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MOTIVATION

» Symmetries are powerful guiding principle for developing
effective theories for physical systems without a
detailed understanding of their microscopic constituents.

» Equilibrium phases of matter can be organised according to
their symmetries and whether these are spontaneously
broken or unbroken in the ground state, commonly known
as the Landau paradigm.

» Symmetries can even be useful when they are only

approximately respected by the system.

The canonical example comes from chiral perturbation theory, where
pions are seen as pseudo-Goldstones of approximate SU(2) chiral
symmetry. Other examples: pinned crystals, pinned charge density waves,
pseudo-superfluids etc.




MOTIVATION

» In recent years, the notion of symmetries has been
generalised to include higher-form symmetries, higher-
group symmetries, subsystem symmetries, and non-
invertible symmetries.

» These allow for a generalised Landau paradigm, that also
include exotic phases of matter, such as topologically ordered
states, spin liquids, fractons, topological insulators, etc.

» The focus of this talk is continuous higher-form
symmetries, which concerns higher-dimensional charged
objects, such as strings and surfaces.

» These describe topological order in many-body systems,
such as equipotential planes in a superfluid, lattice planes in a
crystal, magnetic fields in a plasma, or electric fields in a
dielectric fluid.

Gaiotto, Kapustin, Seiberg, Willett [1412.5148] 3




MOTIVATION

» Explicit breaking of higher-form symmetries describes
topological defects, such as superfluid vortices, crystal
dislocations, magnetic monopoles, or free charges.

» Topological defects mediate topological phase
transitions,! wherein a spontaneously broken symmetry
gets restored. Examples include superfluid phase transition,
melting, and plasma phase transition.

S

'Not to be confused with phase transitions between topologically ordered phases. 4




HIGHER-FORM
SYMMETRIES

and their breaking
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0-FORM SYMMETRIES
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» Continuous O-form symmetries can be defined by a conservation law

0J)=0 =  0J'+0J' =0

l

» The total number of charged particles in a volume 2,
is conserved in time

v
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O[Z,] = szﬂ JH = Jddxﬁ .

0,0[2,] = Jddx dJ" =0 —Jddx 0.J"



APPROXIMATE O-FORM SYMMETRIES

» Approximate O-form symmetries have weakly violated conservation laws

oV =—CL = 0J'+0J =—/L

l

» The total number of charged particles in a volume 2,
is only approximately conserved in time

v

RN B

O[Z,] = szﬂ JH = Jddxﬁ .

0,0[2,)] = Jddx 0J" = —f[dde —~ Jddx 0.J'
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1-FORM SYMMETRIES

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» A continuous 1-form symmetry can be defined by the conservation laws
0J" + 0,J" =0
1J¥=0 = |
aijtl — ()

» The objects charged under 1-form symmetries are “strings”.

The total number of strings passing a cross section 2 ;_;
are conserved under space and time translations

Ql2g1] = JdEﬂv]ﬂy = Jdd_letz - |

Zd—l
0,0(Z, ] = Idd_lx 0J%=0 — Jdd‘lx 0, JIF
0,0[Z, ] = [dd‘lx 0J%=0 — [dd‘lx 9, J"
Gaiotto, Kapustin, Seiberg, Willett [1412.5148] 8



APPROXIMATE 1-FORM SYMMETRIES

» The conservation laws for a 1-form symmetry are
0J" + 0, J" = — 7L
0J" =—-0L" = |
al’Jtl — th

» The total number of strings passing a cross section 2 ,_;
are only approximately conserved

Olzy 1= Idzﬂv S = Jdd‘lxjfz -

0,Q[2y_1] = [dd_lx 0% == Jddx L* — Jdd_lx 0;J )2

vAllL e 77/ v,

0,912y 1] = [dd_lx 0J"=1¢ Jddx L' — Jdd‘lx 9, J"

W

Armas, AJ [2301.09628] 9
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APPROXIMATE 1-FORM SYMMETRIES

» The defects of a 1-form symmetry themselves furnish a 0-form symmetry

0LV =0

» The total number of strings passing a cross section 2 ,_;
are only approximately conserved

0,2, = JdEﬂ L= J Tl -

Armas, AJ [2301.09628] 10
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BACKGROUND FIELDS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> We can introduce a 1-form gauge field A, and a background phase @ to probe an approximate
O-form symmetry

5S[A, @] = Jddx (J” SA, + L 5@)

Aﬂ—>Aﬂ+()ﬂA, O ->D-A

> Similarly, we can introduce a 2-form gauge field A, and a background phase @, to probe an
approximate 1-form symmetry

I
5S[A, @] = Jddx (Eﬂ“’ 6A,, + LV 5c1>ﬂ>

Ay = Ay +0A —dAN, @ — & —A +09A,

Armas, AJ [2301.09628] 11
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EXAMPLE: ELECTROMAGNETISM

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» d = 3 electromagnetism in vacuum

§=— Jd‘*x (lm‘”&? ) 0, F" =0
4 HY —

F  — _ y
F o =0,9,—0,9,
» It has two 1-form symmetries:

JHY — _ GG 0,/”‘” =(

—> N
j//w — % Lo};,ul/ a,u JWw — () /

The associated charged objects are electric and magnetic field lines. 2.

