Random tensor networks and holographic duality

Xiao-Liang Qi

Stanford University
Edinburgh, 1/13/2017

Outline

- Quantum entanglement and tensor networks
- Holographic duality
- Random tensor networks (RTN)
- Properties of a fixed graph
- RTN on all graphs as geometry coherent states

Reference

- Patrick Hayden, Sepehr Nezami, Xiao-Liang Qi, Nathaniel Thomas, Michael Walter, Zhao Yang, arxiv: 1601.01694, JHEP 11 (2016) 009
- XLQ, Zhao Yang, Yi-Zhuang You, in preparation

Quantum entanglement

- "spooky action at a distance" (Einstein). Consequence of quantum linear superposition principle.
- Simplest bipartite entanglement
- $\left|\Psi_{A B}\right\rangle=\sum_{n} \sqrt{p_{n}}\left|n_{A}\right\rangle\left|n_{B}\right\rangle$
- Entanglement entropy $S_{E}=-\sum_{n} p_{n} \log p_{n}$
- Example: EPR pair $p_{n}=\frac{1}{N}, S_{E}=\log N$
$|E P R\rangle=$

Tensor networks

- Building many-body entangled states from few-qubit building blocks.
- Tensor contraction just like in Feynman diagrams

$$
T_{1 \mu \nu \tau}|\mu \nu \tau\rangle=\left|V_{1}\right\rangle \quad T_{2 \alpha \beta \gamma}|\alpha \beta \gamma\rangle=\left|V_{2}\right\rangle \quad|L\rangle=g^{\mu \beta}|\mu \beta\rangle
$$

$$
|\Psi\rangle=T_{1}^{\mu \nu \tau} T_{2}^{\alpha \gamma}|\mu \nu \alpha \gamma\rangle
$$

Tensor networks: Physical interpretation

- Projected Entangled Pair States (PEPS)
F. Verstraete, J.I. Cirac, 04'
- 1. Prepare and distribute EPR pairs. Alice, Bob and Charlie are all entangled with David, but not with each other.

Alice
$|A D\rangle|B D\rangle|C D\rangle$

- 2. David measures the qubits he has.
- $\rho_{D} \rightarrow\left|V_{a}\right\rangle\left\langle V_{a}\right|$ with probability $p_{a}=\left\langle V_{a}\right| \rho_{D}\left|V_{a}\right\rangle$

- For a given output a, David now has a pure state, but Alice, Bob and Charlie are entangled. (Entanglement of assistance, D.P. Divincenzo et al. '99)
- $\left|\Psi_{A B C}\right\rangle=\left\langle V_{a} \mid A D\right\rangle|B D\rangle|C D\rangle$

Tensor networks: Physical interpretation

- More generally, measurements occur on multiple parties, creating a complicated entangled state of the remaining parties that are not measured.

Why are tensor networks interesting states?

- Entanglement structure encoded in geometry (and the vertex tensors $\left|V_{x}\right\rangle$)
- For example, for any region $A, S_{A} \leq$

$$
\begin{aligned}
& |\Psi\rangle=\sum_{a=1}^{D}\left|\Psi_{a}^{A}\right\rangle\left|\Psi_{a}^{B}\right\rangle \\
& \Rightarrow \operatorname{rank}\left(\rho_{A}\right) \leq D, S_{A} \leq \log D
\end{aligned}
$$ $\log D_{\text {min }}(A)$

- or $S_{A} \leq\left|\gamma_{A}\right| \log D$.
$\left|\gamma_{A}\right|$ is the minimal
surface area bounding A region.

Tensor networks in condensed matter

- Density matrix renormalization group (DMRG) (s. White '92) (1D non-critical states)
- Multi-scale entanglement renormalization ansatz (MERA) (G Vidal’ 07) (critical states)
- 2D PEPS (Cirac, Verstraete, Wen, Levin, Gu et al) (2D, gapped or critical)

Holographic duality

Area measures entanglement

Minimal surface area

$$
\frac{1}{4 G_{N}}\left|\gamma_{A}\right|
$$

Entanglement entropy S_{A}

Tensor networks and holography

boundary

- TNW in holography: geometry emerges from the entanglement structure of quantum states (Swingle '09)
- Various tensor network related proposals (Nozaki et al '12, XLQ '13, Hartman\&Maldacena '13, Maldacena \& Susskind '13, Czech et al '1415, Pastawski et al '15, Yang et al '15)
- Goal: an explicit holographic mapping between bulk and boundary

