

Gravitational S-matrix & Carrollian holography

Laura DONNAY

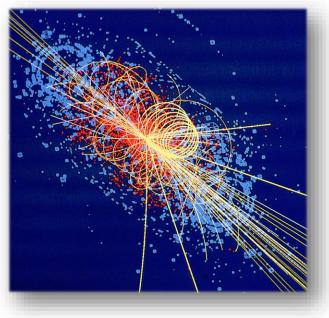
Beyond Lorentzian Geometry II Edinburgh, 6-8 Feb 2023

Intro and motivations

Quantum gravity in 4d asymptotically flat spacetimes \longrightarrow vanishing cosmological constant $\Lambda = 0$

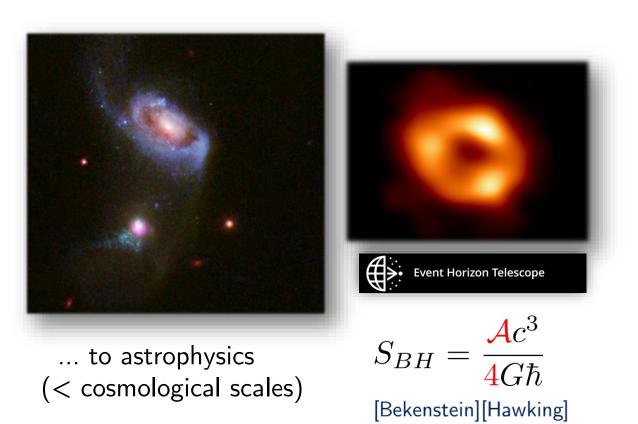
Intro and motivations

Quantum gravity in 4d asymptotically flat spacetimes \longrightarrow vanishing cosmological constant $\Lambda = 0$ These spacetimes are relevant

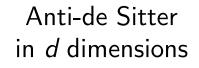


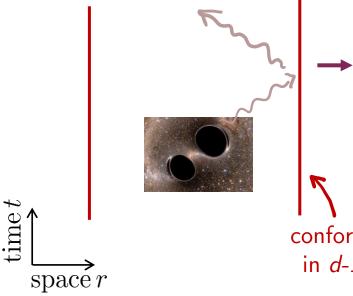
from collider physics ...

Laura Donnay (SISSA)



Holographic principle





Laura Donnay (SISSA)

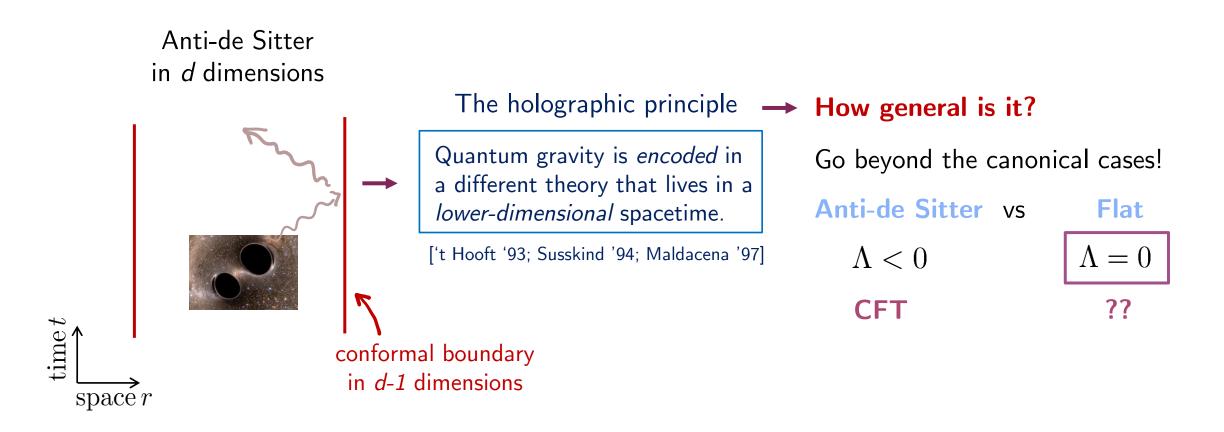
The holographic principle

Quantum gravity is *encoded* in a different theory that lives in a *lower-dimensional* spacetime.

['t Hooft '93; Susskind '94; Maldacena '97]

conformal boundary in *d*-1 dimensions

Holographic principle



Flat space holography: a structure X?

THE REAL OBSTACLE TO AN ANALOGOUS SUCCEES WHEN A=0 SEEM TO BE THAT THE NATURAL BOUNDARY OF MINKOWSKI SPACE AS NOT AT SPATIAL INFINITY BUT AT PAST AND FUTURE NULL INFINITY

E. Witten's talk - Strings 1998

Flat space holography: a structure X?

(3) THE REAL OBSTACLE TO AN ANALOGOUS SUCCESS WHEN A=0 SEEM TO BE THAT THE NATURAL BOUNDARY OF MINKOWSKI SPACE AS NOT AT SPATIAL INFINITY BUT AT PAST AND FUTURE NULL INFINITY

24 A HOLDGRAPHIC DESCRIPTIO FOR N=0, IF THERE ROALY IS SUCH A THING, MUST INVOLVENOT C.F.T. BUT SOMETHING ELSE-CALL IT "STRUCTURE X' AS WE DON'T KNOW WHAT 17 IS.

E. Witten's talk - *Strings* 1998

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts: [Susskind '99][Polchinski '99][Giddings '99] [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]...

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts: [Susskind '99][Polchinski '99][Giddings '99] Minkowski AdS [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]... Main obstructions/difficulties: timet space r

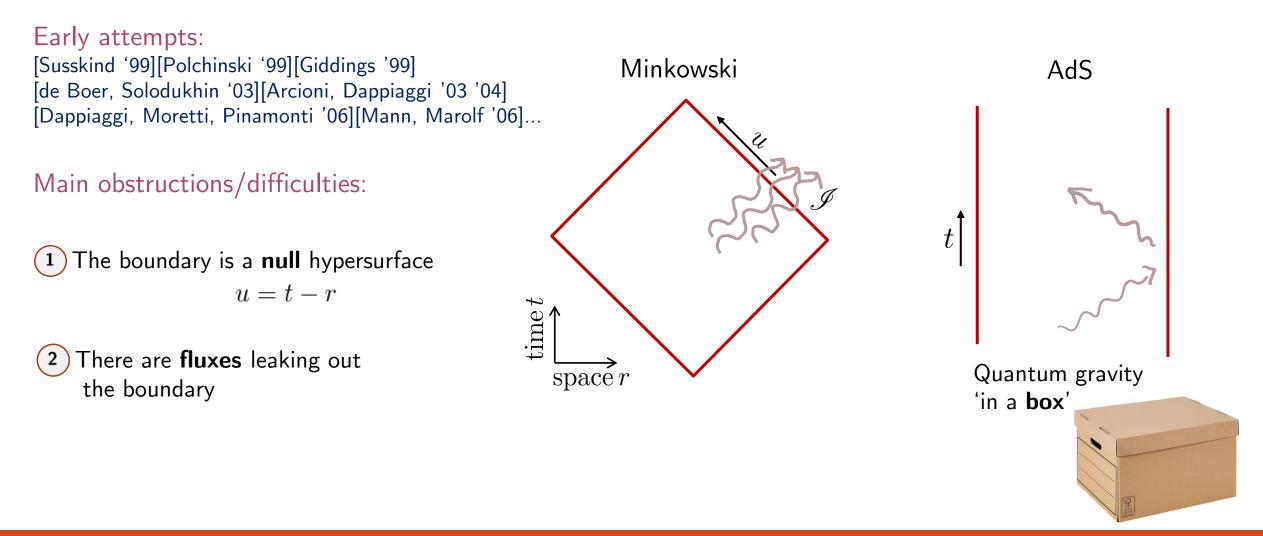
Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

Early attempts: [Susskind '99][Polchinski '99][Giddings '99] Minkowski AdS [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]... Main obstructions/difficulties: I The boundary is a **null** hypersurface u = t - rtimet space r

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

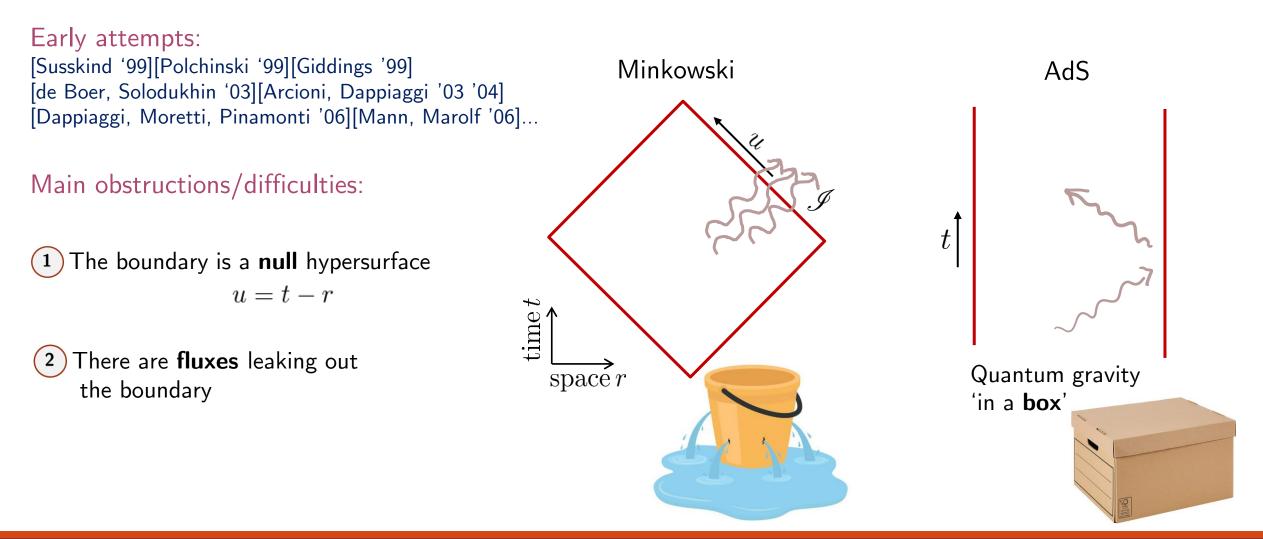
Early attempts: [Susskind '99][Polchinski '99][Giddings '99] Minkowski AdS [de Boer, Solodukhin '03][Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06]... Main obstructions/difficulties: t The boundary is a **null** hypersurface u = t - rtimet There are **fluxes** leaking out space r the boundary

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?



Laura Donnay (SISSA)

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?



Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

two natural boundaries/proposals

Holographic description of quantum gravity in 4d asymptotically flat spacetimes?

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

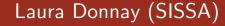
two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

celestial sphere

Euclidean 2-sphere



Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

[Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06] [Bagchi, Basu, Kakkar, Melhra '16] [Bagchi, Melhra, Nandi '20] [LD, Fiorucci, Herfray, Ruzziconi '22][Bagchi, Banerjee, Basu, Dutta '22][...] celestial sphere

Euclidean 2-sphere

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

[Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06] [Bagchi, Basu, Kakkar, Melhra '16] [Bagchi, Melhra, Nandi '20] [LD, Fiorucci, Herfray, Ruzziconi '22][Bagchi, Banerjee, Basu, Dutta '22][...] celestial sphere

Euclidean 2-sphere

4d bulk/2d holography: 'celestial holography'

Dual: 2d 'celestial CFT'

[de Boer, Solodukhin '03][Pasterski, Shao, Strominger '17] [Pasterski, Shao '17] [...]

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

[Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06] [Bagchi, Basu, Kakkar, Melhra '16] [Bagchi, Melhra, Nandi '20] [LD, Fiorucci, Herfray, Ruzziconi '22][Bagchi, Banerjee, Basu, Dutta '22][...]

> Features: easier link to AdS/CFT ☺ treatment of fluxes ☺

celestial sphere

Euclidean 2-sphere

4d bulk/2d holography: 'celestial holography'

Dual: 2d 'celestial CFT'

[de Boer, Solodukhin '03][Pasterski, Shao, Strominger '17] [Pasterski, Shao '17] [...]

Laura Donnay (SISSA)

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

[Arcioni, Dappiaggi '03 '04] [Dappiaggi, Moretti, Pinamonti '06][Mann, Marolf '06] [Bagchi, Basu, Kakkar, Melhra '16] [Bagchi, Melhra, Nandi '20] [LD, Fiorucci, Herfray, Ruzziconi '22][Bagchi, Banerjee, Basu, Dutta '22][...]

> Features: easier link to AdS/CFT ☺ treatment of fluxes ☺

Laura Donnay (SISSA)

celestial sphere

Euclidean 2-sphere

4d bulk/2d holography: 'celestial holography'

Dual: 2d 'celestial CFT'

[de Boer, Solodukhin '03][Pasterski, Shao, Strominger '17] [Pasterski, Shao '17] [...]

