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Motivations

@ In models describing CM systems SUSY has been observed to be an
emergent symmetry, that is it appears in the effective theory
describing the low-energy modes. On the other hand, at these scales
the system is typically in a non-relativistic regime.

Therefore, it is physically relevant to construct NR SUSY models

@ Non-relativistic holography: Non-relativistic generalisation of the
AdS/CFT is of interest for the holographic description of CM systems.

D.T. Son, PRD78 (2008)

K. Balasubramanian, J. McGreevy, PRL101 (2008)

W.D. Goldberger, JHEPO03 (2009)

S. Kachru, X. Liu, M. Mulligan, PRD78 (2008)

S. Janiszewski, A. Karch, JHEPO02 (2013)

M. H. Christensen, J. Hartong, N. A. Obers and B. Rollier, PRD89, JHEPO1 (2014)
M. Taylor, CQG33 (2016)

A. Bagchi, R. Gopakumar, JHEP07 (2009)

A. Bagchi, R. Basu, D. Grumiller, M. Riegler, PRL114 (2015)

Which is the role of supersymmetry in NR holography?



@ NR limits allow to improve our understanding of the relativistic theory:

- NR corners of ' =4 SYM to go beyond the planar limit
T. Harmark, N. Wintergerst, PRL124 (2020)

S. Baiguera, T. Harmark, N. Wintergerst, JHEP02 (2021)

- NR corners of M-theory: Null M5-branes described by (4+1)d
non-Lorentzian SUSY Lagrangians

N. Lambert, A. Lipstein, P. Richmond, JHEP10 (2018)
N. Lambert, A. Lipstein, R. Mouland, P. Richmond, JHEPO1 (2020); JHEPO03 (2021)



From a QFT point of view important open questions are:

@ Which are the renormalization properties of NR SUSY theories?

@ Does SUSY conspire with the NR space-time symmetry to mild UV
divergences?

@ Do non-renormalization theorems still work ?

We focus on (2+1)D field theories with
N =2 Super-Bargman symmetry



Plan of the talk

1) Construction of the non-relativistic (galilean) A" = 2 Superspace
2) NR Wess-Zumino Model: One-loop exactness

3) Supersymmetric Galilean Electrodynamics (SGED): A renormalizable
non-linear sigma model

4) Conclusions and future directions



Super-Bargman algebra

Bargmann algebra (H, P,J G, M) 2'=Rx+vt+a, t =t+b
M =U(1) central extension

There are different ways to obtain the Super-Bargmann algebra in (d+1)D

@ Completing the Bargmann algebra with a set of fermionic generators
and impose constraints on the algebra

o Taking the Inonii-Wigner contraction of the (d+1)D super-Poincaré
® U(1) algebra in the ¢ — oo limit

@ By dimensionally reducing the ((d+1)+1)D relativistic SUSY algebra
along a null direction

To construct a NR Superspace the most convenient approach is null reduction



Null reduction

@ We start from the (3+1)D super-Poincaré algebra realized on the
spacetime

T
Tt = light — cone coords.
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Null reduction

We start from the (3+1)D super-Poincaré algebra realized on the
spacetime
3 0

- +

' =h?) =2 =7 light — cone coords.
V2

compactify z~ on a tiny circle of radius R and rescale ™ — z /R,
z~ — Rx™.

Define P— = M and select only the generators which commute with M
= Py =H, Pi—1,, Mi2=J, M;— =(G; bosonic subalgebra

In the fermionic sector, write the (3+1)D anticommutator
{Qa, Qs} =io! Bau in terms of the light-cone coordinates

~ [ V204 01 —i0s
{Q, Q=4 (31 + 102 —\/58_)

Identify 9. — 0r, O— — im Ou = Qa, Q4 — Ql =Qa



N = 2 Super-Bargmann algebra

[Pijk] :u;]kj\lv [HvGJ] :inv
[Py, J] = —i€jn Py, (Gj, J] = —iejuG k=12

@1, J]=13Q1, {Q:,Q]}=V2H,
[Q27 J] = _%Q27 [Q27G1 - ZGQ} = _iQ17 {Q27Q£} = \/ij\/[7
{Q1,Q} = —(P1 —iP), {Q2,Ql}=—(P1+iP)



Non-relativistic Superspace

(34 1) N = 1 relativistic superspace (24 1) N = 2 NR superspace

=
(a7, 2',0%, 0% = (t,z",0",6°,6",0%)