Tensor network holographic mapping

- Tensor networks with bulk and boundary indices provide a possible definition of holographic mapping.
- The task is to find suitable tensor networks

bulk

$M^{+}|\psi\rangle$
$M^{+} O M$

Random tensor networks

- Entanglement quantities are hard to compute for a given tensor networks.
- Random average greatly simplifies entanglement calculations.
- A random tensor $V_{\mu \nu \tau}$ corresponds to a (Haar) random state in the Hilbert space $|V\rangle=V_{\mu \nu \tau}|\mu\rangle|v\rangle|\tau\rangle$.
- Random tensor network state

- The link state can be EPR pairs $|\mathrm{P}\rangle=\prod_{x y}\left|L_{x y}\right\rangle$ but can also be more general

Entanglement properties of random tensor networks

- $\rho=|\Psi\rangle\langle\Psi|=\operatorname{tr}\left(\Pi_{x}\left|V_{x}\right\rangle\left\langle V_{x}\right| \rho_{P}\right)$ is a linear function of $\left|V_{x}\right\rangle\left\langle V_{x}\right|$.
- Renyi entropies $S_{A}=\frac{1}{1-n} \log \frac{\operatorname{tr}\left(\rho_{A}^{n}\right)}{\operatorname{tr}(\rho)^{n}}$
- For any quantity that is polynomial in
ρ, such as $\operatorname{tr}\left(\rho_{A}^{n}\right)$, the random average can be easily obtained.
- For example, second Renyi
$\operatorname{tr}\left(\rho_{A}^{2}\right)=\operatorname{tr}\left(\rho \otimes \rho X_{A}\right)$
$=\operatorname{tr}\left(\rho_{P} \otimes \rho_{P}\left[X_{A} \otimes \prod_{x}\left|V_{x}\right\rangle\left\langle V_{x}\right| \otimes\left|V_{x}\right\rangle\left\langle V_{x}\right|\right]\right)$
- Random average $\overline{\left|V_{x}\right\rangle\left\langle V_{x}\right| \otimes\left|V_{x}\right\rangle\left\langle V_{x}\right|}=\frac{1}{D_{x}^{2}+D_{x}}\left(I_{x}+X_{x}\right)$
- Random average \Leftrightarrow sum over an Ising variable at each x

Summary of the key results

- For a random tensor network
- $\overline{\operatorname{tr}\left(\rho_{A}^{2}\right)}=Z_{A}=\sum_{\left\{\sigma_{x}= \pm 1\right\}} e^{-\mathcal{A}\left[\left\{\sigma_{x}\right\}\right]}$
- $\mathcal{A}\left[\left\{\sigma_{x}\right\}\right]=S\left(\left\{\sigma_{x}=-1\right\} ; \rho_{P}\right)$ "the second Renyi entropy of $\sigma_{x}=-1$ domain for state $\rho_{P}=|P\rangle\langle P| "$
- Boundary condition: spin \downarrow in A and \uparrow elsewhere

Random
average

- The second Renyi entropy $S_{A} \simeq-\log \frac{Z_{A}}{Z_{\phi}}$ is the "cost of free energy" of flipping spins in A from \uparrow to \downarrow.

RT formula

- If $|P\rangle=\prod_{x y}\left|L_{x y}\right\rangle$ consists of maximally entangled EPR pairs with rank D,
- $\mathcal{A}\left[\left\{\sigma_{x}\right\}\right]=-\frac{1}{2} \log D \sum_{x y} \sigma_{x} \sigma_{y}$
- Boundary cond $\sigma_{x}=\{-1, x \in A$
- Boundary cond. $\sigma_{x}=\{+1, x \in \bar{A}$
- The action is proportional to the domain wall area.
- $\overline{\operatorname{tr}\left(\rho_{A}^{2}\right)}=\sum_{\gamma \sim A} e^{-\log D|\gamma|}$
- $D \rightarrow \infty \Rightarrow$
low T limit of Ising model
- $\bar{S} \simeq-\log \overline{\operatorname{tr}\left(\rho_{A}^{2}\right)} \simeq \log D\left|\gamma_{A}\right|$ (RT formula)

