Quantum Machine Learning in High Energy Physics

Examples from CERN

Sofia Vallecorsa

AI & Quantum Research - CERN IT

April 26th 2023

Outline

- 1. Introduction: the CERN Quantum Technology Initiative
- 2. Quantum Machine Learning and Applications at CERN
- 3. Anomaly Detection
- 4. Beam Optimisation in linear accelerators
- 5. Improving robustness
 - Stabilizing training on NISQ
 - Quantum data
- 6. Summary

Hype and Potential...

2019: Google

https://www.nature.com/articles/s41586-019-1666-5

https://www.nature.com/articles/d41586-020-03434-7

2020: Hefei National Lab

nature

Explore content V Journal information V Publish with us V Subscribe

nature > news > article

NEWS | 03 December 2020 Physicists in China challenge Google's 'quantum advantage'

Photon-based quantum computer does a calculation that ordinary computers might never be able to do.

Philip Ball

Who could create value with quantum computing?

QC use cases in different sectors: the situation in 2019 with the estimated **medium** (2025) **and long** (2035) **term impact**.

Quantum Technologies

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures.Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

N 9	umber entangled	14	2	N/A	6
C G	ompany support oogle, IBM, Quantum Circuits	ionQ	Intel	Microsoft, Bell Labs	Quantum Diamond Technologies
G	Pros Fast working. Build on existing semiconductor industry.	Very stable. Highest achieved gate fidelities.	Stable. Build on existing semiconductor industry.	Greatly reduce errors.	Can operate at room temperature.
	Cons Collapse easily and must be kept cold.	Slow operation. Many lasers are needed.	Only a few entangled. Must be kept cold.	Existence not yet confirmed.	Difficult to entangle.

Algorithms & Applications

Quantum effects (superposition entanglement, no-cloning theorem, ...) improve and accelerate complex algorithms

- Efficient sampling, searches and optimization
- Linear algebra, matrices and machine learning
- New algorithms/methods for **cryptography** and **communication**

Challenge is re-thinking algorithms design and define fair benchmarking and comparison to classical algorithms

Noisy Intermediate-Scale Quantum devices

- Limitations in terms of stability and connectivity
 - Circuit optimisation
- **De-coherence**, measurement errors or gate level errors (noise)
 - Specific error mitigation techniques
 - Prefer algorithms robust against noise
- Problem size
- Initially integrated in hybrid quantum-classical infrastructure (HPC + QC)
 - Quantum Processing Units as new "hardware accelerators"

Trapped ion technology: *ionQ* with all-to-all connectivity

Semiconducting transmon qubits: *IBM Toronto*

23.06.22

HL-LHC computing challenges

VOLUME DAT

Δ ST ΠΔΤΔ ΠΡΠΔΤΓ

sdau. 11 September 2019 14:05:12 29 July 2019 08:00:00

DATA TRANSFER CONSOLE

The Worldwide LHC **Computing Grid (WLCG)**

About 1 million processing cores

170 data centres in 42 countries

>1000 Petabytes of CERN data stored worldwide

COUNT

FXPERIN

COMMAN

NO CO

No C

HL-LHC: Computing Challenges

High Luminosity LHC can do physics @ unprecedented level of precision

Higgs : measure fermions and bosons couplings at % level Electro-weak sector, top quark, multi-bosons states New physics searches, dark matter, etc..

Large amount of data, O(100) simultaneous collisions, high granularity detectors will require:

- Equally accurate theoretical predictions: improved theory calculations, faster Monte Carlo simulation
- Fast and accurate analysis methods (Al-based?)

S. Campana et al. arXiv:2203.07237

25.04.23

Theory and Simulation

Quantum Field Theory¹

- Lattice QCD, Sign problems
- **Parton showering**

Event Generation & Cross section integration

Phase space sampling scales exponentially with number of final state particles²

• HL-LHC @ 3 10⁻³ fb⁻¹ will have percent-level precision $@N_{jet} = 9$

25.04.23

- Need comparable (higher-order) MC
- N_{jet} increases with center-of-mass energy

Precision studies at FCC

1 D. Grabowska's presentation at the CERN QTI workshop (<u>https://indico.cern.ch/event/1098355</u>) 2 arxiv:1905.05120

hard scattering

- (QED) initial/final state radiation
- partonic decays, e.g $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Process W^+ +	5j	6j*	7j*	8j†
RAM Usage	189 MB	484 MB	1.32 GB	1.32 GB
Init/startup time	3m5s / 1s	24m52s / 5s	3h6m / 18s	5h55m / 20s
Integration time	128×4h38m	256×13h53m	512×19h0m	1024×23h8m
MC uncertainty	1.0%	0.99%	2.38%	4.68%
Unweighting eff	9.56 · 10 ⁻⁵	7.66 · 10 ⁻⁵	7.20 · 10-5	$7.51 \cdot 10^{-5}$
10k evts	24h 40m	2d 11h	10d 15h	78d 1h
Numbers generated o	n dual 8-core Intel	[®] Xeon [®] E5-2660) @ 2.20GHz	