1] = -2, '] = -1, [0"] = 1, [#*] =0

* Reduction of a generic superfield

oM, 0%,0%) = ™" B(t,2",0",0%,6",0%) m — M — eigenvalue

* Covariant derivatives

D1 = %7 %é (81 77,82)**9 at
D= g = 50005 _, | D1 =ggr = 3001 4+i0) = 55001
Dy = ao% — 10P 054 132 =2 — %9 (01 +i02) — \}592
Dy = 55 — 561(01 —ida) — 550
{Da, D} = —i0aa = {Da,Dg} = —iBap [D1] = [Di] =1
[D2] = [D2] =0



* (Anti)chiral superfields Do¥ =0, DY =0

S(wr,0%) = p(xL) + 0"¢a(zL) — 0°F(z1)
S(xr,0%) = @(xr) + 0,97 (xr) — O°F(xR) 23l = Fi0%0°

* Berezin and spacetime integrations

/d4xd49\11 = /d4xD2252\11’ ) (¥ =™ )
6=6=0

27 . _
—)/dng2D2\i/’ X 1 dx™ e™”
)

=6=0 27 J,

1 !
= /d?’x d*o v Non — vanishing result only if M(¥) =0



Non-relativistic Wess-Zumino model in (2+1)D




Relativistic ' = 1 WZ model in (3+1)D

S:/d4xd4eiz+/d4xd26 <522+%z3) +h.c. DL =DE =0
@ The WZ model is renormalizable

@ Non-renormalization theorem

— Perturbative M.T. Grisaru, W. Siegel, M. Rocek, NPB 159 (1979) 429

— Non-perturbative (Holomorphicity, SUSY, U(1) x U(1)r symmetry)

N. Seiberg, PLB 318 (1993) 469

- A
L — Lren = /d“@ ZZ(ZZ)+/d20ZAZ§/2(gES)

The absence of chiral divergences implies

227 =1 = 7, =23



Non-relativistic Wess-Zumino model in (2+1)D

Particle number conservation requires at least two superfields (u = 0)
D%, =D, =0

S = /d3xd46 (@191 +<I>2q>2)+g/d3xd20 PiPy+h.c.
M((I>1) =m, M(‘I)Q) = —-2m

Manifestly invariant under NR N = 2 SUSY

1 1
P =1 + 9151 +6? 2‘11\/EX1 - §0a0aF1

By = 3+ 0 + 62025 2m y2 — %eaeaFg

(&1, F1) (&2, F2) — auxiliary (non-dynamical) fields [dim = 2]



Action in components

S :/d% [@1 (2imd; + V?) 1 + @2 (4imdy + V?) g2

+ %1 (2imd: + 9°) xa1 + Xz (4imd; + V2) xa| + Sins

Ss = [ 2 [~ algPloreal® = lollonl*
—ig (\/5901)(1(81 — i02) X2 — 2Gax1 (D1 — i02)x1 + 2V2¢01 (01 — iaz)><l)>22) +hec.

+2|g[? (—\901\2)_(1)(1 — 41 x2x2 + 2|02’ X1x1 + 2V20102%1%2 + 2\/5951952)(2)(1) ]



Renormalization in Superspace

o (¢,P,) propagators

Do(w,7,01,01,02,05) = : §@ (61 — 6,) a=1,2

2maw — P2 + ie

In configuration space

_ _ i O(t)  maz?
Da(&,t,01,01,02,0,) = — " (1) gims; 59 (01 — 62)
drt
@ Supervertices
Dy N
o, (2ig) @y (2ig)
Py Dy

Number of incoming arrows = Number of outgoing arrows



Selection rules

Loop diagrams are formally the same as in the relativistic 2-field WZ
model, but....