» These symmetries also persist in the presence

of polarised/dielectric matter
JW = — FH + H,

Gaiotto, Kapustin, Seiberg, Willett [1412.5148] 12



EXAMPLE: ELECTROMAGNETISM

» In the presence of free electric charges, the electric 1-form symmetry is violated, but the
magnetic 1-form symmetry persists.

%
=

1
S = — Jd4x (ZO””VFZW + (0, +icqd YY" (0" — it qd")¥Y + V(‘I’*‘P))

JHY — . Hv
i 0" =—=CL"
JHY = S FH —

d J* = ( /
L' = ig (070, — 0,9+ ¥) g i SN

+20q° 9l |\ ¥*Y \

» Similarly, breaking of the magnetic 1-form symmetry / /

amounts to the introduction of magnetic monopoles.

SV INAI IR - TR
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EXAMPLE: ELECTROMAGNETISM

» We can manifest the electric 1-form symmetry via

S[A, D] = — Id“x (%cf””fw + (0, + iy )¥P* (0" — icy")V + V(‘P*\I’))

En=F A, oy =0 (% _ c1>ﬂ>

v

RN B

—if A
A,—=>A,+0N -0\, b, -b,-A, +9,A, Ad,—>d,— N\, Y —-e Y
» We can manifest the magnetic 1-form symmetry vial

) 1 1 3
S[A] = — Jd“x (ZO‘W@W + (0, +ilqel )¥* (0" = il qal")¥ + V(¥*Y) — = *P/TWAW>

~/ ~/ ~/

A,—>A,+0,A—-0A, oA, —>d,—A

UL UL u: v vt v

'Both symmetries cannot be gauged together on account of a mixed 't Hooft anomaly. 14



HIGHER-FORM SYMMETRIES

» In general spatial dimensions d, electromagnetism has an

electric 1-form and magnetic (d — 2)-form symmetry. The
defects are free electric charges and magnetic monopoles.

» Electromagnetism can be viewed as a 1-form or
(d — 2)-form superfluid.!

» Ordinary O-form superfluids have a (d — 1)-form symmetry,
with the defects being vortices.2

JHY-- — G/I,uva;t¢

» Crystals also have a (d — 1)-form symmetry, with the
defects being dislocations.3

Iuv... _ Auv I
JHE = €™M0,

"Hofman, Igbal [1802.09512]; Armas, AJ [1808.01939, 1811.04913]
?Delacrétaz, Hofman, Mathys [1908.06977]
3Grozdanov, Poovuttikul [1801.03199]; Armas, AJ [1908.01175];
Armas, Heumen, AJ, Lier [2211.02117] 15



HIGHER-FORM FLUIDS

with approximate higher-form
symmetry
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THERMAL EQUILIBRIUM

» Many-body systems at thermal equilibrium can be
characterised by their thermal partition function.

» Thermal partition function is a functional of background
fields and can be used to obtain equilibrium values of
(approximately) conserved densities and fluxes.

» For systems with spontaneously unbroken symmetries, the
thermal partition function is a “local” functional of
background fields.

» For systems with spontaneously broken symmetries, the
thermal partition function is “non-local”, and is given by a
functional integral over the time-independent
configurations of the Goldstone fields.

17
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THERMAL EQUILIBRIUM: O-FORM HYDROSTATICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» For a 0-form symmetry, a thermal ensemble with constant charge density is described by a
thermal partition function

1
Z’[A]zexpjddx (5)(/42+...) U=ty + A,

— J'=n=yu+..., Ji=0
» This works because A, is invariant under time-independent gauge transformations
A=A + JA
This is no longer true for higher-form symmetries
Ay = Ay + 0N — O\

So, it is not possible to construct “local” partition functions with nonzero higher-form density.