*^{,†} Number of guarks limited to <6/4

... or Quantum Computing to "improve" classical ML

Studying Deep Learning in physics

Quantum Machine

- High quality labelled training data from realistic MC simulation
- Large experimental datasets
- Interestingly structured data at multiple scales
- Detailed understanding of systematic uncertainties

High Energy Physics use cases

- Simulation
- Anomaly Detection and trigger
- Binary Classification and data analysis
- Reconstruction: Tracking, Calorimetry
 and Jets
- Engineering: Reinforcement Learning for beams steering in the accelerator sector

Major challenges:

Defining fair **benchmarks** Processing **large data sets** Different **computational requirements**

Quantum Advantage for QML

Different advantage definitions

Runtime speedup Sample complexity Representational power

number of iterations

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically

- No established recipe for classical data
- Need to use the whole exponential advantage in Hilbert space, but will it converge?

(Algorithm expressivity vs convergence and generalization)

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021). Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Model definition

Variational algorithms

Parametric ansatz

Gradient-free or gradient-based optimization Data Embedding can be learned Ansatz design can leverage data symmetries¹

OUANTUM

TECHNOLOGY

Kernel methods

Feature maps as quantum kernels

Use classical kernel-based training

- Convex losses
- Compute pair-wise distances in N_{data}

Identify classes of kernels that relate to specific data **structures**²

Representer theorem: implicit models achieve better accuracy³

Explicit models exhibit **better generalization** performance

25.04.23

Jerbi, Sofiene, et al. "**Quantum machine learning beyond kernel methods**." *arXiv preprint arXiv:2110.13162* (2021).

Example QML applications

Event generation and Simulation

Quantum Generative Models

Delgado and Hamilton, arXiv:2203.03578 (2022) Zoufal, et al., *npj Quantum Inf* **5**, 103 (2019) Leadbeater et al., *Entropy* **2021**, *23*, 1281. Amin, et al. *Physical Review* X 8.2 (2018): 021050.

QCBM

Sample variational pure state $|\psi(\theta)\rangle$ by projective measurement through **Born rule**: $p_{\theta}(x) = |\langle x | \psi(\theta) \rangle|^2$.

n dimensional binary strings map to 2ⁿ bins of the discretized dataset.

QGAN

Multiple implementations, mostly classical-quantum hybrid

QBM

Network of stochastic binary units with a quadratic energy function that follows the Boltzman distribution (Ising Hamiltonian)

$$H = -\sum_{a} b_a \sigma_a^z - \sum_{a,b} w_{ab} \sigma_a^z \sigma_b^z$$

Typical metrics:

$$D_{\mathrm{KL}}(P||Q) = \sum_{i} P(i) \log\left(\frac{P(i)}{Q(i)}\right)$$
$$\mathrm{MMD}(\mathbb{P}_{r}, \mathbb{P}_{g}) = \left(\mathbb{E}_{\substack{\mathbf{x}_{r}, \mathbf{x}_{r}^{\prime} \sim \mathbb{P}_{r}, \\ \mathbf{x}_{g}, \mathbf{x}_{g}^{\prime} \sim \mathbb{P}_{g}}}\left[k(\mathbf{x}_{r}, \mathbf{x}_{r}^{\prime}) - 2k(\mathbf{x}_{r}, \mathbf{x}_{g}) + k(\mathbf{x}_{g}, \mathbf{x}_{g}^{\prime})\right]\right)^{\frac{1}{2}}$$

qGAN for event generation

Generate Mandelstam (*s*,*t*) + *y* variables for **t-tbar production**

Introduce a **style-based** approach

	$pp \rightarrow t\bar{t} \ \mathbf{LHC} \ \mathbf{events}$
Qubits	3
$D_{ m latent}$	5
Layers	2
Epochs	$3 imes 10^4$
Training set	10^{4}
Batch size	128
Parameters	62
$U_{ m ent}$	2 sequential CR_y gates

Bravo-Prieto et al. "**Style-based quantum generative** adversarial networks for Monte Carlo events." Quantum 6, 777 (2022) , *arXiv preprint arXiv:2110.06933* (2021).

IBM Q Santiago

Quantum simulator

25.04.23

QCBM for event generation

Muon Force Carriers, in muon fixed-target experiments (FASER) or muon interactions in calorimeters (ATLAS)¹.

Generate multivariate distribution (E, p_t, η)

2000

1750

1500

1250 stuno 1000

750

500

250

1.5

1.0 Inte

0.5

25.04.23

μ⁻ μ⁻ Ζ

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

OUANTUM

TECHNOLOGY

VITIATIVE

The case of detector simulation

QML can realistically simulate the energy deposited by particles in a detector

25.04.23

QNN (MMD loss)

TECHNOLOGY

INITIATIVE

Scale is the main problem

Entirely change the formulation?