@ Selection rule 1 - Particle number conservation at each vertex

@ Selection rule 2 - Arrows inside a Feynman diagram cannot form a
closed loop. O. Bergman, PRD 46 (1992) 5474
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imported and a non-perturbative non-renormalization theorem holds
Similar results in Lifshitz theories 1.arav, ¥.0z, A.Raviv-Moshe, JHEP11 (*19)



Results

@ One-loop exactness - The only non-vanishing diagram is

lg]> 1
4dtm e

((I)Q)bare = Z21/2q)2 Z2 =1-

@ Non-relativistic non-renormalization theorem

No vertex corrections allowed. Seiberg’s argument can be easily
imported and a non-perturbative non-renormalization theorem holds
Similar results in Lifshitz theories 1.arav, ¥.0z, A.Raviv-Moshe, JHEP11 (*19)

o Exact beta-function

No UV divergent vertex corrections implies Zy = Z;l/Z
3 =2
9 2 2mmg
= — -
& 4mm g°(1) 2tm — g2 log /A




Galilean Electrodynamics (GED) in d=2+1

M. L. Bellac, J. M. Levy-Leblond, Nuovo Cim. B14 (1973)
A. Bagchi, R. Basu, A. Mehra, JHEP11 (2014)

Null reduction of 4d scalar QED: A, (z) = Au(¢, zi=1,2) coupled to

d(x) = ™ p(t, Tiz1,2)
Ay = (A=, A, A1 2)

1 i 1 ij i - - 1 [
SeeD = /dtd2$ [E(aﬂP)Q +EOip — L fii 7+ 50Vi0 = 9Vid — 5o VigV'e

where Ez = 815147, — 811415 fi]’ = 8114] — 8]-Ai, M =m — ey
thﬁ = (8t — i@At)¢ Vz(ﬁ = (81 — zeAz)qﬁ
G. Festuccia, D. Hansen, J. Hartong, N. Obers, JHEP11 (2016)

At classical level:

@ The real scalar field ¢ is invariant under gauge and galilean
transformations. Moreover, [p] = 0
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Galilean Electrodynamics (GED) in d=2+1

M. L. Bellac, J. M. Levy-Leblond, Nuovo Cim. B14 (1973)
A. Bagchi, R. Basu, A. Mehra, JHEP11 (2014)

Null reduction of 4d scalar QED: A, (z) = Au(¢, zi=1,2) coupled to

d(x) = ™ p(t, Tiz1,2)
Ay = (A=, A, A1 2)

1 i 1 ij i - - 1 [
SeeD = /dtdQ%’ [E(aﬂP)Q +EOip — L fii 7+ 50Vi0 = 9Vid — 5o VigV'e

where Ez = 815147, — 811415 fi]’ = 8114] — 8]-Ai, M =m — ey
thﬁ = (8t — i@At)¢ Vz(ﬁ = (81 — zeAz)qﬁ
G. Festuccia, D. Hansen, J. Hartong, N. Obers, JHEP11 (2016)

At classical level:

@ The real scalar field ¢ is invariant under gauge and galilean
transformations. Moreover, [p] = 0

@ The theory exhibits Schroedinger symmetry

@ There are no propagating gauge dof



At quantum level: s. Chapman, L. Di Pietro, K.T. Grosvenor, Z. Yan, JHEP10 (2020)
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At quantum level: s. Chapman, L. Di Pietro, K.T. Grosvenor, Z. Yan, JHEP10 (2020)

@ Non-renormalization of the coupling e

@ The theory is not renormalizable: infinitely many marginal couplings
get turned on along the RG flow

AScep = / dt d*z (J[Ml ' MM aEas{AV[M] (69)>—E[M] (90 M—€>pg) be)

M=m—ep

Renormalizable theory is Seegp + AScED

@ Conformal manifold of fixed points where the theory exhibits
Schroedinger symmetry. This is peculiar of the theory in d=2+1



SuperGalilean Electrodynamics (SGED)

N =2 SUSY generalization of the Galilean scalar electrodynamics in
d=2+1 by null reduction in superspace

SnSGED = %/d3xd29 W Wea + /d3xd40 oe9VP

W, =iD?*D,V Do® =Da® =0

At classical level:

@ U(1)n assignment: M(V)=0 M(®)=m
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SuperGalilean Electrodynamics (SGED)

N =2 SUSY generalization of the Galilean scalar electrodynamics in
d=2+1 by null reduction in superspace

SnSGED = %/d3xd29 W W, + /d3xd49 oe9VP

Wo =iD’DoV Do® =Do® =0
At classical level:
@ U(1)n assignment: M(V)=0 M(®)=m
@ Super-Schroedinger SU(2,2|1) and U(1) supergauge invariance
@ Gauge field components

1 - , 1 - _
Ay = §[D1,D1]V A1+ 1Ay = E[DlvDQ]V ¢ =D2D2V

The superfield D; D,V = DDV is supergauge invariant and
dimensionless



Feynman rules in Superspace

(w,p)

P tors: ‘i)—’—q’:ii sWw0 -0
ropagators DT ( )
(w,P)
_ ey .
v Vo — _ _‘21 i 6(4)(9/ _ 9)
—p< + 1€
Vertices: V"D

= Background field method, V- — V5 +V

Vo =e VVae" , Va= e_VO/QDaeVO/Q, @5 = 65 = eVO/QDBe_V"/Q

& =2 (i):(i)eVO/Q



Selection rules & non-renormalization theorems

@ Any 1PI Feynman diagram with negative superficial degree of
divergence in the w variable, vanishes identically.

