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Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics

I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré

I Symmetries of null hypersurfaces (including BMS)
I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)

I Carrollian Einstein equations
I Vacuum plus linearized solutions
I Solitonic solutions

Can some of the latter be regarded as “Carrollian black holes?”
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I Symmetries of null hypersurfaces (including BMS)
I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)
I Carrollian Einstein equations

I Vacuum plus linearized solutions
I Solitonic solutions

Can some of the latter be regarded as “Carrollian black holes?”

Daniel Grumiller — Carrollian black holes Motivation for Carrollian gravity 5/25



Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics
I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
I Symmetries of null hypersurfaces (including BMS)
I Symmetries of tensionless strings
I Fractons & cosmology

Following history from SR to GR: natural to gauge Carroll algebra
I Gravity actions (but with Carroll boost invariance)
I Carrollian Einstein equations
I Vacuum plus linearized solutions

I Solitonic solutions

Can some of the latter be regarded as “Carrollian black holes?”

Daniel Grumiller — Carrollian black holes Motivation for Carrollian gravity 5/25



Carrollian symmetries

Symmetries ubiquitious in constraining physics
I Kinematics & Dynamics
I Correlations functions
I Decay channels
I Density of states

Carrollian symmetries arise in various contexts
I Formally c→ 0 limit of Poincaré
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Carrollian gravity

Why?

I Cosmology aplications

I Carrollian holography

I Cond-mat applications

I because it is there

How?

I different formalisms

I metric-like variables

I Cartan-like variables

I gauge-like variables

What?

I generic statements about whole model space vs. specific examples

I focus on simple model

I lowest dimension possible: 1+1

I consider limit from 2d (dilaton) gravity
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Carrollian black holes?

No lightcones in Carroll gravity!

I no event horizons ⇒ no black holes

I right?

I well...

I already quantum GR would not feature black holes

I need (eventually) better definition of black holes

I for the time being: focus on certain characteristics

I thermodynamical properties (thermal states, huge entropy)

I information properties (chaos bound saturation, fast scrambling)

I geometric properties (extremal surfaces, islands)
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Carrollian black holes?

No lightcones in Carroll gravity!

I no event horizons ⇒ no black holes

I right?

I well...

I already quantum GR would not feature black holes

I need (eventually) better definition of black holes

I for the time being: focus on certain characteristics

I thermodynamical properties (thermal states, huge entropy)

I information properties (chaos bound saturation, fast scrambling)

I geometric properties (extremal surfaces, islands)

This talk pursues last option: Carrollian extremal surfaces (CES)
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Outline
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Carrollian dilaton gravity in 1+1 dimensions
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JT model

I In first order form: sl(2,R) BF theory

IJT ∼
∫
〈X F 〉 F = dA+A ∧A

Expand connection 1-form as

A = ω J + ea P
a

generators J, Pa obey (A)dS2 algebra

[Pa, Pb] = εab Λ [Pa, J ] = εa
b Pb

I Expanding in components more familiar Cartan formulation

IJT ∼
∫ (

XR+XaTa − εΛX
)

with R = dω, Ta = dea + εab ω ∧ eb, and ε = εabe
a ∧ eb

I “Palatini magic”: torsion vanishes on-shell, Ta ≈ 0
I Constant curvature solutions

R = εΛ

depending on sign(Λ) 6= 0: (A)dS2

I JT/SYK correspondence (Schwarzian, chaos bound, ...)

I JT gravity has black hole solutions
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Most general 2d dilaton gravity

Consider most general consistent deformation of JT

I maintain number of field degrees of freedom

I maintain number of gauge degrees of freedom

I maintain gravity interpretation (Lorentzian boosts, 2d diffeos)

Result: generalized 2d dilaton gravity DG, Ruzziconi, Zwikel ’21

Idil =
k

2π

∫ (
XR+XaTa − εV(X, XaXa)

)
JT recovered for V = ΛX
Gauge symmetries deformed but still same interpretation as for JT:

λboost
I = (λ, 0, 0) λdiffeo

I = AIµ ξ
µ

notation: AI = (ω, ea) = (ω, e+, e−) and XI = (X,Xa) = (X,X+, X−)

Have infinite family of (toy) models available!
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Consider most general consistent deformation of JT
I maintain number of field degrees of freedom
I maintain number of gauge degrees of freedom
I maintain gravity interpretation (Lorentzian boosts, 2d diffeos)

Result: generalized 2d dilaton gravity DG, Ruzziconi, Zwikel ’21

Idil =
k

2π

∫ (
XR+XaTa − εV(X, XaXa)

)
JT recovered for V = ΛX
Gauge symmetries deformed but still same interpretation as for JT:

λboost
I = (λ, 0, 0) λdiffeo

I = AIµ ξ
µ

notation: AI = (ω, ea) = (ω, e+, e−) and XI = (X,Xa) = (X,X+, X−)
XI can be interpreted as (target space) coordinates of a Poisson manifold

Idil = IPSM ∼
∫ (

XI dAI+P
IJ(XK)AI∧AJ

)
P IJ =

(
0 −X+ X−

X+ 0 V
−X− −V 0

)
Ikeda ’93; Schaller, Strobl ’94

Have infinite family of (toy) models available!
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Selected list of models V = V (X) +XaXa U(X) (see review hep-th/0604049)

Black holes in (A)dS2, asymptotically flat or arbitrary spaces (Wheeler property)

Model U(X) V (X)

1. Schwarzschild (1916) − 1
2X

−λ2

2. Jackiw–Teitelboim [JT] (1984) 0 ΛX
3. Witten Black Hole (1991) − 1

X
−2b2X

4. CGHS (1992) 0 −2Λ
5. (A)dS2 ground state (1994) − a

X
BX

6. Rindler ground state (1996) − a
X

BXa

7. Black Hole attractor (2003) 0 BX−1

8. Spherically reduced gravity (N > 3) − N−3
(N−2)X

−λ2X(N−4)/(N−2)

9. All above: ab-family (1997) − a
X

BXa+b

10. Liouville gravity a beαX

11. Reissner–Nordström (1916) − 1
2X

−λ2 + Q2

X

12. Schwarzschild-(A)dS − 1
2X

−λ2 − `X
13. Katanaev–Volovich (1986) α βX2 − Λ

14. BTZ/Achucarro–Ortiz (1993) 0 Q2

X
− J

4X3 − ΛX
15. KK reduced CS (2003) 0 1

2
X(c−X2)

16. KK red. conf. flat (2006) − 1
2

tanh (X/2) A sinhX

17. 2D type 0A string Black Hole − 1
X

−2b2X + b2q2

8π

18. exact string Black Hole (2005) lengthy lengthy
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Carrollian JT model DG, Hartong, Prohazka, Salzer ’20; Gomis, Hidalgo, Salgado-Rebolledo ’20

I Change to sl(2) basis convenient for Carrollian contraction

[H,J ] = −δ P [P, J ] = −H [H,P ] = −Λ J

I Make IW contraction δ → 0 to Carroll algebra

[H,J ] = 0 [P, J ] = −H [H,P ] = −Λ J

I Write down corresponding BF action

ICJT ∼
∫ (

XR+XHT +XP de− εΛX
)

with curvature R = dω, torsion T = dτ +ω ∧ e, and volume ε = τ ∧ e
I action of Carrollian boosts on fields

δλX = 0 δλXH = 0 δλXP = XH λ

δλω = dλ δλτ = −e λ δλe = 0

invariance of dilaton X, auxiliary scalar XH, and spatial vielbein e

Daniel Grumiller — Carrollian black holes Carrollian dilaton gravity in 1+1 dimensions 12/25
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Most general 2d Carrollian dilaton gravity

Consider most general consistent deformation of CJT

I maintain number of field degrees of freedom

I maintain number of gauge degrees of freedom

I maintain gravity interpretation (Carrollian boosts, 2d diffeos)

Result: generalized 2d Carroll dilaton gravity DG, Hartong, Prohazka, Salzer ’20

ICdil =
k

2π

∫ (
XR+XHT +XP de− εV(X, XH)

)
CJT recovered for V = ΛX
Gauge symmetries deformed but still same interpretation as for CJT:

λCboost
I = (λ, 0, 0) λdiffeo

I = AIµ ξ
µ

notation: AI = (ω, τ, e) and XI = (X,XH, XP)

Have infinite family of Carrollian (toy) models available!
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λCboost
I = (λ, 0, 0) λdiffeo
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Have infinite family of Carrollian (toy) models available!
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Selected list of Carrollian models V = V (X)

Model V (X)

1. Carrollian Jackiw–Teitelboim [CJT] (2020) ΛX

Opportunities for students to carve out
interesting corners of model space!

EOM (with their suggested names∗):

Carrollian curvature: dω + ∂XV (X, XH) τ ∧ e = 0

Carrollian torsion: dτ + ω ∧ e+ ∂XH
V (X, XH) τ ∧ e = 0

No intrinsic torsion: de = 0

Carrollian expansion: dX +XH e = 0

Carrollian Casimir: dXH + V (X, XH) e = 0

Boost non-invariant: dXP − V (X, XH) τ −XH ω = 0

∗ please speak up now if you object to some of these names
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All classical solutions
Follow Lorentzian algorithm DG, Kummer, Vassilevich ’02

1. Constant dilaton vacua

XH = 0 X = const. s.t. V(X, 0) = 0

constant curvature, R = ∂XV; slightly boring sector

2. Linear dilaton vacua: follow essentially standard algorithm

I Global structure?