Features: powerful CFT techniques at hand ☺ role of translations obscured ☺

Holographic description of quantum gravity in 4d asymptotically flat spacetimes

two natural boundaries/proposals

null infinity

lighlike 3d hypersurface

4d bulk/3d holography: 'Carroll holography'

Dual: 3d 'BMS field theory'

Features: easier link to AdS/CFT ☺ treatment of fluxes ☺ celestial sphere

Euclidean 2-sphere

 $z, ar{z}$

4d bulk/2d holography: 'celestial holography'

Dual: 2d 'celestial CFT'

Features: powerful CFT techniques at hand ☺ role of translations obscured ☺

Laura Donnay (SISSA)

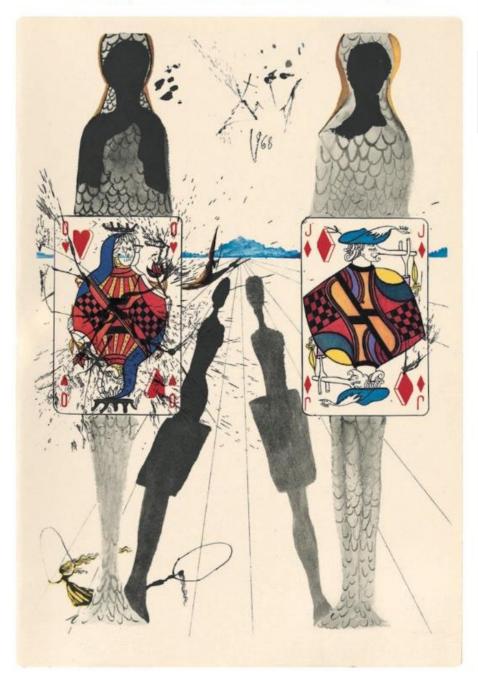
Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:

Outline

- 1. BMS & the S-matrix
- 2. Bases and boundary operators
- 3. Towards Carrollian holography
- 4. CCFT vs CCFT

based on 2202.04702 PRL (2022) & 2212.12553 w/ Adrien FIORUCCI, Yannick HERFRAY & Romain RUZZICONI

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:



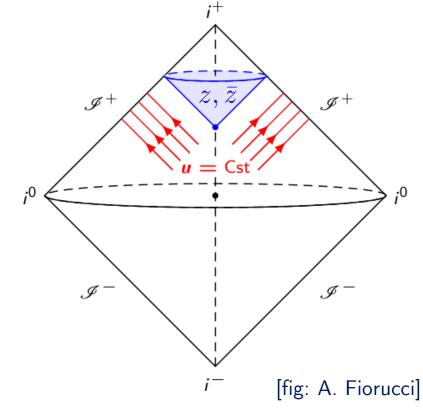
Outline

1. BMS & the S-matrix

Gravitational solution space

Asymptotically flat spacetimes in Bondi gauge:

[Bondi, van der Burg, Metzner '62] [Sachs '62] [Barnich, Troessaert '10]



$$r \to \infty \qquad (u, r, x^A), \quad x^A = (z, \bar{z})$$

$$ds^2 = -du^2 - 2dudr + 2r^2\gamma_{z\bar{z}} dzd\bar{z}$$

$$+ \frac{2M}{r} du^2 + rC_{zz} dz^2 + D^z C_{zz} dudz$$

$$+ \frac{1}{r} \left(\frac{4}{3} (N_z + u\partial_z m_B) - \frac{1}{4} \partial_z (C_{zz} C^{zz}) \right) dudz + c.c. + \cdots$$

Laura Donnay (SISSA)

Gravitational solution space

Asymptotically flat spacetimes in Bondi gauge:

 $r \to \infty$ $(u, r, x^A), x^A = (z, \overline{z})$

$$ds^{2} = -du^{2} - 2dudr + 2r^{2}\gamma_{z\bar{z}} dzd\bar{z}$$

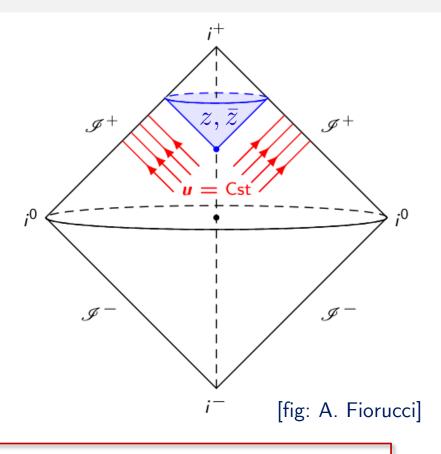
+
$$\frac{2M}{r}du^{2} + rC_{zz}dz^{2} + D^{z}C_{zz}dudz$$

+
$$\frac{1}{r}\left(\frac{4}{3}(N_{z} + u\partial_{z}m_{B}) - \frac{1}{4}\partial_{z}(C_{zz}C^{zz})\right)dudz + c.c. + \cdots$$

The Bondi mass and angular momentum aspects satisfy

$$\begin{aligned} \partial_u M &= -\frac{1}{8} N_{AB} N^{AB} + \frac{1}{4} \partial_A \partial_B N^{AB} ,\\ \partial_u N_A &= \partial_A M + \frac{1}{16} \partial_A (N_{BC} C^{BC}) - \frac{1}{4} N^{BC} \partial_A C_{BC} \\ &- \frac{1}{4} \partial_B (C^{BC} N_{AC} - N^{BC} C_{AC}) - \frac{1}{4} \partial_B \partial^B \partial^C C_{AC} + \frac{1}{4} \partial_B \partial_A \partial_C C^{BC} \end{aligned}$$

[Bondi, van der Burg, Metzner '62] [Sachs '62] [Barnich, Troessaert '10]



 $N_{AB} \equiv \partial_u C_{AB}$

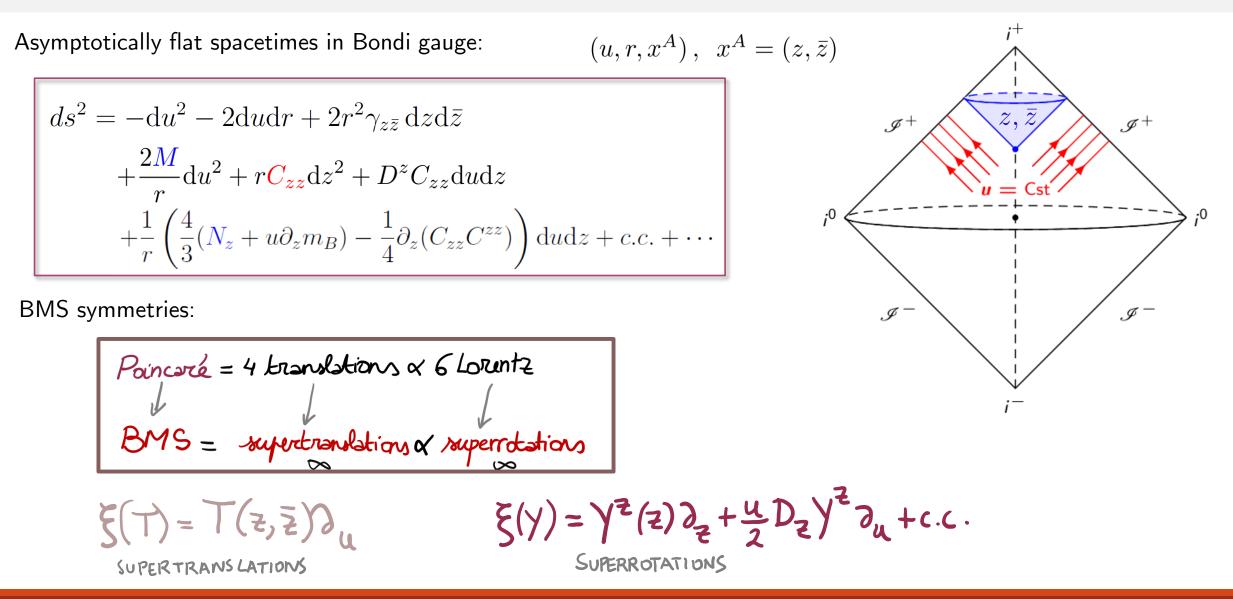
Bondi news: encodes **gravitational waves!**

Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

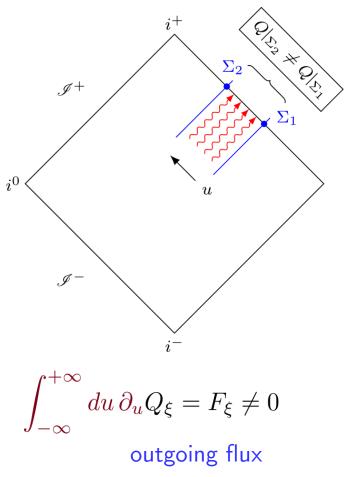
Gravitational solution space

[Bondi, van der Burg, Metzner '62] [Sachs '62] [Barnich, Troessaert '10]



BMS charges and fluxes

At each cut {u = constant} of 𝒴⁺, one can construct 'surface charges' associated to BMS symmetries.
 Outgoing radiation → BMS charges are *not* conserved.



Laura Donnay (SISSA)

BMS charges and fluxes

• At each cut $\{u = \text{constant}\}\$ of \mathscr{I}^+ , one can construct 'surface charges' associated to BMS symmetries.

Outgoing radiation → BMS charges are *not* conserved.

A 'good prescription' for BMS charges has emerged in recent years:

[Barnich, Troessaert '11][He, Lysov, Mitra, Strominger '14][Kapec, Lysov, Pasterski, Strominger '14][Compère, Fiorucci, Ruzziconi '19 '20][Campiglia, Peraza '20] [LD, Ruzziconi '21][Fiorucci '21][Freidel, Pranzetti, Raclariu '21][LD, Nguyen, Ruzziconi '22]

$$\begin{split} Q_{\xi} &= \frac{1}{8\pi G} \int_{\mathcal{S}} d^2 z \left[2\mathcal{T}\widetilde{M} + \mathcal{Y}\overline{\widetilde{N}} + \bar{\mathcal{Y}}\widetilde{N} \right], \\ \widetilde{M} &= M + \frac{1}{8} (C_{zz} N^{zz} + C_{\bar{z}\bar{z}} N^{\bar{z}\bar{z}}) \\ \widetilde{N} &= N_{\bar{z}} - u \bar{\partial} \mathcal{M} + \frac{1}{4} C_{\bar{z}\bar{z}} \bar{\partial} C^{\bar{z}\bar{z}} + \frac{3}{16} \bar{\partial} (C_{zz} C^{zz}) \\ &+ \frac{u}{4} \bar{\partial} \left[\left(\partial^2 - \frac{1}{2} N_{zz} \right) C_{\bar{z}}^z - \left(\bar{\partial}^2 - \frac{1}{2} N_{\bar{z}\bar{z}} \right) C_{\bar{z}}^{\bar{z}} \right] \end{split}$$

 \mathscr{I}^+ . I – $du \, \partial_u Q_{\xi} = F_{\xi} \neq 0$
outgoing flux

BMS charges and fluxes

• At each cut $\{u = \text{constant}\}\$ of \mathscr{I}^+ , one can construct 'surface charges' associated to BMS symmetries.

Outgoing radiation → BMS charges are *not* conserved.

A 'good prescription' for BMS charges has emerged in recent years:

[Barnich, Troessaert '11][He, Lysov, Mitra, Strominger '14][Kapec, Lysov, Pasterski, Strominger '14][Compère, Fiorucci, Ruzziconi '19 '20][Campiglia, Peraza '20] [LD, Ruzziconi '21][Fiorucci '21][Freidel, Pranzetti, Raclariu '21][LD, Nguyen, Ruzziconi '22]

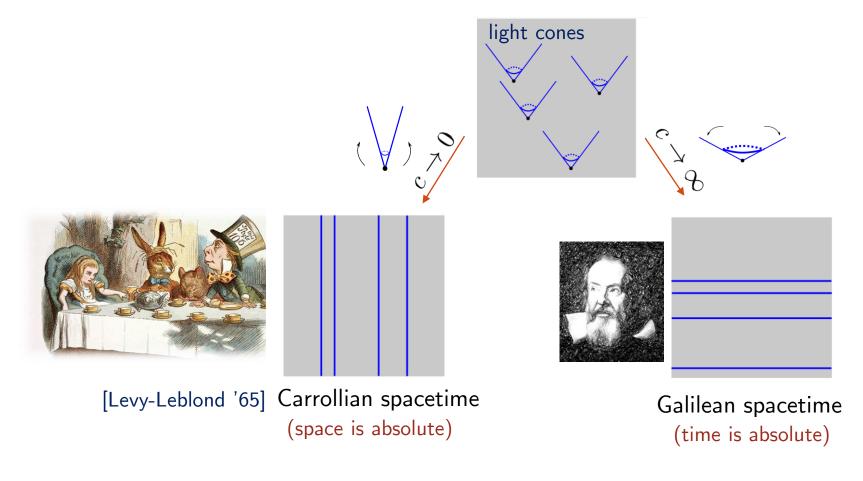
$$\begin{split} Q_{\xi} &= \frac{1}{8\pi G} \int_{\mathcal{S}} d^2 z \left[2\mathcal{T}\widetilde{M} + \mathcal{Y}\bar{\widetilde{N}} + \bar{\mathcal{Y}}\widetilde{N} \right], \\ \widetilde{M} &= M + \frac{1}{8} (C_{zz} N^{zz} + C_{\bar{z}\bar{z}} N^{\bar{z}\bar{z}}) \\ \widetilde{N} &= N_{\bar{z}} - u\bar{\partial}\mathcal{M} + \frac{1}{4} C_{\bar{z}\bar{z}} \bar{\partial}C^{\bar{z}\bar{z}} + \frac{3}{16} \bar{\partial}(C_{zz}C^{zz}) \\ &+ \frac{u}{4} \bar{\partial} \left[\left(\partial^2 - \frac{1}{2} N_{zz} \right) C_{\bar{z}}^z - \left(\bar{\partial}^2 - \frac{1}{2} N_{\bar{z}\bar{z}} \right) C_{\bar{z}}^z \right] \end{split}$$

$$\widetilde{M} = -rac{1}{2}(\Psi_2^0 + \bar{\Psi}_2^0)$$

 $\widetilde{N} = -\Psi_1^0 + u\bar{\partial}\Psi_2^0$

Laura Donnay (SISSA)