Other properties of RTN

- The random average technique applies to more general networks
- Other properties of RTN:
- Higher Renyi entropies
- RT formula with quantum correction (agree with Faulkner, Lewkowycz \& Maldacena'13) $S_{A} \simeq \log D\left|\gamma_{A}\right|+S\left(\mathrm{E}_{A},\left|\Psi_{b}\right\rangle\left\langle\Psi_{b}\right|\right)$.
- RT formula for higher Renyi entropies
- Quantum error correction properties (Almheiri, Dong, Harlow '14)
ϕ_{x} can be reconstructed on boundary region A if $x \in E_{A}$.
- Scaling dimension of operators
- $\left\langle O_{A} O_{B}\right\rangle \propto\left\langle\phi_{x} \phi_{y}\right\rangle_{b u l k}$

Superposition of geometries

- RTN represent "ansatz states" with various holographic properties
- To describe quantum gravity, we need to allow superposition of geometries
- RTN with geometry fluctuation can be defined by considering link qudits
- $|a\rangle=L_{\alpha \beta}^{a}|\alpha\rangle|\beta\rangle$
- a controls the entanglement of this link

$$
\begin{array}{ccc}
\alpha & a & \beta \\
\bullet & \bullet & =L_{\alpha \beta}^{a} \\
\\
\end{array}
$$

Geometry coherent states

- S_{a} increases with $a=0,1,2, \ldots, D_{L}-1$
- $\langle a \mid b\rangle=\delta_{a b} \cdot|a=0\rangle=|0\rangle|0\rangle$ corresponds to a disconnected link
- Random tensors map each weighted graph $a_{x y}$ to a boundary state $|\Psi[\mathrm{a}]\rangle=\Pi_{x}\left\langle V_{x}\right| \Pi_{x y}\left|a_{x y}\right\rangle \Pi_{x \in B}|x X\rangle$.
- $|\Psi[a]\rangle$ are "geometry states" satisfying RT formula.
- Question: Do $|\Psi[a]\rangle$ form an (over-)complete basis?
Short answer: Yes. $|\Psi[a]\rangle$ are "geometry coherent states"

Boundary-to-bulk isometry

- With enough number of bulk vertices, $|\Psi[a]\rangle$ is an overcomplete basis satisfying

$$
\sum_{a}|\Psi[a]\rangle\langle\Psi[a]|=\mathbb{I}
$$

- Boundary-to-bulk isometry
- Random average \rightarrow Ising model on the complete graph
- $\mathcal{A}=-\frac{J}{4} \sum_{x y} s_{x} s_{y}$
$-\frac{h}{2} \sum_{x} s_{x}+\frac{1}{2} \log D \sum_{x} s_{x}$.
- Isometry condition

$$
\log D_{L} \frac{V(V-1)}{2}>V_{B} \log D, \quad J V_{b}>2 \log D-(V-1) \log D_{L}
$$

Classical geometries

- $|\Psi[a]\rangle$ are not orthogonal
- $C_{a b}=\langle\Psi[a] \mid \Psi[b]\rangle$
- $\overline{\left|C_{a b}\right|^{2}}$ can be studied by the random average technique
- $\overline{\left|C_{a b}\right|^{2}} \leq e^{-\frac{1}{2}\left(|\gamma|_{a}+|\gamma|_{b}\right)}$
- γ : minimal area surface enclosing the region $a \neq b$.
- Macroscopically different geometries are almost orthogonal

Small fluctuations

- If we take D_{L} to be large, we can define small fluctuation around a classical geometry.
- $\left|\Psi\left[a_{0}+\delta a\right]\right\rangle$
- $|\delta a| \leq \Lambda$
- In the limit $D_{L} \rightarrow \infty$, finite Λ, there is an isometry from bulk to boundary.
- Emergent local degrees of freedom
- The small fluctuations form a "code subspace" \mathbb{H}_{a}.

Comparison with boson coherent states

- Boson coherent state of a superfluid $|\phi(x)\rangle=$ $e^{\int d^{d} x \phi(x) b^{+}(x)}|0\rangle$
- Overcomplete basis $\int D \phi|\phi\rangle\langle\phi|=\mathbb{I}$
- Overlap $\left|\left\langle\phi \mid \phi^{\prime}\right\rangle\right|=\exp \left(-\int d^{d} x \mid \phi(x)-\right.$

Summary and open questions

- Random tensor networks form a basis of "geometry coherent states" with holographic properties.
- A generic boundary states is mapped to a superposition of geometries $\sum_{a} \phi_{a}|\Psi[a]\rangle$
- The basis is overcomplete but different classical geometries are almost orthogonal.
- Small fluctuations are mapped to boundary isometrically, with error correction properties. They are local bulk quantum fields.
- Open question:
- Optimization of geometry for a given boundary state.
- Einstein equation from boundary dynamics?