I Singularities?

I Special surfaces? (horizon, trapping, extremal, ...)
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All classical solutions
Follow Lorentzian algorithm DG, Kummer, Vassilevich ’02

1. Constant dilaton vacua
2. Linear dilaton vacua: follow essentially standard algorithm

I assume XH 6= 0 and write e = −dX/XH

I integration of EOM

1

2
dX2

H = V(X, XH) dX

establishes conserved Casimir/mass
I for simplicity: V = V (X); define U(X) =

∫X
V (y) dy; yields mass

dM = 0 M = U(X)− 1

2
X2

H

I solve de = 0 locally by e = dr
I solve remaining EOM in Coulomb gauge, getting XP = 0 and

ω = −V (X) dt dX = −XH dr

τ = XH dt XH = ±
√

2(U(X)−M)

I curvature R = ∂XV not necessarily constant

I Global structure?

I Singularities?

I Special surfaces? (horizon, trapping, extremal, ...)
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All classical solutions
Follow Lorentzian algorithm DG, Kummer, Vassilevich ’02

1. Constant dilaton vacua

2. Linear dilaton vacua: follow essentially standard algorithm
same solution in metric-like variables:

ds2 = gµν dxµ dxν = dr2 =
dX2

X2
H

=
dX2

2(U(X)−M)
vµ∂µ =

1

XH

∂t

I Carrollian affine connection recovers result for curvature

R = ∂XV = ∂2XU

I Carrollian vector field v singular for XH →∞ and XH → 0

I Global structure?

I Singularities?

I Special surfaces? (horizon, trapping, extremal, ...)
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Outline

Motivation for Carrollian gravity

Carrollian dilaton gravity in 1+1 dimensions

Carrollian extremal surfaces

Outlook towards Carrollian black holes
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Lorentzian extremal surfaces in target space

I classify co-dimension-2 surfaces according to their null expansions

I Lorentzian 2d dilaton gravity: amounts to classification of signs of X±

ds2 = 2eQ dv
(

dX + eQX+X− dv
)

Extremal surfaces are boost invariant loci!
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I Lorentzian 2d dilaton gravity: amounts to classification of signs of X±

ds2 = 2eQ dv
(

dX + eQX+X− dv
)

signs X+ > 0 X+ < 0 X+ = 0

X− > 0 anti-trapped anti-normal marginally anti-trapped
X− < 0 normal trapped marginally trapped
X− = 0 marginally anti-trapped marginally trapped extremal

marginally trapped

marginally anti-trapped

normal
anti-normal

anti-trapped

trapped

extremal

Extremal surfaces are boost invariant loci!
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I extremal surfaces defined here in terms of target space coordinates
X± rather than world-sheet quantities
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Carrollian extremal surfaces in target space

I search for loci in target space that are Carroll boost invariant

I recall action of Carroll boosts on target space coordinates:

δλX = 0 = δλXH = 0 δλXP = λXH

I suggests target space definition of CES

XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

anti-normal

normal

extremal

Daniel Grumiller — Carrollian black holes Carrollian extremal surfaces 18/25



Carrollian extremal surfaces in target space

I search for loci in target space that are Carroll boost invariant
I recall action of Carroll boosts on target space coordinates:

δλX = 0 = δλXH = 0 δλXP = λXH

I suggests target space definition of CES

XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

anti-normal

normal

extremal

Daniel Grumiller — Carrollian black holes Carrollian extremal surfaces 18/25



Carrollian extremal surfaces in target space

I search for loci in target space that are Carroll boost invariant
I recall action of Carroll boosts on target space coordinates:

δλX = 0 = δλXH = 0 δλXP = λXH

I suggests target space definition of CES

XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

anti-normal

normal

extremal

Daniel Grumiller — Carrollian black holes Carrollian extremal surfaces 18/25



Carrollian extremal surfaces in target space

I search for loci in target space that are Carroll boost invariant
I recall action of Carroll boosts on target space coordinates:

δλX = 0 = δλXH = 0 δλXP = λXH

I suggests target space definition of CES

XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

anti-normal

normal

extremal

Daniel Grumiller — Carrollian black holes Carrollian extremal surfaces 18/25



Carrollian extremal surfaces in target space

I search for loci in target space that are Carroll boost invariant
I recall action of Carroll boosts on target space coordinates:

δλX = 0 = δλXH = 0 δλXP = λXH

I suggests target space definition of CES

XH = 0

I Carrollian classification of co-dimension-2 surfaces simple

signs XH > 0 XH < 0 XH = 0

normal anti-normal extremal

anti-normal

normal

extremal

anti-normal

normal

extremal

Daniel Grumiller — Carrollian black holes Carrollian extremal surfaces 18/25



Carrollian extremal surfaces in terms of directional derivative of dilaton

I Lorentzian case: extremal surface condition

X± ≈ eµ±∂µX = 0

on-shell equaivalent to vanishing directional derivatives of dilaton

I makes sense geometrically: dilaton is 2d version of surface area

I makes sense physically: dilaton at extremal surface is Wald entropy

I Carrollian case similar: CES condition

XH ≈ −eµ∂µX = 0

on-shell equivalent to vanishing of directional derivative of dilaton

I despite appearance, condition above on-shell Carroll boost invariant

δλ
(
eµ∂µX

)
= −λvµ∂µX ≈ λXHv

µeµ = 0

I definition above conceivably generalizes to higher dimensions
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Motivation for Carrollian gravity

Carrollian dilaton gravity in 1+1 dimensions

Carrollian extremal surfaces

Outlook towards Carrollian black holes
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Proposal for Carrollian black hole definition in 2d

Carrollian black holes are defined to have all of these properties:

1. (exact) solution to some Carroll gravity

2. thermal state (finite temperature and entropy)

3. must have (isolated) CES

Possible issues:

1. may not have access to solution

2. may not know how to determine temperature/entropy

3. might be better defining property than CES

Address these issues in remainder of talk
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Accessability

I For now: solved by sticking to simple (toy) models

I example: CJT black hole solutions (fix Λ = − 1
`2

)

I implement solution algorithm for CJT
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Accessability

I For now: solved by sticking to simple (toy) models

I example: CJT black hole solutions (fix Λ = − 1
`2

)

I implement solution algorithm for CJT:

X =
1

2
er/` +M`2 e−r/` ω = −X

`2
dt

XH =
1

2
er/` −M`2 e−r/` τ = XH dt

XP = 0 e = dr

r → ±∞: asymptotic regions; r → `
2 ln(2M`2): CES (for M > 0)

note similarities to AdS2 black holes! suggestive to impose Brown–Henneaux-like boundary conditions

X =
1

2
e
r/`

+O(e
−r/`

) ω =
(
−

1

2`2
e
r/`

+O(e
−r/`

)
)

dt

XH =
1

2`
e
r/`

+O(e
−r/`

) τ =
( 1

2`
e
r/`

+O(e
−r/`

)
)

dt

XP = 0 e = dr

CJT black holes require positive mass M
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Accessability

I For now: solved by sticking to simple (toy) models
I example: CJT black hole solutions (fix Λ = − 1

`2
)

I implement solution algorithm for CJT

XH = 0
X

XH

M = 0

M = 1

M = −1
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Thermal properties

Need

1. energy

2. temperature

3. entropy
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Thermal properties

Need

1. energy

2. temperature

3. entropy

1. defined using covariant phase space methods

δQλ = k
2πλI δX

I
∣∣∣
∂M

⇒ E = Qλ(∂t) = k
2π δM

2. defined using either of these
I apply Lorentzian PSM definition to Carrollian PSM

2πT := P IJ ∗ (AI ∧AJ)|extremal

I define Carrollian surface gravity
2πT := κ with ∇µ

(
eν∂νX

)∣∣
extremal

=: κeµ

I exploit holonomy condition

3. know the result is Wald entropy (so that dE = T dS)

S = kX|extremal

but not yet how to derive this from first principles
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Thermal properties

Need

1. energy

2. temperature

3. entropy

Apply definitions to CJT black holes set ` = 1

X =
1

2
er +M e−r v =

1
1
2 e

r −M e−r
∂t ds2 = dr2

1. energy E = k
2π M

2. temperature T =
√
2M
2π

3. entropy S = k
√

2M = π2c T
3 = 2π

√
cE
6 with c = 6k

π like chiral Cardy

first law holds
dE = T dS

evidence suggests: CJT black holes are thermal states with (large) entropy
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CES or better definition of Carrollian black holes?

Assessment of Carrollian extremal surface definition

Pros

I geometric definition

I applicable to Lorentzian and Carrollian geometries

I no good alternative definition in sight to label solitonic solutions

Cons

I might not be generic enough (only applies to eternal black holes)

I gaps in discussion of thermodyanmics

I do we need such a definition in the first place

No final verdict on Carrollian black holes
but incentive to continue research
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