BMS = conformal Carrollian symmetries



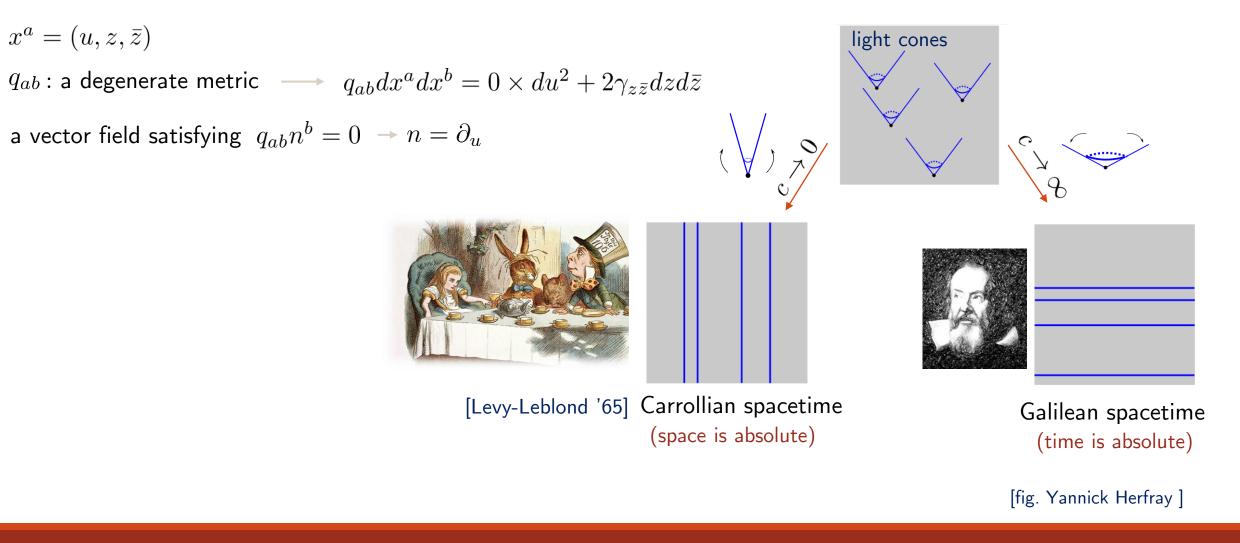
[fig. Yannick Herfray]

Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

BMS = conformal Carrollian symmetries

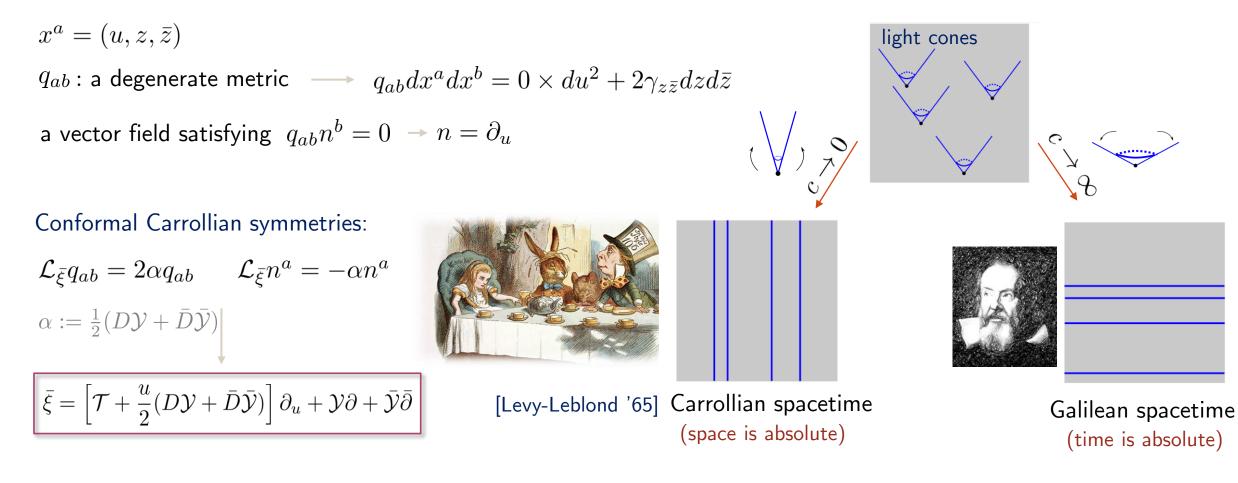
BMS symmetries = **conformal** symmetries of a **Carrollian** structure at null infinity [Geroch][Penrose][Duval, Gibbons, Horvathy] [Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...



BMS = conformal Carrollian symmetries

Laura Donnay (SISSA)

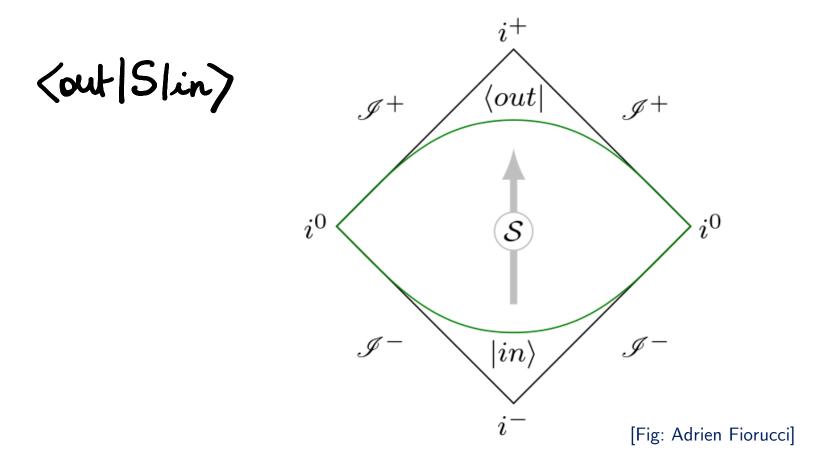
BMS symmetries = conformal symmetries of a Carrollian structure at null infinity
 [Geroch][Penrose][Duval, Gibbons, Horvathy] [Hartong][Ciambelli, Leigh, Marteau, Petropoulos][Bekaert, Morand][Herfray]...



[fig. Yannick Herfray]

BMS and the scattering problem

Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]



BMS and the scattering problem

Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14] 2 key ingredients

BMS and the scattering problem

Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]

→ 2 key ingredients

1 Noether charges for BMS symmetries [Barnich, Troessaert '10]

$$Q_{\mathcal{T}} = \frac{1}{4\pi G} \int d^2 z \sqrt{\gamma} \,\mathcal{T}M$$

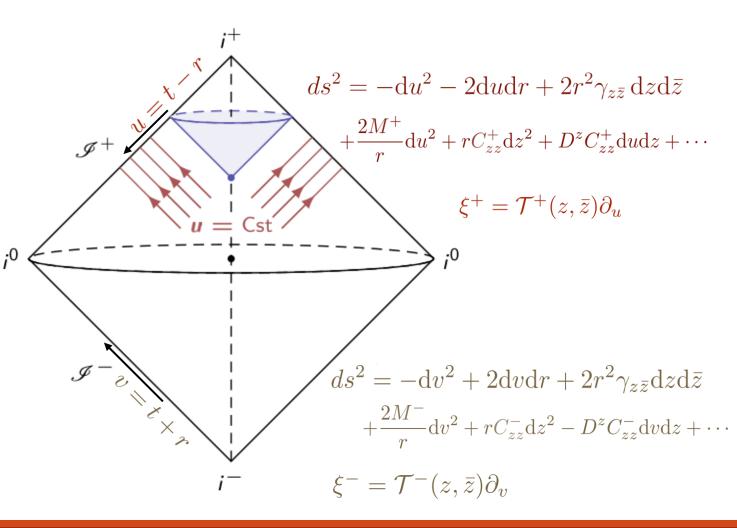
Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]

→ 2 key ingredients

1 Noether charges for BMS symmetries [Barnich, Troessaert '10]

$$Q_{\mathcal{T}} = \frac{1}{4\pi G} \int d^2 z \sqrt{\gamma} \, \mathcal{T} \boldsymbol{M}$$

2 Relating the *past* and the *future*



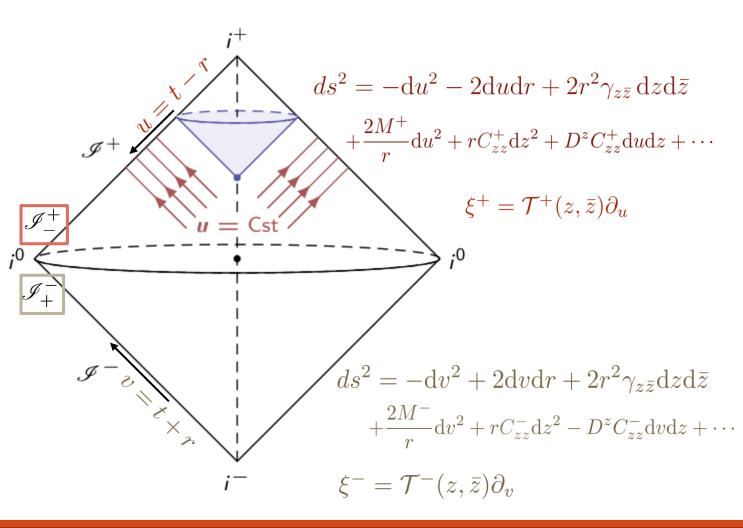
Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]

→ 2 key ingredients

1 Noether charges for BMS symmetries [Barnich, Troessaert '10]

$$Q_{\mathcal{T}} = \frac{1}{4\pi G} \int d^2 z \sqrt{\gamma} \, \mathcal{T} \boldsymbol{M}$$

2 Relating the *past* and the *future*



Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]

→ 2 key ingredients

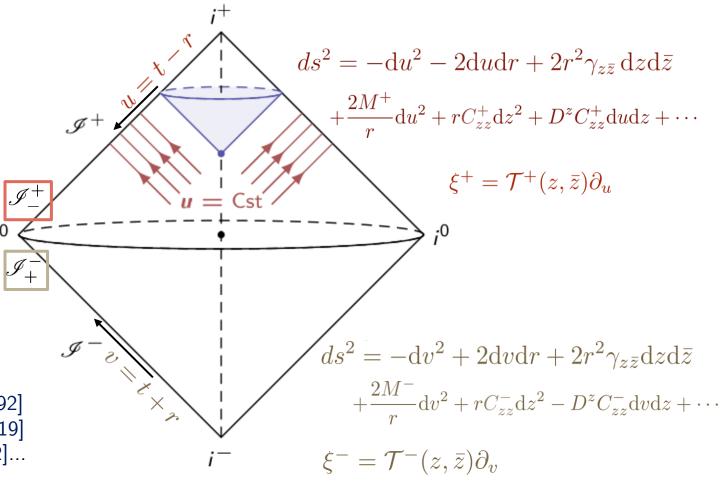
1 Noether charges for BMS symmetries [Barnich, Troessaert '10]

$$Q_{\mathcal{T}} = \frac{1}{4\pi G} \int d^2 z \sqrt{\gamma} \, \mathcal{T} M$$

2 Relating the *past* and the *future*

Antipodal matching conditions $M^{-}(v, z, \bar{z})|_{\mathscr{I}^{-}_{+}} = M^{+}(u, z, \bar{z})|_{\mathscr{I}^{+}_{-}}$ $\mathcal{T}^{-}(z, \bar{z})|_{\mathscr{I}^{-}_{+}} = \mathcal{T}^{+}(z, \bar{z})|_{\mathscr{I}^{+}_{-}}$

[Strominger '14]; see also [Herberthson, Ludvigsen '92] [Troessaert '18][Henneaux, Troessaert '18][Prabhu '19] [Kroon, Mohamed '21][Capone, Nguyen, Parisini '22]...