18



THERMAL EQUILIBRIUM: 1-FORM HYDROSTATICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» We need to partially-spontaneously break the higher-form symmetry in the time-direction
Q=@ — N\ pi=— 0+ A,

This allows us to construct a “non-local” partition function

Z1A] =[9¢epr'd3x (%){/’tiﬂi_l_"') Ol

—> ]tizniz)(ﬂi, Jl]:()

v
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» (Classical configuration equation of @ implements the Gauss constraint 21
0J"=0 = 0,0¢p =0 Q== HoZ = ;= Yo O;
Armas, AJ [1808.01939, 1811.04913] 19
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EXPLICITLY-BROKEN SYMMETRIES

> The partition function can also depend on @, through the “detect chemical potential”
e =~7¢ (o - @) ®, = @, + A,

» The partition function takes the form

1 1

FA] = [EZgoeprd%c (Eﬂfﬂiﬂi + 5)(5,%% + )

— ]tizniz)(//ti, ]l]:() -
L'=n,=xmy L'=0 |
» (Classical configuration equation for ¢ imposes the Gauss constraint

. , 1
0J"=7L" = 0,0'p = kj¢ P \/
0

X
f zﬁff

“Debye length”

Armas, AJ [2301.09628] 20



HYDRODYNAMICS

» Hydrodynamics is a framework to capture perturbative
departures of a many-body system from thermal
equilibrium.

» The relevant hydrodynamic degrees of freedom are a set of
symmetry parameters corresponding to each global
symmetry (conserved charge) of the system.

» Additionally, we need to add massless Goldstone fields for
each spontaneously broken global symmetry.

21
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0-FORM HYDRODYNAMICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» The hydrodynamic description is based on the conservation laws
F,Ltl/ — za[ﬂA

VJH=—(L, V" =F"] + 2L ’
=, =0,0+A,

we have allowed for violation of the O-form symmetry.

> The hydrodynamic fields are a set of symmetry parameters Ag, p*, transforming as
ONg =&, Ng— £, opt =&, p*
» These can be used to define gauge-invariant hydrodynamic fields u, T, u* as

'u—A ﬂA " — [AH
?_ ﬂ+ﬁ U __ﬁ

Armas, AJ, Lier [2112.14373] 22
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0-FORM HYDRODYNAMICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Hydrodynamics is characterised by its constitutive relations
S, T,u A, D, 8,1, Llp T,u" A, D¢, T u T,u"A,P.g,]

The constitutive relations are required to satisfy the second law of thermodynamics.

» For example, at first order in derivatives, we find the constitutive relations

J' =nu* — o P* (Tdy% + u'F M) PH = gl 4 yhy¥

L=-"7o, <u”Eﬂ —//t)
2
" = (¢ + p)u*u® + p g"* — n PF°P*° (2 V(U — EPPGVMQ — ¢ PPV u?

» The coefhicients follow the constraints

op = soT + nou, € =1T1Ts+ un —p, c,0.,,1,C >0

23
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LINEARISED FLUCTUATIONS

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

> Let us assume that we are fluctuating around u = 0 state.

In this limit, energy and momentum fluctuations decouple from charge fluctuations, and
propagate via the fluid sound and shear modes

» _op
l Ve = —/—
uy, T w=xvk——=Dk>+ ... oe
2 d-1
L 7.2 o)l o+ 2 a_l DL "
u,: w=-—IiD_k"+ ... T etp " et
» The charge fluctuations give rise to a diffusive mode
. . o *o
w: w=-—iD k* —il D, =—, r=—>*
4 A

Charge fluctuations are damped due to explicit symmetry breaking.

00000000

24
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1-FORM HYDRODYNAMICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» The hydrodynamic description is based on the conservation laws

Fup = 30,4,

1
Vo =CL V=0, VDY =T, 4 CEVL =, = 20,0, + 4,

» The hydrodynamic fields are a set of symmetry parameters Aﬁ, A?, p¥, transforming as

N =N -8, N =EN BN, =g

We also need the temporal Goldstone field ¢ transforming as
op =L£,0 — PrA,

» These can be used to define the covariant hydrodynamic fields

Fu He u"
— =N+ plA, —0 —=—f( — pHD —Aﬁ) — = ¥
A q”’ ¢ ’
T K H H T H 4 T
Grozdanov, Hofman, Iqgbal [1610.07392]; Armas, AJ [1808.01939, 1811.04913, 2301.09628] 25
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JOSEPHSON EQUATION FOR TEMPORAL GOLDSTONE

» The dynamics of ¢ is governed by a Josephson equation of the form

£ = PN+ ...
» We can absorb possible corrections to this equation by redefining Aﬁ. This implies
u'p, = u’“‘Aﬁ —utd,p =0

This still leaves redefinition freedom in the spatial components of Aﬁ.