@ All loop corrections to the effective action with purely vector external
lines vanish, I'™ (V) = 0.

Therefore, V' does not renormalize and for gauge invariance g does not
renormalize



Non-renormalizability of nSGED

At one-loop the action Shscep acquires infinite UV divergent contributions

. 2

- 1
F<IL>—>—L/d3 R A P — d=2-2
16mme | © 00T P 1= e DDV c

2m

(w, k)
N
@5 ;f””“‘as ©.9)
Technical explanation: &—> > i

111 _ 11 _ 1 _ 1
o=gt E\@g(DDV)wE + i\/ig(DDV)wE\/§g(DDV)wE +...

Infinitively marginal couplings turn on. The model is not renormalizable! :-(



A renormalizable SGED

Consider the more general non-linear sigma model
Ssapp = % / &2d®0 WOWa + / &*2d*0 $e*Vd F(DDV)
_ 1 _
_ (n) n
F(DDV)=>" —F"(DDV)

We have infinite new npt vertices with couplings F )

Non-trivial renormalization

n+2 )
__9 @) 1 m . g" a1
50 = ( —2omF )7+~-- SFM = 9 ™ 2
16mm \I € 16mm(v/2m)" €




RG flows & conformal manifold

e One-loop beta functions for the couplings

(n) _ dF™ _ fg"+2 nln
T dlogp 167m(v/2m)n Fm

Solutions

(FO)2 () = (F) =
nt2 nln

16mm(v/2m)™ tog (%)

(Fmy2 - (Fly?

e Anomalous dimensions

_ ldlog (1+5q>) __9 ]__(1)
2 dlog u 8v2m




e IR interacting fixed point at g =0
Yo =0 =0

At the fixed point the gauge-matter minimal coupling disappears, but the
model contains an infinite number of gauge-matter couplings driven by
DDV

Ssamp = % / Prd®0 WOW, + / &*zd*0 3 F(DDV)

Matrix of anomalous dimensions, I, J € {g, FO F@ ML }
1 1 ’ ! e
1B’ — 0, g __ ..., 9
16mm V2m (F1)? (vV2m)n (F()?

At g = 0, infinite number of exactly marginal couplings = infinite
dimensional superconformal manifold



Conclusions

We have studied quantum properties of NR A/ = 2 SUSY models in
d=(2+1). Working in NR, Superspace we have found

@ NR Wess-Zumino model is one-loop exact. Scale invariance is broken
by one-loop effects.

Our results are consistent with the ones for nonSUSY NR A¢* theory

(o. Bergman, PRD46 (1992))

© SGED: The model which is consistent at quantum level is a non-linear
sigma model. This is peculiar of d=(2+1). The topology of the
conformal manifold is peculiar of one-loop approximation. At higher
loops we expect a richer spectrum of fixed points and further
constraints on F for the existence of a conformal manifold.



Future directions

What is the meaning of the coupling F(DDV)?

Generalization to non-abelian theories
A. Bagchi, R. Basu, M. Islam, K.S. Kolekar, A. Mehra, JHEPO04 (2022)

Coupling to supergravity. Models coupled to Newton-Cartan
supergravity as null reduction of relativistic SUSY models coupled to

Poincaré supergravity
E.Bergshoeff, A.Chatzistavrakidis, J.Lahnsteiner, L.Romano, J.Rosseel, JHEPO07 (’20)

NR localization

Coupling to Chern-Simons terms and theories with more SUSY.

Example: NR ABJM  v. Nakayama, M. Sakaguchi, K. Yoshida, JHEP04 (2009)
Y. Nakayama Lett. Math. Phys. 89 (2009)

K.-M. Lee, S. Lee, S. Lee JHEPO09 (2009)

Y. Nakayama, S-J. Rey, JHEPOS (2009)

Defects in NR QFTs, Integrability in NR systems, etc....