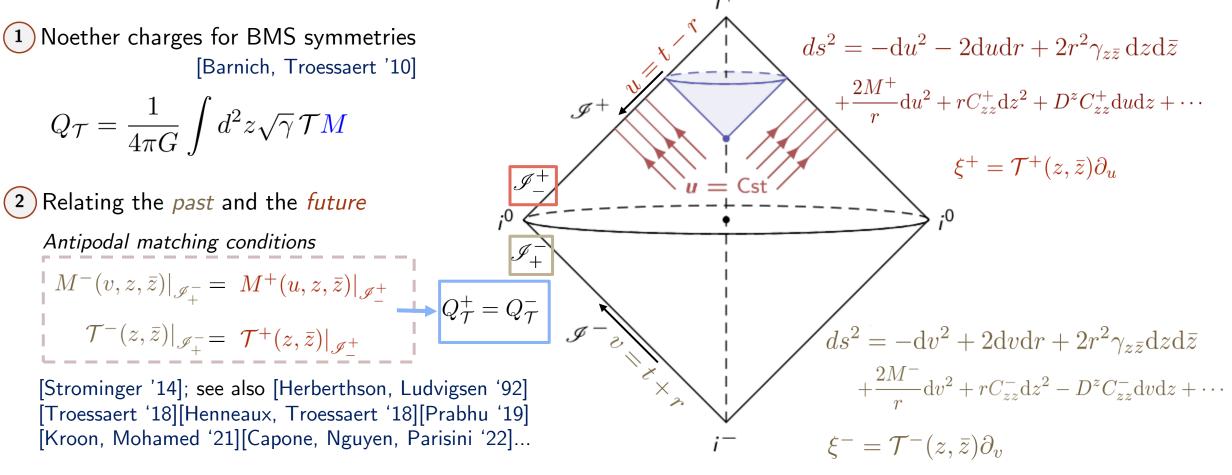


Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

Seminal observation: BMS symmetries constrain the gravitational scattering problem! [Strominger '14]

→ 2 key ingredients

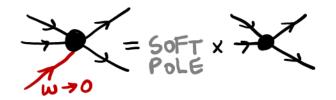


Laura Donnay (SISSA)

Prime example:

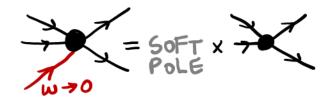
The leading soft graviton theorem [Weinberg '65]

An= (out |Slin) + soft particle (energy W->0) = SOFT x =



Prime example:

The leading soft graviton theorem [Weinberg '65] n hard particles (p_k) + external graviton (q) $\lim_{\omega \to 0} \mathcal{A}_{n+1}(q) = S^{(0)}\mathcal{A}_n + \mathcal{O}(q^0)$ $S^{(0)} = \sum_{k=1}^n \frac{p_k^{\mu} p_k^{\nu} \varepsilon_{\mu\nu(q)}}{p_k \cdot q}$ An= <out|Slin> +softparticle (energy w→0)



Prime example:

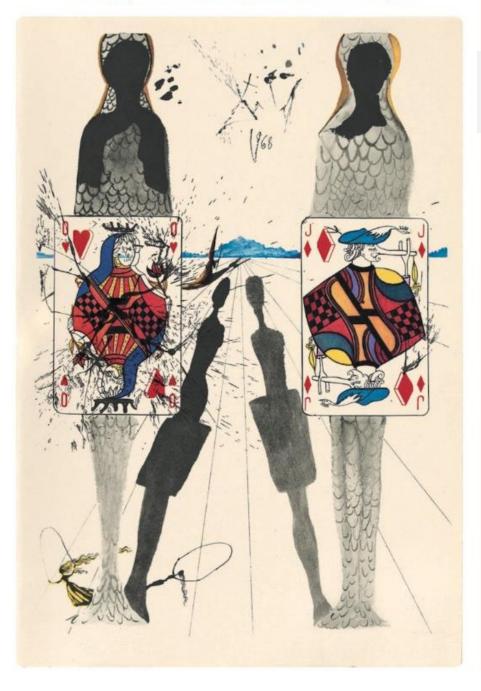
The leading soft graviton theorem [Weinberg '65] n hard particles (p_k) + external graviton (q) $\lim_{\omega \to 0} \mathcal{A}_{n+1}(q) = S^{(0)}\mathcal{A}_n + \mathcal{O}(q^0)$ $S^{(0)} = \sum_{k=1}^n \frac{p_k^{\mu} p_k^{\nu} \varepsilon_{\mu\nu(q)}}{p_k \cdot q}$

is nothing but the Ward identity associated to supertranslation symmetry [He, Lysov, Mitra, Strominger '15]

$$\langle out | Q_{\mathcal{T}}^{+} S - S Q_{\mathcal{T}}^{-} | in \rangle = 0$$

$$f$$
supertranslation charge
$$Q_{\mathcal{T}} = \frac{1}{4\pi G} \int d^{2}z \sqrt{\gamma} \mathcal{T} M$$

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:



Outline

1. BMS & the S-matrix

2. Bases and boundary operators

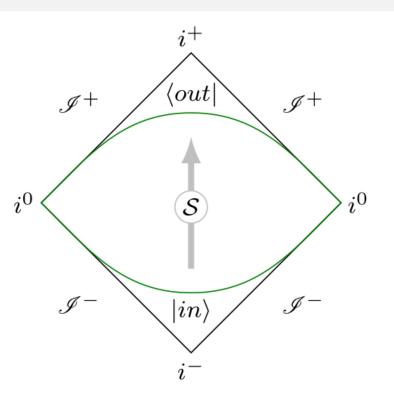
Consider the scattering of N massless spin-s in flat spacetimes

Momentum of a massless particle $p^{\mu} = \omega q^{\mu}(z, \bar{z})$ heading to a point (z, \bar{z}) on the celestial sphere

Momentum basis $A_N = \langle \text{out} | S | \text{in} \rangle_{\text{momentum}}$ i.e. the usual formulation of the scattering amplitudes

$$|\omega, z, \bar{z}, \pm s\rangle = a_{\pm}^{(s)in}(\omega, z, \bar{z})^{\dagger} |0\rangle$$
$$\langle \omega, z, \bar{z}, \pm s| = \langle 0|a_{\pm}^{(s)out}(\omega, z, \bar{z})$$

$$|\text{in}\rangle = |\omega_1, z_1, \bar{z}_1, \pm s_1\rangle \otimes \cdots \otimes |\omega_n, z_n, \bar{z}_n, \pm s_n\rangle$$
$$|\text{out}| = \langle \omega_{n+1}, z_{n+1}, \bar{z}_{n+1}, \pm s_{n+1}| \otimes \cdots \otimes \langle \omega_N, z_N, \bar{z}_N, \pm s_N\rangle$$



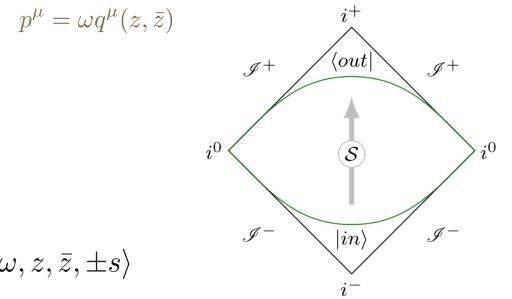
Laura Donnay (SISSA)

Momentum basis $\mathcal{A}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{momentum}}$ i.e. the usual formulation of the scattering amplitudes

Celestial basis $\mathcal{M}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{boost}}$

used in celestial holography, obtained via Mellin transforms

$$|\Delta, z, \bar{z}, \pm s\rangle = a_{\Delta, \pm}^{(s)}(z, \bar{z})^{\dagger} |0\rangle = \int_{0}^{+\infty} d\omega \,\omega^{\Delta - 1} |\omega, z, \bar{z}, \pm s\rangle$$



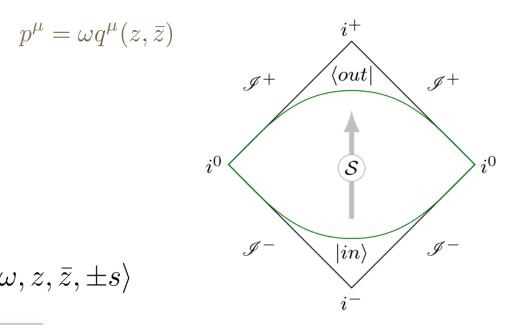
Momentum basis $A_N = \langle \text{out} | S | \text{in} \rangle_{\text{momentum}}$ i.e. the usual formulation of the scattering amplitudes

Celestial basis $\mathcal{M}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{boost}}$

used in celestial holography, obtained via Mellin transforms

$$|\Delta, z, \bar{z}, \pm s\rangle = a_{\Delta, \pm}^{(s)}(z, \bar{z})^{\dagger} |0\rangle = \int_{0}^{+\infty} d\omega \,\omega^{\Delta - 1} |\omega, z, \bar{z}, \pm s\rangle$$

$$\mathcal{M}_N = \int_0^{+\infty} d\omega_1 \, \omega_1^{\Delta_1 - 1} \cdots \int_0^{+\infty} d\omega_N \, \omega_N^{\Delta_N - 1} \mathcal{A}_N$$

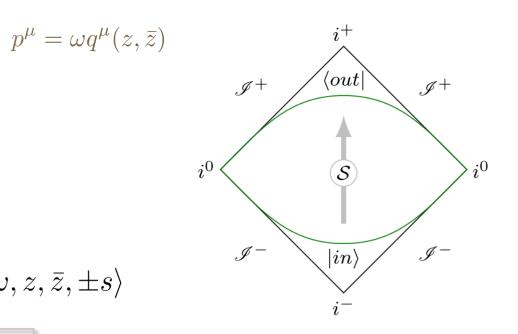


Momentum basis $A_N = \langle \text{out} | S | \text{in} \rangle_{\text{momentum}}$ i.e. the usual formulation of the scattering amplitudes

Celestial basis $\mathcal{M}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{boost}}$

used in celestial holography, obtained via Mellin transforms

$$|\Delta, z, \bar{z}, \pm s\rangle = a_{\Delta, \pm}^{(s)}(z, \bar{z})^{\dagger} |0\rangle = \int_{0}^{+\infty} d\omega \, \omega^{\Delta - 1} |\omega, z, \bar{z}, \pm s\rangle$$
$$\mathcal{M}_{N} = \int_{0}^{+\infty} d\omega_{1} \, \omega_{1}^{\Delta_{1} - 1} \cdots \int_{0}^{+\infty} d\omega_{N} \, \omega_{N}^{\Delta_{N} - 1} \mathcal{A}_{N} \quad \text{loads}$$
been e

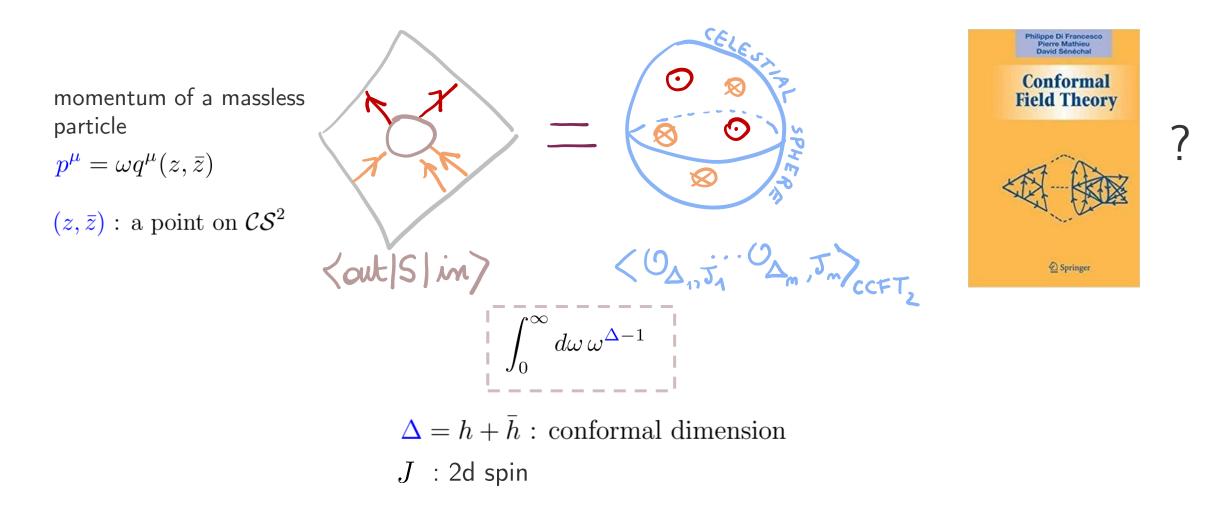


loads of these celestial amplitudes have been explicitly computed recently

Advantage: this basis makes the conformal transformation more manifest (but obscures the translation transformations)

[de Boer, Solodukhin '03][Pasterski, Shao, Strominger '17]

Celestial holography in 1 slide



Laura Donnay (SISSA)