26
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GAUGE REDUNDANCY

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» There is a gauge redundancy in the description that can be obtained by setting

A,u — a’u/l, Af — /1

which leaves the background fields A, , ® , invariant.

» The dynamical fields transform as
ﬁ — — ﬁ — — —
0\, = — 0,£44, 0N, = — Ly, o,/ =0

The physical hydrodynamic fields y,, 1., T, u” are invariant under these gauge transformations.

27
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1-FORM HYDRODYNAMICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» The constitutive relations are a straight-forward generalisation of the O-form case

He
JH = 2u'tp¥! — g pHPpYe (ZTa[pT] T M/IF/IPG)

L = nbﬂu'u — O-fP’MD (T@D'M—; ~+ KMAE%D — f//ty>

2
" = (¢ + p)u*u” + p g"* — n*u” — n P P*° (2 V(U — ZPPGV,IM’I) — ( P* V/Iu’1

Note that 6, now behaves like a conductivity for the defect flux.

» The constraints are given as

5]7 = sol + nﬂéﬂﬂ + nfé/xlf, e =1s +//tlun'u + Helly — D, O, 0p, 1, Z: > 0

28



LINEARISED FLUCTUATIONS

> Let us assume that we are fluctuating around u, = 0 state.

In this limit, energy and momentum fluctuations decouple from charge fluctuations, and
propagate via the same fluid sound and shear modes.

» The charge fluctuations give rise to two diffusive modes

| 0]
g i, . w=—iD k* —il Dn_;’ L= )(
: _ : o) :

u //t” G)——lka —lr szz

%‘ At

k‘\ » The K mode obeys a damping-attenuation relation

l s
I'=D,k; k2= %

. X

—_—

~—

X

al

|y

-

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

OOOOOOOO
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TOPOLOGICAL PHASE TRANSITIONS

» [f we increase the strength of defects, i.e. increase £, the charge fluctuations gap out and we are
left with a fluid without 1-form symmetry.

U(1),-ESB £ 1 o
1-form fluids : 1-form pseudo-fluids ce o0 00 fluids without
1-form symmetry

u(h), Uy,

Vﬂ(u”n”—u”n”——...)=fnfu/"+l"n” / \ )

S L <

» The same discussion also applies to the K \
phase transition of O-form superfluids to - )
0-form fluids, mediated by vortices. / /

VAllL e 7)) 4 F

W
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TOPOLOGICAL PHASE TRANSITIONS

» Optical correlation functions (Coulomb/relaxed phase)

l
Re_Gﬁijy(a)) =xD,

@
Re l GE (@) r w?/T?
- X Xa) —
w L A 1 + w?/172

VAl L 508 7). P 10X 24w AT

\
vl
|
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HIGHER-FORM
SUPERFLUIDS

with approximate higher-form
symmetry
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1-FORM SUPERFLUIDS IN EQUILIBRIUM

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» In the superfluid phase, the higher-form symmetry is completely spontaneously-broken
» —> @ — N\, pi=—0,p+A,
¢; = ¢ — A Gij = aiij — aj¢i +A;;

» The partition function takes the form

1 1 y
FlA] = J@qo@qﬁi eprd3x —YHip — =667 + ...
2 4y

— ]tz — 75! :)(//tla JYV = — TélJ

X
» The configuration equations imply
0ifﬁ=() — aiai¢=0 P == HoZ => ;= JHy0;
0J" + 0, J" =0 = 0,0¢' — '9,* =0 ¢' = (0, figx, 0) = &; = fiy &
Armas, AJ [1811.04913] 33
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1-FORM PSEUDO-SUPERFLUIDS IN EQUILIBRIUM

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» In the presence of explicit symmetry breaking, the 1-form superfluid can exist in two phases
depending on the O-form defect symmetry being spontaneously broken or not.

» In the relaxed/Coulomb phase, the O-form defect symmetry is spontaneously unbroken and
we can only construct the “defect chemical potential”

V JW =7L"
//tf:_?/ﬂ(§”_q)t) ’

V,L'=0
» In the pinned/Higgs phase, the O-form defect symmetry is spontaneously broken
Pp = Gp— Ny

This allows us to also construct the phase misalignment vector

wi =17 (¢;— ®; — ;)

In the language of Higgs mechanism, the 1-form phase ¢, can eat O-form phase ¢, to become
massive.

Armas, AJ [2301.09628] 34



HIGHER-FORM PSEUDO-SUPERFLUIDS IN EQUILIBRIUM

» The partition function takes the form

3 1 l 1 2 m2 ]
FZIA]l = | Depexp |d'x 5;(/41/4 ——fljff Exfﬂf — Tl/fl-l// + ...

