surface modes

was computed in [25] using techniques developed in [24,
27] for computing the fermion determinant, and it was
found that

D
V

= lim
L!1

D
f

D
PV

, (15)

where D
f

, D
PV

are the fermion and Pauli-Villars con-
tributions respectively, computed to be (up to common
factors)

D
f

=
1 + �5 tanh

L

2 H̃

1� �5 tanh
L

2 H̃
, D

PV

= D
f

+ 1 . (16)

Combining the above two equations leads to the result

D
V

= lim
L!1

✓
1 + �5 tanh

L

2
H̃

◆
=

⇣
1 + �5✏(H̃)

⌘
(17)

2 We use the conventions of [24, 25] rather than [20], with a =
a5 = 1. The coordinate s takes values s = 1, . . . , L, where L is
an even integer.

w

�
D�1, �5

 
= a�5V

lim
a!0

DV =
1

am

✓
0 Dµ�µ

Dµ�̄µ 0

◆properties: just right for U(1)A anomaly!

desired continuum limit!

Neuberger, Narayanan 1993-1998

RH ➠➠

LH 



D. B. Kaplan ~ New Directions / Higgs Centre ~ 1/13/17

Follow same procedure for system with gauge field that changes in  
the extra dimension & take the L → ∞ limit:

�
D�1, �5

 
= a�5V

lim
a!0

DV =
1

am

✓
0 Dµ�µ

Dµ�̄µ 0

◆
properties: just right for anomaly!

right continuum limit!

Neuberger, Narayanan 1993-1998

D. B. Kaplan ~ IFT Xmas Workshop ~ 12/12/16
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where T is the transfer matrix,
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boundary, then make a quick transition to the fixed point
gauge field A

?

which remains roughly constant over a re-
gion of size O(L) near the s = L surface. This picture
allows us to simply construct the corresponding chiral
overlap operator D

�

by replacing

TL ! TL/2
?

TL/2 (19)

in the above expressions before taking the L ! 1 limit,
where T and T

?

are the transfer matrices corresponding
to Hamiltonians with gauge fields A and A

?

respectively.
The L ! 1 limit is found via the substitutions

lim
L!1

1� TL
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. (20)

where we use the notation

✏ = ✏(H[A]) , ✏
?

= ✏(H[A
?

]) , (21)

and H is the Hamiltonian in Eq. (10). This procedure
leads to the main result of this paper,
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IV. PROPERTIES OF THE CHIRAL OVERLAP
OPERATOR D�

We now demonstrate key properties of the chiral over-
lap operator D

�

.

A. The continuum limit of D�

The first thing to show is that D
�

has the expected
continuum limit Eq. (8), up to possibly an overall nor-
malization. The operator ✏(H) has the continuum ex-
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For the vector theory this expansion leads to the con-
tinuum limit
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where we can take am = O(1). Performing the same
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wherem = O(1/a). This result is proportional to Eq. (8),
and confirms that in the continuum limit, the negative
chirality zeromode sees a field A while its positive chiral-
ity partner sees the flowed field A

?

.

B. D� satisfies the Ginsparg-Wilson equation

An operator that can be written in the form

D = 1 + �5 (1� X ) (26)

satisfies the Ginsparg-Wilson equation if (1 � X )2 = 1,
or equivalently

X 2 = 2X (27)

For the chiral overlap operator defined in Eq. (22),
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+ 1
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boundary, then make a quick transition to the fixed point
gauge field A
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which remains roughly constant over a re-
gion of size O(L) near the s = L surface. This picture
allows us to simply construct the corresponding chiral
overlap operator D
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by replacing

TL ! TL/2
?

TL/2 (19)

in the above expressions before taking the L ! 1 limit,
where T and T
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are the transfer matrices corresponding
to Hamiltonians with gauge fields A and A

?

respectively.
The L ! 1 limit is found via the substitutions
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where we use the notation

✏ = ✏(H[A]) , ✏
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and H is the Hamiltonian in Eq. (10). This procedure
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lap operator D
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For the vector theory this expansion leads to the con-
tinuum limit

D
V
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wherem = O(1/a). This result is proportional to Eq. (8),
and confirms that in the continuum limit, the negative
chirality zeromode sees a field A while its positive chiral-
ity partner sees the flowed field A
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.

B. D� satisfies the Ginsparg-Wilson equation

An operator that can be written in the form

D = 1 + �5 (1� X ) (26)

satisfies the Ginsparg-Wilson equation if (1 � X )2 = 1,
or equivalently

X 2 = 2X (27)

For the chiral overlap operator defined in Eq. (22),
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• Obeys Ginsparg-Wilson eq.  - U(1)A  

• Has continuum limit:
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boundary, then make a quick transition to the fixed point
gauge field A
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which remains roughly constant over a re-
gion of size O(L) near the s = L surface. This picture
allows us to simply construct the corresponding chiral
overlap operator D
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by replacing

TL ! TL/2
?

TL/2 (19)

in the above expressions before taking the L ! 1 limit,
where T and T

?

are the transfer matrices corresponding
to Hamiltonians with gauge fields A and A

?

respectively.
The L ! 1 limit is found via the substitutions
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where we use the notation

✏ = ✏(H[A]) , ✏
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and H is the Hamiltonian in Eq. (10). This procedure
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wherem = O(1/a). This result is proportional to Eq. (8),
and confirms that in the continuum limit, the negative
chirality zeromode sees a field A while its positive chiral-
ity partner sees the flowed field A
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.

B. D� satisfies the Ginsparg-Wilson equation

An operator that can be written in the form

D = 1 + �5 (1� X ) (26)

satisfies the Ginsparg-Wilson equation if (1 � X )2 = 1,
or equivalently

X 2 = 2X (27)

For the chiral overlap operator defined in Eq. (22),
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• Looks like a LH Weyl fermion interacting with gauge field A, 

• RH Weyl fermion interacting with gauge field A★ 

Chiral overlap 

operator

(This approximation of a sudden jump from A to A★  is an 
oversimplification of gradient flow, but tractable analytically)



D. B. Kaplan ~ New Directions / Higgs Centre ~ 1/13/17

Could fluff be real in the SM?   
• Mirror fermions we cannot transfer momentum to  
• Possible similarly nonstandard gravitational interactions 
• Fluff does see global gauge field topology…solution to strong CP 

problem? 

• What could go wrong throwing away locality?

Not clear this approach will work for regulating chiral gauge theories on 
the lattice…but if it does, should we take fluff seriously?