Momentum basis $\mathcal{A}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{momentum}}$

i.e. the usual formulation of the scattering amplitudes

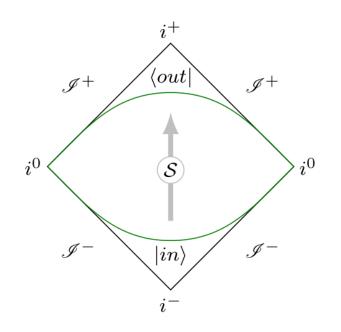
Celestial basis $\mathcal{M}_N = \langle \text{out} | \mathcal{S} | \text{in} \rangle_{\text{boost}}$

used in celestial holography, obtained via Mellin transforms

Position space basis

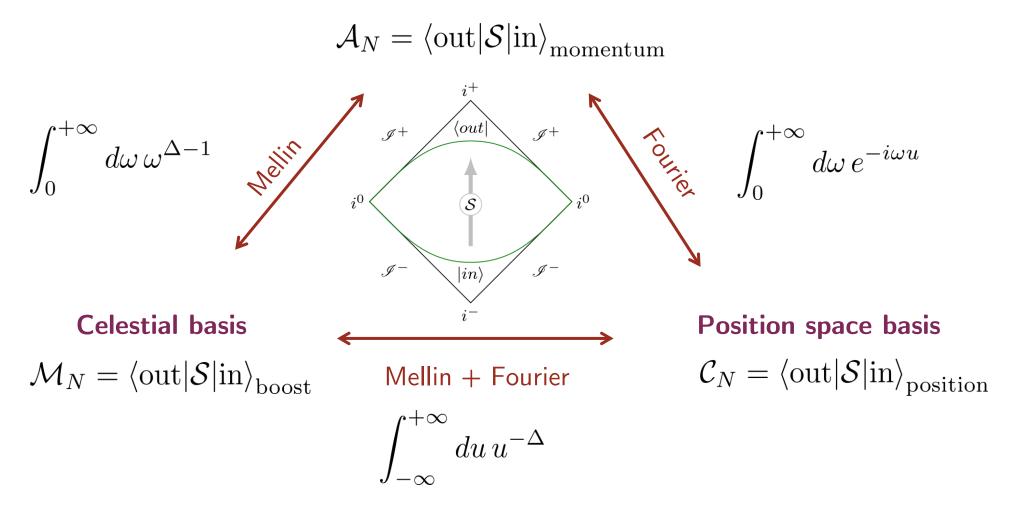
Fourier transforms from momentum basis

$$\mathcal{C}_N = \int_0^{+\infty} d\omega_1 \, e^{-i\omega_1 u_1} \cdots \int_0^{+\infty} d\omega_N \, e^{i\omega_N v_N} \mathcal{A}_N$$



Laura Donnay (SISSA)

Momentum basis



Momentum basis

$$\mathcal{A}_{2}(\omega_{1},\omega_{2}) = \omega_{1}^{-1}\delta(\omega_{1}-\omega_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

Momentum basis

$$\mathcal{A}_{2}(\omega_{1},\omega_{2}) = \omega_{1}^{-1} \delta(\omega_{1}-\omega_{2}) \delta^{(2)}(z_{1}-z_{2}) \delta_{\alpha_{1},\alpha_{2}}$$

Celestial basis

$$\Bigg) \int_0^{+\infty} d\omega \, \omega^{\Delta - 1}$$

$$\mathcal{M}_2(\Delta_1, \Delta_2) = \delta(\nu_1 + \nu_2)\delta^{(2)}(z_1 - z_2)\delta_{\alpha_1, \alpha_2}$$

 $\Delta_i = 1 + i
u_i$ [de Boer, Solodukhin '03]

Normalizable wavepackets lie on the principal series

Momentum basis

$$\mathcal{A}_{2}(\omega_{1},\omega_{2}) = \omega_{1}^{-1}\delta(\omega_{1}-\omega_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$
Celestial basis
$$\mathcal{M}_{2}(\Delta_{1},\Delta_{2}) = \delta(\nu_{1}+\nu_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

$$\Delta_{i} = 1 + i\nu_{i} \quad \text{[de Boer, Solodukhin '03]}$$
Normalizable wavepackets lie on the principal series
Position space basis
$$\mathcal{C}_{2}(u_{1},u_{2}) = \int_{0}^{+\infty} \frac{d\omega_{1}}{\omega_{1}} e^{-i\omega_{1}(u_{1}-u_{2})}\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

Ρ

Momentum basis

$$\mathcal{A}_{2}(\omega_{1},\omega_{2}) = \omega_{1}^{-1}\delta(\omega_{1}-\omega_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$
Celestial basis
$$\mathcal{M}_{2}(\Delta_{1},\Delta_{2}) = \delta(\nu_{1}+\nu_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

$$\Delta_{i} = 1 + i\nu_{i} \quad [\text{de Boer, Solodukhin '03]}$$
Normalizable wavepackets lie on the principal series
Position space basis
$$\mathcal{C}_{2}(u_{1},u_{2}) = \int_{0}^{+\infty} \frac{d\omega_{1}}{\omega_{1}}e^{-i\omega_{1}(u_{1}-u_{2})}\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$
divergent integral \longrightarrow can be regulated as
$$= \lim_{\beta \to 0^{+}} \left[\frac{1}{\beta} \right] - \left(\gamma + \ln|u_{1}-u_{2}| + \frac{i\pi}{2} \operatorname{sign}(u_{1}-u_{2}) \right) \right] \delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

Laura Donnay (SISSA)

Momentum basis

$$\mathcal{A}_{2}(\omega_{1},\omega_{2}) = \omega_{1}^{-1}\delta(\omega_{1}-\omega_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$
Celestial basis
$$\mathcal{M}_{2}(\Delta_{1},\Delta_{2}) = \delta(\nu_{1}+\nu_{2})\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

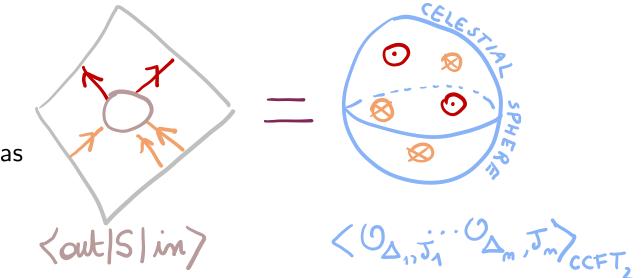
$$\Delta_{i} = 1 + i\nu_{i} \quad [\text{de Boer, Solodukhin '03]}$$
Normalizable wavepackets lie on the principal series
$$\mathcal{C}_{2}(u_{1},u_{2}) = \int_{0}^{+\infty} \frac{d\omega_{1}}{\omega_{1}}e^{-i\omega_{1}(u_{1}-u_{2})}\delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$
divergent integral \rightarrow can be regulated as
$$= \lim_{\beta \rightarrow 0^{+}} \left[\frac{1}{\beta} \right] - \left(\gamma + \ln |u_{1}-u_{2}| + \frac{i\pi}{2} \operatorname{sign}(u_{1}-u_{2}) \right) \right] \delta^{(2)}(z_{1}-z_{2})\delta_{\alpha_{1},\alpha_{2}}$$

Laura Donnay (SISSA)

Towards Carrollian holography...

The S-matrix has an intrinsic holographic flavor.

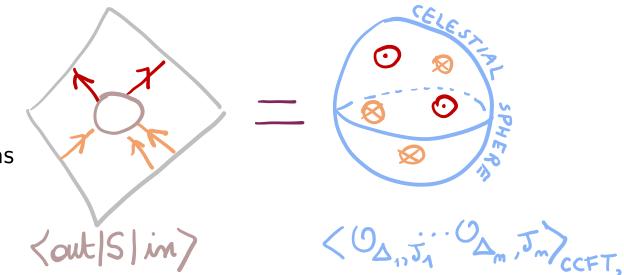
In celestial holography, scattering elements -written in a boost eigenstate basis- are interpreted as correlation functions of a 'celestial CFT'.



Towards Carrollian holography...

The S-matrix has an intrinsic holographic flavor.

In celestial holography, scattering elements -written in a boost eigenstate basis- are interpreted as correlation functions of a 'celestial CFT'.



Can we interpret S-matrix elements as correlation functions of a 'conformal Carrollian field theory'?

$$\left\langle \sigma_{(k_1,\bar{k}_1)}^{\text{out}}(x_1) \dots \sigma_{(k_n,\bar{k}_n)}^{\text{out}}(x_n) \sigma_{(k_{n+1},\bar{k}_{n+1})}^{\text{in}}(x_{n+1}) \dots \sigma_{(k_N,\bar{k}_N)}^{\text{in}}(x_N) \right\rangle \equiv \prod_{k=1}^n \int_0^{+\infty} d\omega_k \, e^{-i\omega_k u_k} \prod_{\ell=n+1}^N \int_0^{+\infty} d\omega_\ell \, e^{i\omega_\ell v_\ell} \mathcal{A}_N(p_1;\dots;p_N),$$

Laura Donnay (SISSA)

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p) e^{ip \cdot X} + a(p)^{\dagger} e^{-ip \cdot X} \right]$$

 $p^{\mu} = \omega q^{\mu}(\vec{w})$

momentum of a massless particle heading towards the celestial sphere

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

$$p^{\mu} = \omega q^{\mu}(\vec{w})$$

momentum of a massless particle heading towards the celestial sphere

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

 $p^{\mu} = \omega q^{\mu}(\vec{w})$

momentum of a massless particle heading towards the celestial sphere

Go to Bondi coordinates $X^{\mu} = (u, r, z, \overline{z})$ and make a large r expansion (using the stationary phase space approximation)

scalar:
$$\Phi \sim \frac{1}{r} \int_0^{+\infty} d\omega \left[a(\omega, z, \bar{z}) e^{-i\omega u} - a(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

From **bulk** to **boundary** (large r expansion):

$$\Phi(X) = \int \frac{d^3p}{(2\pi)^3 2p^0} \left[a(p)e^{ip \cdot X} + a(p)^{\dagger}e^{-ip \cdot X} \right]$$
$$= \int \frac{d^2\vec{w}}{2(2\pi)^3} \omega d\omega \left[a(\omega, \vec{w})e^{i\omega q \cdot X} + a(\omega, \vec{w})^{\dagger}e^{-i\omega q \cdot X} \right]$$

 $p^{\mu} = \omega q^{\mu}(\vec{w})$

momentum of a massless particle heading towards the celestial sphere

Go to Bondi coordinates $X^{\mu} = (u, r, z, \overline{z})$ and make a large r expansion (using the stationary phase space approximation)

scalar:
$$\Phi \sim \frac{1}{r} \int_{0}^{+\infty} d\omega \left[a(\omega, z, \bar{z}) e^{-i\omega u} - a(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

spin s:
$$\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)}(\omega, z, \bar{z}) e^{-i\omega u} - a_{-}^{(s)}(\omega, z, \bar{z})^{\dagger} e^{+i\omega u} \right]$$

(photon)
$$A_z \sim A_z^{(0)}(u, z, \bar{z})$$

(graviton) $h_{zz} \sim rC_{zz}(u, z, \bar{z})$

From **bulk** to **boundary** (large r expansion):

This is the boundary operator: it encodes the asymptotic behavior at null infinity. Later we will identify it with a 'Carrollian primary'.

From **bulk** to **boundary** (large r expansion):

This is the boundary operator: it encodes the asymptotic behavior at null infinity. Later we will identify it with a 'Carrollian primary'.