— ]l‘lznl:)(lul, Jljz_ffl]
4

L'=n,=ymy  L'=m%y

» Classical configuration equation for ¢, ¢; impose the conservation equations in equilibrium

: : : , , . P ) - — »
atjtl 4+ 6ka’ -/ —= akak¢z . azak¢k — kg¢¢z ko \/f X7 k()qb \/meZ)(
“Debye length” “London depth”

%
'
2
N
X
¥ &
|y
- _
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1-FORM PSEUDO-SUPERFLUID DYNAMICS

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» The conservation equations for a 1-form superfluid remain the same

V W= —CLY,

Hydrodynamic fields are Aﬁ, Abﬂﬂ, prand @, P,

VL =0,

> We have a Josephson equation for ¢,

£, = N+ ...

V,T" = F"J, + 2L

—  ufg,=u,+ ...

» We also have a Josephson equation for ¢, in the

pinned/Higgs phase

Expp =N+ ...

— I/t//tl//ﬂ:—//lf+...

M
C _pH
- p
pro, =@
S = 0, P, — 0,
Hy, 5 P
7=Aﬂ PrAy — 0,0

36
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LINEARISED FLUCTUATIONS

> Let us assume that we are fluctuating around y, = ¢, = 0 state.
In this limit, energy and momentum fluctuations decouple from charge fluctuations, and

propagate via the same fluid sound and shear modes.

» The transverse charge and Goldstone fluctuations give rise to the photon mode in the
Coulomb/relaxed phase

Ui, P : (ia)—anz—F) (ia)—anz) +Vik2=0 vi=/1—i
XX
> In the pinned/Higgs phase, you get additional pinning and relaxation effects
by (i =D,k = T) (iw— D% - Q) + o + vk =0 of = VI,
Q=D,kj, koy = €°m’y

» Similar results hold for g-form supertluids with vortices or impurities for any g.
37
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LINEARISED FLUCTUATIONS

» The longitudinal charge mode in the relaxed/Coulomb phase returns the previous damped
diffusive mode

//l” . ia)szkz + I
» For pinned/Higgs phase, this couples to longitudinal Goldstone fluctuation and gives

~/

=D,k ky =

38
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TOPOLOGICAL PHASE TRANSITIONS

» We can implement topological phase transitions by increasing the strength of Z, thereby
increasing the strength of explicit symmetry breaking.

» The product of the phase transition depends on if we are starting form the relaxed/Coulomb
phase of pinned/Higgs phase.

» In the relaxed/Coulomb phase, we arrive at a (d — 2)-form fluid. In the context of
electromagnetism, this describes magnetohydrodynamics with conserved magnetic field lines.

. ~ V2 P
w=—1|D,A k
[

» In the pinned/Higgs phase, we arrive at a neutral fluid. In the context of electromagnetism, this
describes expulsion of all electromagnetic fields inside a superconductor.

39



TOPOLOGICAL PHASE TRANSITIONS

» Optical correlation functions (Coulomb/relaxed phase)

l
RegGﬁijy(a)) — X D n

l -
Re—GX...(w) = 7D, A
w ol @) =X yI' 1+ w?/1?

R iGR (@) 0 w7
C— o] \A) =
o L O F o

VAllL e 7)) 4 F

W

40



HIGHER-FORM SUPERFLUIDS

> [t is possible to also keep the “magnetic” (d — 2)-form
symmetry of a 1-form superfluid manifest by coupling the

system to a (d — 1)-form gauge field and accounting for the
mixed anomaly.

» Explicit breaking of the “magnetic” (d — 2)-form symmetry
give rise to vortices in the 1-form superfluid. Only relaxed/
Coulomb phase can admit vortices.

» Extension to g-form superfluids is straight-forward.

41




UTLOOK

o

Magneticdsietds’

o

o~
»
e



OUTLOOK

» Higher-form symmetries can be used to classify phases of
matter with topological order.

» Breaking of continuous higher-form symmetries is
associated with topological defects, which mediate
topological phase transitions.

» A hydrodynamic theory with approximate higher-form
symmetries provides a model for dynamical phase
transitions based on symmetries.

» Further applications include emergent magnetic monopoles
in spin ice, plasma phase transitions, melting phase
transition in higher-dimensions, superfluid and
superconductor phase transitions.

43




q-form fluids

q-form superfluids
with vortices

q-form pseudo-fluids

q-form pseudo-superfluids
(relaxed phase)

q-form pseudo-superfluids
(relaxed phase) with vortices

fluids without higher-form
symmetry

o p-form vortex
*« proliferation

q-form defect
proliferation

q-form pseudo-superfluids
(pinned phase)