Using the usual commutation relations $[a_{\alpha}^{(s)}(\vec{p}), a_{\alpha'}^{(s)}(\vec{p'})^{\dagger}] = (2\pi)^3 2p^0 \delta^{(3)}(\vec{p} - \vec{p'}) \delta_{\alpha,\alpha'}$, one gets

$$[\bar{\Phi}_{z...z}(u, z, \bar{z}), \bar{\Phi}_{\bar{z}...\bar{z}}(u', z', \bar{z}')] = \operatorname{sign}(u - u')\delta^{(2)}(z - z')$$

Ex: gravitational shear obeys the canonical relations $[C_{zz}(u, z, \bar{z}), C_{\bar{z}\bar{z}}(u', z', \bar{z}')] = \operatorname{sign}(u - u')\delta^{(2)}(z - z')$

From **bulk** to **boundary** (large r expansion): $\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \bar{\Phi}_{z...z}(u, z, \bar{z})$

From **boundary** to **bulk**:

$$\Phi_I^{(s)}(X) = \int_0^{+\infty} d\omega d^2 z \left[\epsilon_I^{*\alpha} a_\alpha^{(s)}(\omega, z, \bar{z}) e^{ip \cdot X} + h.c. \right]$$

From **bulk** to **boundary** (large r expansion): $\Phi_{z...z}^{(s)}(X) \sim r^{s-1} \bar{\Phi}_{z...z}(u, z, \bar{z})$

From **boundary** to **bulk**:

$$\Phi_{I}^{(s)}(X) = \int_{0}^{+\infty} d\omega d^{2}z \left[\epsilon_{I}^{*\alpha} a_{\alpha}^{(s)}(\omega, z, \bar{z}) e^{ip \cdot X} + h.c. \right]$$

$$\Phi_{I}^{(s)}(X) = \int d^{2}z \, \epsilon_{I}^{*+} \, \partial_{\tilde{u}} \bar{\Phi}_{z...z}(\tilde{u} = -q \cdot X, z, \bar{z}) + h.c.$$
Kirchhoff-d'Adhémar formula

Allows to reconstruct the bulk field from its boundary value at \mathscr{I}^+

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

$$\bar{\Phi}^{\text{out}(s)}(u, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\text{out}}(\omega, z, \bar{z})e^{-i\omega u} - a_{-}^{(s)\text{out}}(\omega, z, \bar{z})^{\dagger}e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

$$\bar{\Phi}^{\mathrm{in}(s)}(\boldsymbol{v}, \boldsymbol{z}, \bar{\boldsymbol{z}}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}}) e^{-i\omega \boldsymbol{v}} - a_-^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}})^{\dagger} e^{i\omega \boldsymbol{v}} \right]$$

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

$$\bar{\Phi}^{\mathrm{out}(s)}(u,z,\bar{z}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{out}}(\omega,z,\bar{z})e^{-i\omega u} - a_-^{(s)\mathrm{out}}(\omega,z,\bar{z})^{\dagger}e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

$$\bar{\Phi}^{\mathrm{in}(s)}(v,z,\bar{z}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{in}}(\omega,z,\bar{z})e^{-i\omega v} - a_-^{(s)\mathrm{in}}(\omega,z,\bar{z})^{\dagger}e^{i\omega v} \right]$$

They transform as 'conformal Carrollian primaries'

 $\delta_{\bar{\xi}}\bar{\Phi}^{(s)}(u,z,\bar{z}) = \left[\left(\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}}) \right) \partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial} + \frac{k}{2} \partial \mathcal{Y} + \frac{\bar{k}}{2} \bar{\partial}\bar{\mathcal{Y}} \right] \bar{\Phi}^{(s)}(u,z,\bar{z})$

with weights (for outgoing) $k = \frac{1+J}{2}$ and $\bar{k} = \frac{1-J}{2}$, where $J = \pm s$

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

• Asymptotically free fields: $\Phi^{(s)}(X) \stackrel{\mathscr{I}^+}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{out}(s)}(u, z, \bar{z}) \qquad \Phi^{(s)}(X) \stackrel{\mathscr{I}^-}{\sim} r^{s-1} \bar{\Phi}^{\mathrm{in}(s)}(v, z, \bar{z})$

The out/in boundary operators are

$$\bar{\Phi}^{\mathrm{out}(s)}(u,z,\bar{z}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{out}}(\omega,z,\bar{z})e^{-i\omega u} - a_-^{(s)\mathrm{out}}(\omega,z,\bar{z})^{\dagger}e^{i\omega u} \right]$$

destroys (creates) outgoing spin-s particles with positive (negative) helicity

$$\bar{\Phi}^{\mathrm{in}(s)}(\boldsymbol{v}, \boldsymbol{z}, \bar{\boldsymbol{z}}) = \int_0^{+\infty} d\omega \left[a_+^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}}) e^{-i\omega \boldsymbol{v}} - a_-^{(s)\mathrm{in}}(\omega, \boldsymbol{z}, \bar{\boldsymbol{z}})^{\dagger} e^{i\omega \boldsymbol{v}} \right]$$

They transform as 'conformal Carrollian primaries'

 $\delta_{\bar{\mathcal{E}}}\bar{\Phi}^{(s)}(u,z,\bar{z}) = \left[\left(\mathcal{T} + \frac{u}{2} (\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}}) \right) \partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial} + \frac{k}{k} \partial \mathcal{Y} + \frac{\bar{k}}{k} \bar{\partial}\bar{\mathcal{Y}} \right] \bar{\Phi}^{(s)}(u,z,\bar{z})$

with weights (for outgoing) $k = \frac{1+J}{2}$ and $\bar{k} = \frac{1-J}{2}$, where $J = \pm s$

<u>Ex</u>: gravitational shear $C_{zz}(u, z, \overline{z})$ is a (quasi-)Carrollian primary of weights $(\frac{3}{2}, -\frac{1}{2})$. 2

$$J = +$$

Laura Donnay (SISSA)

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

The out/in boundary operators are

$$\bar{\Phi}^{\text{out}(s)}(u, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\text{out}}(\omega, z, \bar{z})e^{-i\omega u} - a_{-}^{(s)\text{out}}(\omega, z, \bar{z})^{\dagger}e^{i\omega u} \right]$$

creates (destroys) outgoing spin-s particles with positive (negative) helicity
$$\bar{\Phi}^{\text{in}(s)}(v, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\text{in}}(\omega, z, \bar{z})e^{-i\omega v} - a_{-}^{(s)\text{in}}(\omega, z, \bar{z})^{\dagger}e^{i\omega v} \right]$$

• **Goal**: S-matrix as a correlation function of conformal Carrollian primaries:

$$\langle 0|\bar{\Phi}_{I_1}^{(s)}(x_1)^{\text{out}}\dots\bar{\Phi}_{I_n}^{(s)}(x_n)^{\text{out}}\bar{\Phi}_{I_{n+1}}^{(s)}(x_{n+1})^{\text{in}\,\dagger}\dots\bar{\Phi}_{I_N}^{(s)}(x_N)^{\text{in}\,\dagger}|0\rangle = \mathcal{C}_N(u_i, z_i, \bar{z}_i)$$

Can we interpret **S-matrix** elements as correlation functions of a 'conformal Carrollian field theory'?

The out/in boundary operators are

$$\bar{\Phi}^{\text{out}(s)}(u, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\text{out}}(\omega, z, \bar{z})e^{-i\omega u} - a_{-}^{(s)\text{out}}(\omega, z, \bar{z})^{\dagger}e^{i\omega u} \right]$$

creates (destroys) outgoing spin-s particles with positive (negative) helicity
$$\bar{\Phi}^{\text{in}(s)}(v, z, \bar{z}) = \int_{0}^{+\infty} d\omega \left[a_{+}^{(s)\text{in}}(\omega, z, \bar{z})e^{-i\omega v} - a_{-}^{(s)\text{in}}(\omega, z, \bar{z})^{\dagger}e^{i\omega v} \right]$$

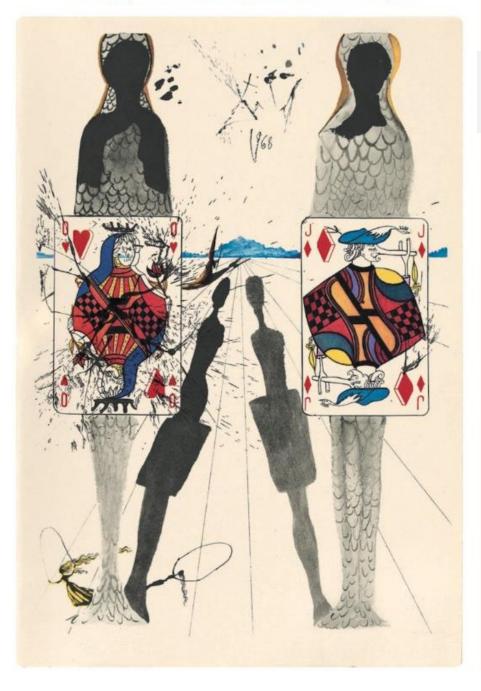
• Goal: S-matrix as a correlation function of conformal Carrollian primaries:

$$\begin{bmatrix} \langle 0 | \bar{\Phi}_{I_{1}}^{(s)}(x_{1})^{\text{out}} \dots \bar{\Phi}_{I_{n}}^{(s)}(x_{n})^{\text{out}} \bar{\Phi}_{I_{n+1}}^{(s)}(x_{n+1})^{\text{in}\,\dagger} \dots \bar{\Phi}_{I_{N}}^{(s)}(x_{N})^{\text{in}\,\dagger} | 0 \rangle = \mathcal{C}_{N}(u_{i}, z_{i}, \bar{z}_{i}) \\ k_{12}^{\pm} \equiv \sum_{i=1,2} (k_{i} \pm \bar{k}_{i}) \\ \mathcal{C}_{2}(u, v) = \left[\frac{1}{\beta} - \left(\gamma + \ln|u - v| + \frac{i\pi}{2} \text{sign}(u - v) \right) \right] \delta^{(2)}(z_{1} - z_{2}) \delta_{k_{12}^{\pm}, 0} \delta_{k_{12}^{\pm}, 0}$$

Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:



Outline

- 1. BMS & the S-matrix
- 2. Bases and boundary operators
- 3. Towards Carrollian holography

<u>Set up</u>: consider a theory in *n* dimensions with action

$$S[\Psi|\sigma] = \int d^n x \, L[\Psi|\sigma]$$

 Ψ^i : dynamical fields σ^m : sources (fields without e.o.m)

Laura Donnay (SISSA)

<u>Set up</u>: consider a theory in *n* dimensions with action

$$S[\Psi|\sigma] = \int d^n x \, L[\Psi|\sigma] \qquad \qquad \Psi^i : \text{dynamical fields} \\ \sigma^m : \text{sources (fields without e.o.m)}$$

<u>Idea</u>: promote the Noetherian symmetries $\delta_K \Psi^i = K^i [\Psi]$ of the theory without sources ($\sigma = 0$) to generalized symmetries of the sourced theory [Troessaert '16][Barnich, Fiorucci, Ruzziconi, to appear]:

$$\delta_K \Psi^i = K^i [\Psi | \sigma] \qquad \delta_K \sigma^m = K^m [\sigma]$$

$$\rightarrow$$
 symmetries of the e.o.m $\delta_K\left(\frac{\delta S}{\delta\Psi^i}\right) = 0$, but *not* of the action $\delta_K L \neq 0$

<u>Set up</u>: consider a theory in *n* dimensions with action

$$S[\Psi|\sigma] = \int d^n x \, L[\Psi|\sigma] \qquad \qquad \Psi^i : \text{dynamical fields} \\ \sigma^m : \text{sources (fields without e.o.m)}$$

<u>Idea</u>: promote the Noetherian symmetries $\delta_K \Psi^i = K^i [\Psi]$ of the theory without sources ($\sigma = 0$) to generalized symmetries of the sourced theory [Troessaert '16][Barnich, Fiorucci, Ruzziconi, to appear]:

$$\delta_K \Psi^i = K^i [\Psi | \sigma] \qquad \delta_K \sigma^m = K^m [\sigma]$$

$$\rightarrow$$
 symmetries of the e.o.m $\delta_K\left(\frac{\delta S}{\delta\Psi^i}\right) = 0$, but *not* of the action $\delta_K L \neq 0$

In the presence of external sources, Noether currents j_K^a are no longer conserved:

$$\partial_a j_K^a = F_K[\Psi|\sigma] \neq 0$$

flux term

Ward identities associated to generalized symmetries:

$$\delta_K \Psi^i = K^i [\Psi | \sigma] \qquad \delta_K \sigma^m = K^m [\sigma]$$

$$\partial_a \langle j_K^a(x) X_N^{\Psi} \rangle = \sum_{k=1}^N \delta^{(n)}(x - x_k) \,\delta_{K^{i_k}} \,\langle X_N^{\Psi} \rangle + \langle F_K(x) X_N^{\Psi} \rangle$$
$$\partial_a \langle j_K^a(x) X_N^{\sigma} \rangle = \langle F_K(x) X_N^{\sigma} \rangle$$
'sourced Ward identities'

$$\begin{split} X_N^{\Psi} &\equiv \Psi^{i_1}(x_1) \dots \Psi^{i_N}(x_N) \\ X_N^{\sigma} &\equiv \sigma^{m_1}(x_1) \dots \sigma^{m_N}(x_N) \end{split} \qquad \delta_{K^{i_k}} X_N^{\Psi} &\equiv \Psi^{i_1}(x_1) \dots K^{i_k} [\Psi(x_k)] \dots \Psi^{i_N}(x_N) \\ \end{split}$$

$$[LD, Fiorucci, Herfray, Ruzziconi '22]$$

Laura Donnay (SISSA)

Ward identities associated to generalized symmetries:

$$\delta_K \Psi^i = K^i [\Psi | \sigma] \qquad \delta_K \sigma^m = K^m [\sigma]$$

$$\begin{split} X_N^{\Psi} &\equiv \Psi^{i_1}(x_1) \dots \Psi^{i_N}(x_N) \\ X_N^{\sigma} &\equiv \sigma^{m_1}(x_1) \dots \sigma^{m_N}(x_N) \end{split} \qquad \delta_{K^{i_k}} X_N^{\Psi} &\equiv \Psi^{i_1}(x_1) \dots K^{i_k} [\Psi(x_k)] \dots \Psi^{i_N}(x_N) \\ [\text{LD, Fiorucci, Herfray, Ruzziconi '22]} \end{split}$$

Gravitational S-matrix & Carrollian holography

Laura Donnay (SISSA)

• In the presence of external sources, Noether currents j_K^a are no longer conserved:

$$\partial_a j_K^a = F_K[\Psi|\sigma] \neq 0$$
 flux term

• Noether currents associated to conformal Carrollian symmetries $\bar{\xi} = \left[\mathcal{T} + \frac{u}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}})\right]\partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial}$

• In the presence of external sources, Noether currents j_K^a are no longer conserved:

$$\partial_a j_K^a = F_K[\Psi|\sigma] \neq 0$$
 flux term

• Noether currents associated to conformal Carrollian symmetries $\bar{\xi} = \left[\mathcal{T} + \frac{u}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}})\right]\partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial}$

: encodes Carrollian momenta [Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18]² [Ciambelli, Marteau '18][LD, Marteau '19]

• In the presence of external sources, Noether currents j_K^a are no longer conserved:

$$\partial_a j_K^a = F_K[\Psi|\sigma] \neq 0$$
 flux term

• Noether currents associated to conformal Carrollian symmetries $\bar{\xi} = \left[\mathcal{T} + \frac{u}{2}(\partial \mathcal{Y} + \bar{\partial}\bar{\mathcal{Y}})\right]\partial_u + \mathcal{Y}\partial + \bar{\mathcal{Y}}\bar{\partial}$

$j^a_{\bar{\xi}} = \mathcal{C}^a{}_b \bar{\xi}^b$	$\mathcal{C}^{a}{}_{b} = \left[egin{array}{cc} \mathcal{M} & \mathcal{N}_{\mathcal{B}} \ \mathcal{B}^{A} & \mathcal{A}^{A}{}_{B} \end{array} ight]$: encodes Carrollian momenta [Ciambelli, Marteau, Petkou, Petropoulos, Siampos '18] ²
$x^a = (u, z, \bar{z})$	Carrollian stress tensor	[Ciambelli, Marteau '18][LD, Marteau '19]

Global conformal Carrollian symmetries (Carrollian rotation, translations, boosts, dilatation, special CT) impose the following constraints $z\partial_z - \bar{z}\partial_{\bar{z}} \quad \partial_a \quad z\partial_u, \bar{z}\partial_u \quad x^a\partial_a$

 $\begin{array}{l} \partial_{u}\mathcal{M} = F_{u}, & \mathcal{B}^{A} = 0, \\ \partial_{u}\mathcal{N}_{z} - \frac{1}{2}\partial\mathcal{M} + \bar{\partial}\mathcal{A}^{\bar{z}}{}_{z} = F_{z}, & 2\mathcal{A}^{z}{}_{z} + \mathcal{M} = 0, \\ \partial_{u}\mathcal{N}_{\bar{z}} - \frac{1}{2}\bar{\partial}\mathcal{M} + \partial\mathcal{A}^{z}{}_{\bar{z}} = F_{\bar{z}}, & 2\mathcal{A}^{\bar{z}}{}_{\bar{z}} + \mathcal{M} = 0 \end{array}$ [LD, Fiorucci, Herfray, Ruzziconi '22]

The sourced Ward identities
$$\partial_a \langle j_K^a(x)X \rangle = \sum_{k=1}^N \delta^{(n)}(x-x_k) \, \delta_{K^{i_k}} \langle X \rangle + \langle F_K(x)X \rangle$$

 $X \equiv \Psi^{i_1}(x_1) \dots \Psi^{i_N}(x_N)$

 $j^{a}_{\bar{\xi}} = \mathcal{C}^{a}{}_{b}\bar{\xi}^{b} \qquad \mathcal{C}^{a}{}_{b} = \left| \begin{array}{cc} \mathcal{M} & \mathcal{N}_{\mathcal{B}} \\ \mathcal{B}^{A} & \mathcal{A}^{A}{}_{B} \end{array} \right|$ of a conformal Carrollian field theory imply $\partial_u \langle \mathcal{M} X \rangle + \sum_i \delta^{(3)}(x - x_i) \partial_{u_i} \langle X \rangle = \langle F_u X \rangle$ $\partial_u \langle \mathcal{N}_z X \rangle - \frac{1}{2} \partial \langle \mathcal{M} X \rangle + \bar{\partial} \langle \mathcal{A}^{\bar{z}}_z X \rangle + \sum_i \left[\delta^{(3)}(x - x_i) \partial_i \langle X \rangle - \partial \left(\delta^{(3)}(x - x_i) k_i \langle X \rangle \right) \right] = \langle F_z X \rangle$ $\partial_u \langle \mathcal{N}_{\bar{z}} X \rangle - \frac{1}{2} \bar{\partial} \langle \mathcal{M} X \rangle + \partial \langle \mathcal{A}^z_{\bar{z}} X \rangle + \sum \left[\delta^{(3)}(x - x_i) \bar{\partial}_i \langle X \rangle - \bar{\partial} \left(\delta^{(3)}(x - x_i) \bar{k}_i \langle X \rangle \right) \right] = \langle F_{\bar{z}} X \rangle$ $\langle \mathcal{B}^A X \rangle = 0$ $\langle (\mathcal{A}^{z}{}_{z} + \frac{1}{2}\mathcal{M})X \rangle + \sum_{i} \delta^{(3)}(x - x_{i}) k_{i} \langle X \rangle = 0,$ $\langle (\mathcal{A}^{\bar{z}}{}_{\bar{z}} + \frac{1}{2}\mathcal{M})X \rangle + \sum_{i} \delta^{(3)}(x - x_{i}) \bar{k}_{i} \langle X \rangle = 0$

[LD, Fiorucci, Herfray, Ruzziconi '22]

Duality Carrollian momenta/gravitational data

We propose

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{\widetilde{M}}{4\pi G} \,, \\ \langle \mathcal{N}_A \rangle &= \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) \,, \\ \langle \mathcal{C}^A{}_B \rangle &+ \frac{1}{2} \delta^A{}_B \langle \mathcal{M} \rangle = 0 \,. \end{split}$$

[LD, Fiorucci, Herfray, Ruzziconi '22]

recall e.g.

$$\partial_u \langle \mathcal{M} X \rangle + \sum_i \delta^{(3)} (x - x_i) \partial_{u_i} \langle X \rangle = \langle F_u X \rangle$$

Laura Donnay (SISSA)

Duality Carrollian momenta/gravitational data

We propose

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{\widetilde{M}}{4\pi G} \,, \\ \langle \mathcal{N}_A \rangle &= \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) \,, \\ \langle \mathcal{C}^A{}_B \rangle &+ \frac{1}{2} \delta^A{}_B \langle \mathcal{M} \rangle = 0 \,. \end{split}$$

[LD, Fiorucci, Herfray, Ruzziconi '22]

recall e.g.

$$\partial_u \langle \mathcal{M} X \rangle + \sum_i \delta^{(3)} (x - x_i) \partial_{u_i} \langle X \rangle = \langle F_u X \rangle$$

cf. AdS/CFT where the holographic stress-energy tensor is identified with some subleading order in the bulk metric expansion [Balasubramanian, Kraus '99] [Haro, Solodukhin, Skenderis '01]

Duality Carrollian momenta/gravitational data

We propose

$$\begin{split} \langle \mathcal{M} \rangle &= \frac{M}{4\pi G} \,, \\ \langle \mathcal{N}_A \rangle &= \frac{1}{8\pi G} \left(\widetilde{N}_A + u \partial_A \widetilde{M} \right) \,, \\ \langle \mathcal{C}^A{}_B \rangle &+ \frac{1}{2} \delta^A{}_B \langle \mathcal{M} \rangle = 0 \,. \end{split}$$

[LD, Fiorucci, Herfray, Ruzziconi '22]

recall e.g.

$$\partial_u \langle \mathcal{M} X \rangle + \sum_i \delta^{(3)} (x - x_i) \partial_{u_i} \langle X \rangle = \langle F_u X \rangle$$

cf. AdS/CFT where the holographic stress-energy tensor is identified with some subleading order in the bulk metric expansion [Balasubramanian, Kraus '99] [Haro, Solodukhin, Skenderis '01]

The external sources at the boundary are identified with the asymptotic shear

Fluxes:
$$F_{u} = \frac{1}{16\pi G} \Big[\partial_{z}^{2} \partial_{u} \sigma_{\bar{z}\bar{z}} + \frac{1}{2} \sigma_{\bar{z}\bar{z}} \partial_{u}^{2} \sigma_{zz} + \text{c.c.} \Big],$$

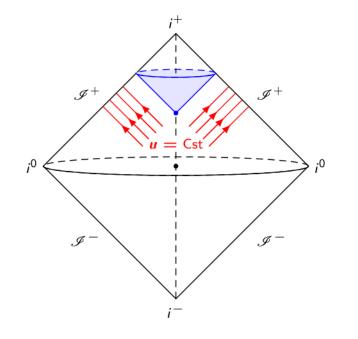
$$F_{z} = \frac{1}{16\pi G} \Big[-u \partial_{z}^{3} \partial_{u} \sigma_{\bar{z}\bar{z}} + \sigma_{zz} \partial_{z} \partial_{u} \sigma_{\bar{z}\bar{z}} - \frac{u}{2} (\partial_{z} \sigma_{zz} \partial_{u}^{2} \sigma_{\bar{z}\bar{z}} + \sigma_{zz} \partial_{z} \partial_{u}^{2} \sigma_{\bar{z}\bar{z}}) \Big]$$

Consistently, these expressions plugged into the sourced Ward id. of the conformal Carrollian theory reproduce the time evolution $\partial_u \widetilde{M} = \ldots$ and $\partial_u \widetilde{N}_A = \ldots$ (no correlator insertion)

Laura Donnay (SISSA)

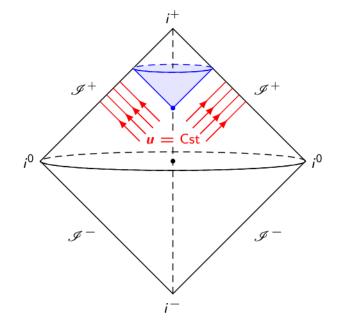
Gluing the future and the past

So far we have looked at future null infinity. Analogous results hold for past null infinity.



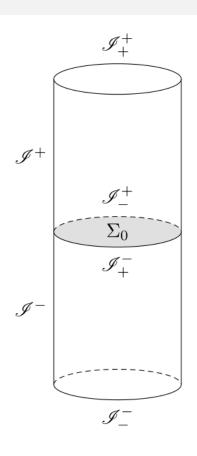
Gluing the future and the past

So far we have looked at future null infinity. Analogous results hold for past null infinity.



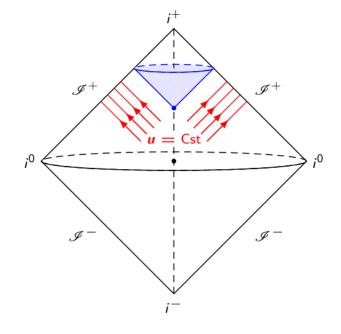
 We want to treat the conformal boundary as a whole by gluing the two pieces around spatial infinity.

$$\hat{\mathscr{I}} \equiv \mathscr{I}^- \sqcup \mathscr{I}^+$$



Gluing the future and the past

So far we have looked at future null infinity. Analogous results hold for past null infinity.

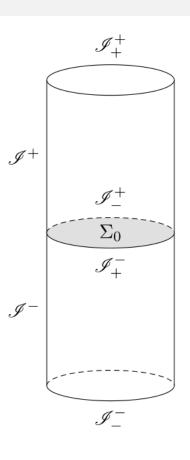


 We want to treat the conformal boundary as a whole by gluing the two pieces around spatial infinity.

 $\hat{\mathscr{I}}\equiv \mathscr{I}^-\sqcup \mathscr{I}^+$

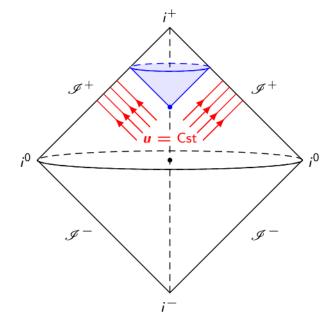
Separating surface

- = locus where the Carrollian vector n^a vanishes
- We get only one smooth automorphism of *I*.
 Consistent with antipodal matching of [Strominger '13].



Gluing the future and the past

So far we have looked at future null infinity. Analogous results hold for past null infinity.



 We want to treat the conformal boundary as a whole by gluing the two pieces around spatial infinity.

 $\hat{\mathscr{I}} \equiv \mathscr{I}^- \sqcup \mathscr{I}^+$

Separating surface

- = locus where the Carrollian vector n^a vanishes
- We get only one smooth automorphism of *I*.
 Consistent with antipodal matching of [Strominger '13].

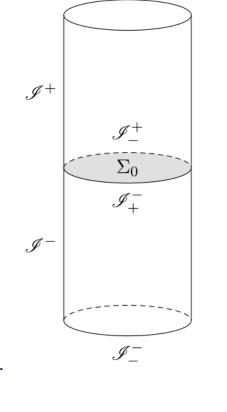
Ward id. for massless scattering

Laura Donnay (SISSA)

Assuming that the Noether current vanishes at $\mathscr{I}_{_}$

$$\mathscr{I}_{-}^{-} \text{ and } \mathscr{I}_{+}^{+} : \ \langle \int_{\hat{\mathscr{I}}} F_{\bar{\xi}}(x) X_{N}^{\sigma} \rangle = 0 \longrightarrow \left[\delta_{\bar{\xi}} \left\langle X_{N}^{\sigma} \right\rangle = 0 \right]$$

Invariance of the correlators under conformal Carroll symmetries



 \mathscr{I}^+_+

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

 $\delta_{\bar{\xi}} \left\langle X_N \right\rangle = 0$

$$\delta_{\bar{\xi}} \langle X_N \rangle = 0 \qquad \langle X_2 \rangle = \langle \Phi_{(k_1, \bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2, \bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts $\rightarrow \langle X_2 \rangle = f(z_{12}, \bar{z}_{12}) + g(u_{12})\delta^{(2)}(z_{12})$ $z_{12} = z_1 - z_2$ $u_{12} = u_1 - u_2$

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts
$$\rightarrow \langle X_2 \rangle = \begin{bmatrix} f(z_{12}, \bar{z}_{12}) \\ f(z_{12}, \bar{z}_{12}) \end{bmatrix} + g(u_{12}) \delta^{(2)}(z_{12}) \qquad \qquad z_{12} = z_1 - z_2 \\ u_{12} = u_1 - u_2 \end{cases}$$

Time-independent branch

 $\delta_{\bar{\xi}} \left\langle X_N \right\rangle = 0$

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts
$$\rightarrow \langle X_2 \rangle = \begin{bmatrix} f(z_{12}, \bar{z}_{12}) \\ f(z_{12}, \bar{z}_{12}) \end{bmatrix} + g(u_{12}) \delta^{(2)}(z_{12}) \qquad \qquad z_{12} = z_1 - z_2 \\ u_{12} = u_1 - u_2 \end{cases}$$

Time-independent branch

 $\delta_{ar{\xi}}\left\langle X_{N}
ight
angle =0$

Carrollian rotation and dilatation \rightarrow

$$\langle X_2 \rangle^f = \frac{c_1 \, \delta_{k_1, k_2} \delta_{\bar{k}_1, \bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts
$$\rightarrow \langle X_2 \rangle = \begin{bmatrix} f(z_{12}, \overline{z}_{12}) \\ f(z_{12}, \overline{z}_{12}) \end{bmatrix} + g(u_{12}) \delta^{(2)}(z_{12})$$

$$\begin{aligned} z_{12} = z_1 - z_2 \\ u_{12} = u_1 - u_2 \end{aligned}$$

Time-independent branch

 $\delta_{ar{\xi}}\left\langle X_{N}
ight
angle =0$

Carrollian rotation and dilatation -

$$\langle X_2 \rangle^f = \frac{c_1 \,\delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

like a 2d CFT, but not interesting in this context

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts $\rightarrow \langle X_2 \rangle = f(z_{12}, \overline{z}_{12}) + \begin{bmatrix} g(u_{12})\delta^{(2)}(z_{12}) \end{bmatrix}$ $z_{12} = z_1 - z_2$ $u_{12} = u_1 - u_2$

Time-independent branch

 $\delta_{ar{\xi}}\left\langle X_{N}
ight
angle =0$

Carrollian rotation and dilatation -

$$\langle X_2 \rangle^f = \frac{c_1 \, \delta_{k_1, k_2} \delta_{\bar{k}_1, \bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

like a 2d CFT, but not interesting in this context

• Time-**dependent** branch

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts $\rightarrow \langle X_2 \rangle = f(z_{12}, \overline{z}_{12}) + g(u_{12})\delta^{(2)}(z_{12})$ $\begin{aligned} z_{12} &= z_1 - z_2 \\ u_{12} &= u_1 - u_2 \end{aligned}$

Time-independent branch

 $\delta_{\bar{\xi}} \left\langle X_N \right\rangle = 0$

Carrollian rotation and dilatation -

$$\langle X_2 \rangle^f = rac{c_1 \,\delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

like a 2d CFT, but not interesting in this context

Time-dependent branch

 $k_{12}^{\pm} \equiv \sum \left(k_i \pm \bar{k}_i\right)$

i = 1.2

Carrollian rotation and dilatation
$$\rightarrow \langle X_2 \rangle^g = \frac{c_2}{(u_1 - u_2)^{k_{12}^+ - 2}} \delta^{(2)}(z_{12}) \delta_{k_{12}^-, 0}$$

$$\langle X_2 \rangle = \langle \Phi_{(k_1,\bar{k}_1)}(u_1, z_1, \bar{z}_1), \Phi_{(k_2,\bar{k}_2)}(u_2, z_2, \bar{z}_2) \rangle$$

[Bagchi, Mandal '09][Bagchi, Gary, Zodinmawia '17][Chen, Liu, Zheng '21][Bagchi, Banerjee, Basu, Dutta '22]

Carrollian translations and boosts $\rightarrow \langle X_2 \rangle = f(z_{12}, \bar{z}_{12}) + g(u_{12})\delta^{(2)}(z_{12})$ $z_{12} = z_1 - z_2$ $u_{12} = u_1 - u_2$

Time-**independent** branch

 $\delta_{\bar{\xi}} \left\langle X_N \right\rangle = 0$

Carrollian rotation and dilatation

$$\langle X_2 \rangle^f = rac{c_1 \,\delta_{k_1,k_2} \delta_{\bar{k}_1,\bar{k}_2}}{(z_1 - z_2)^{k_1 + k_2} (\bar{z}_1 - \bar{z}_2)^{\bar{k}_1 + \bar{k}_2}}$$

like a 2d CFT, but not interesting in this context

Time-**dependent** branch

Carrollian rotation and dilatation

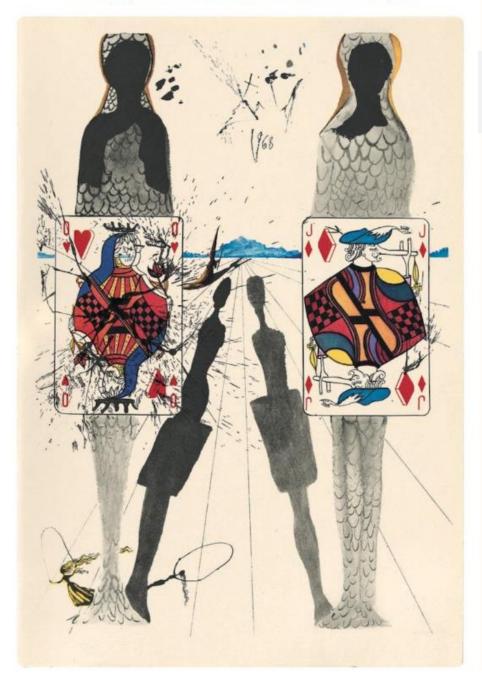
$$k_{12}^{\pm} \equiv \sum_{i=1,2} (k_i \pm \bar{k}_i)$$

$$k_{12}^{\pm} \equiv \sum_{i=1,2} (k_i \pm \bar{k}_i)$$

$$\langle X_2 \rangle_{(n)}^g = \frac{c_2}{(u_1 - u_2)^{k_{12}^+ - 2}} \delta^{(2)}(z_{12}) \delta_{k_{12}^-, 0}$$

Laura Donnay (SISSA)

Salvador Dalí, illustrations for Alice's Adventures in Wonderland, 1969:

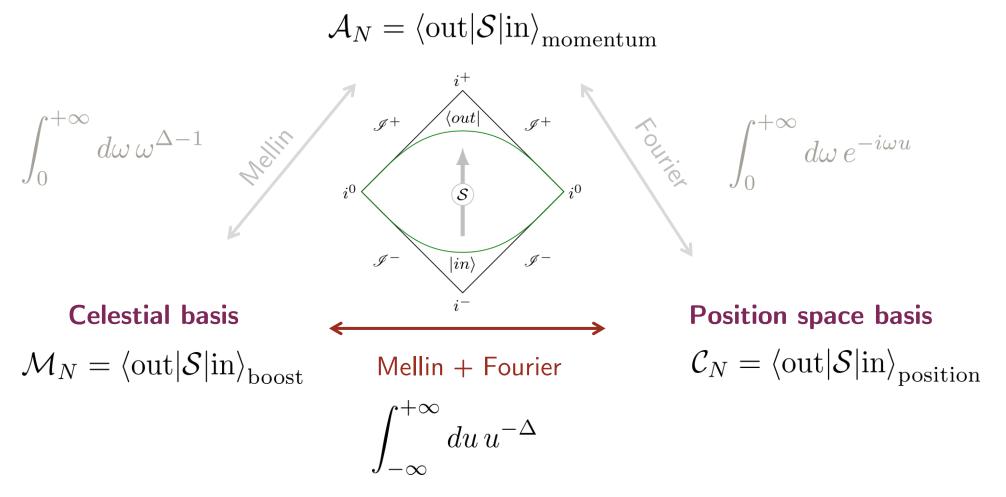


Outline

- 1. BMS & the S-matrix
- 2. Bases and boundary operators
- 3. Towards Carrollian holography
- 4. CCFT vs CCFT

From Carrollian to celestial

Momentum basis



see also 'extrapolate dictionary' [Pasterski, Puhm, Trevisani '21]

Laura Donnay (SISSA)

Relationship with celestial Ward identities

• The map between conformal Carrollian and celestial operators is

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$\mathcal{O}_{(\Delta_i, J_i)}^{\text{out}}(z_i, \bar{z}_i) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{du_i}{(u_i + i\epsilon)^{\Delta_i}} \,\sigma_{(k_i, \bar{k}_i)}^{\text{out}}(u_i, z_i, \bar{z}_i),$$

$$\mathcal{O}_{(\Delta_j, J_j)}^{\text{in}}(z_j, \bar{z}_j) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{dv_j}{(v_j - i\epsilon)^{\Delta_j}} \,\sigma_{(k_j, \bar{k}_j)}^{\text{in}}(v_j, z_j, \bar{z}_j)$$

$$k = \frac{1}{2}(1 \pm J), \qquad \bar{k} = \frac{1}{2}(1 \mp J)$$

Relationship with celestial Ward identities

• The map between conformal Carrollian and celestial operators is

[LD, Fiorucci, Herfray, Ruzziconi '22]

$$\mathcal{O}_{(\Delta_i,J_i)}^{\text{out}}(z_i,\bar{z}_i) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{du_i}{(u_i + i\epsilon)^{\Delta_i}} \,\sigma_{(k_i,\bar{k}_i)}^{\text{out}}(u_i,z_i,\bar{z}_i),$$
$$\mathcal{O}_{(\Delta_j,J_j)}^{\text{in}}(z_j,\bar{z}_j) = \lim_{\epsilon \to 0^+} \int_{-\infty}^{+\infty} \frac{dv_j}{(v_j - i\epsilon)^{\Delta_j}} \,\sigma_{(k_j,\bar{k}_j)}^{\text{in}}(v_j,z_j,\bar{z}_j)$$

$$k = \frac{1}{2}(1 \pm J), \qquad \bar{k} = \frac{1}{2}(1 \mp J)$$

• Conformal Carrollian Ward identities can reproduce the ones for celestial CFT:

$$\left\langle P(z,\bar{z})\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle + \sum_{q=1}^{N}\frac{1}{z-z_{q}}\left\langle\ldots\mathcal{O}_{\Delta_{q}+1,J_{q}}(z_{q},\bar{z}_{q})\ldots\right\rangle = 0$$

$$\left\langle T(z)\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle + \sum_{q=1}^{N}\left[\frac{\partial_{q}}{z-z_{q}} + \frac{h_{q}}{(z-z_{q})^{2}}\right]\left\langle\prod_{i=1}^{N}\mathcal{O}_{\Delta_{i},J_{i}}(z_{i},\bar{z}_{i})\right\rangle = 0 \right\rangle$$

$$\text{leading & subleading soft graviton theorem}$$

[He, Lysov, Mitra, Strominger '15][Kapec, Mitra, Raclariu, Strominger '17] [LD, Puhm, Strominger '18][Fan, Fotopoulos, Taylor '19]

Conformal Carrollian field theory living at null infinity \leftrightarrow quantum gravity in flat spacetime

Conformal Carrollian field theory living at null infinity \leftrightarrow quantum gravity in flat spacetime

What is a Conformal Carrollian FT? → Beyond kinematics? Top-down constructions?

Conformal Carrollian field theory living at null infinity \leftrightarrow quantum gravity in flat spacetime

What is a Conformal Carrollian FT? → Beyond kinematics? Top-down constructions?

full tower of currents link with AdS/CFT, dS/CFT building representations log corrections bootstrapping CCFT higher dimensions massive particles relationship to string theory adding black holes

Laura Donnay (SISSA)

. . .

Conformal **C**arrollian field theory living at null infinity \leftrightarrow quantum gravity in flat spacetime

amplitudes gravitational waves observation conformal field theory twistor theory asymptotic symmetries quantum field theory mathematical GR fluid/gravity

Laura Donnay (SISSA)

Conformal **C**arrollian field theory living at null infinity \leftrightarrow quantum gravity in flat spacetime

amplitudes gravitational waves observation conformal field theory twistor theory asymptotic symmetries quantum field theory mathematical GR fluid/gravity

Thank you.

Laura Donnay (SISSA)