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum Generative Adversarial Networks." ACAT2021, *arXiv preprint arXiv:2203.01007* (2022).

Robustness against noise

QML training process seems **robust against noise** (error mitigation is needed in extreme cases)

25.04.23

Example QML applications

Data Processing

Quantum Data Classification

QML for quantum data: drawing phase diagrams

Model: Axial Next Nearest Neighbor Ising

(ANNNI) Hamiltonian:

$$H = J \sum_{i=1}^{N} \sigma_x^i \sigma_x^{i+1} - \kappa \sigma_x^i \sigma_x^{i+2} + h \sigma_z^i,$$

Senk, *Physics Reports*, **170**, 4 (1988)

Integrable for $\kappa = 0$ or h = 0.

- 1. Supervised classification of the ground state using a convolutional QNN
- 2. Quantum states are **exponentially** hard to save classically.
- 3. Bottleneck from access to classical training labels (Interpolation does not work)
 - Train in integrable subregions
 - Generalize to a full model¹

Setting the stage

Variational quantum data

Binary Cross-entropy

Loss:
$$\mathcal{L} = -\frac{1}{|\mathcal{S}_X^n|} \sum_{(\kappa,h)\in\mathcal{S}_X^n} \sum_{j=1}^K y_j(\kappa,h) \log (p_j(\kappa,h))$$

Labels:

- [0,1] ferromagnetic
- [1,0] antiphase
- [1,1] paramagnetic
- [0,0] trash label

Autoencoder¹

- **1. Out of Distribution** Generalization²?
- 2. Performance increases with the system's size N=6 \rightarrow N=12).
- 3. QCNN gives quantitative predictions

¹Kottman, *et al., Phys. Rev. Research* **3**, 043184 (2021) ²M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

Monaco, at al. arXiv: 2208.08748 (2022), accepted PRB

Anomaly Detection

New Physics at the LHC

So far only **negative results** in **direct** (model dependent) searches

How to insure we do not miss potential discoveries?

Anomaly detection can point to new physics

Model-agnostic!

V. Belis *et al.*, **Quantum anomaly detection in the latent space of proton collision events at the LHC**, arxiv:2301.10780

A typical hybrid QML workflow

Results

Comparison to best-performing classical algorithm with similar complexity trained and tested on the same data

• RBF –based SVM

AUC shows marginal advantage for quantum algorithm

Evaluate performance at **typical working**, where $\varepsilon_s = 0.6, 0.8$

Quantum kernel machine works best for more complex physics

Characterizing the advantage

Higher is better

Given signal and background efficiencies, ϵ_s and ϵ_b respectively:

$$\Delta_{\rm QC}(\varepsilon_s) = \frac{\varepsilon_{\rm b}^{-1}(\varepsilon_s;Q)}{\varepsilon_b^{-1}(\varepsilon_s;C)}$$

Performance advantage is consistent

- Increase in the expressibility and entanglement up to L=4 improve performance, reduce it above
- Full entanglement is not better

Classical is better than 4 qubit QSVM

Reinforcement learning

Michael Schenk et al., **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines.** arXiv:2209.11044

Quantum Reinforcement Learning

Agent interacts with environment

- Follow policy
- Find policy that maximizes reward

Expected reward is estimated by value function Q(s, a)

- **DQN**: Deep Q-learning (NN-based)
- FERL: Free energy-based RL (clamped Quantum Boltzmann Machine)

Implement the quantum NN on a set of qubits

Quantum computer calculates the **reward as the energy** of the qubit system

In this framework the agent is classical

Michael Schenk et al., **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines**, e-Print: 2209.11044 [quant-ph]

Beam optimisation in linear accelerators

- Action: (discrete) deflection angle
- State: (continuous) BPM position

QUANTUM TECHNOLOGY

- Reward: integrated beam intensity on target
- **Optimality**: fraction of states in which the agent takes the right decision

• Quantum RL massively outperforms classical Qlearning (8±2 vs. 320±40 steps with e. r.)

Convergence and representational power

QRL use cases confirms advantage in terms of **model size** and **training steps**

Without **experience replay**

Michael Schenk, Elías F. Combarro, Michele Grossi, Verena Kain, Kevin Shing Bruce Li, Mircea-Marian Popa, Sofia Vallecorsa, **Hybrid actor-critic algorithm for quantum** reinforcement learning at CERN beam lines. arXiv:2209.11044

Outlook and Questions

Quantum Machine Learning is a broad-lively research field

- Some **preliminary hints** of advantage
- Need more robust theoretical studies to interpret experimental results and build efficient circuits (physics-based..)
- Need to establish **«fair comparison»** to classical tools on realistic use cases
- Studying the behviour of trainable systems in the NISQ regime is useful

Can we reduce the impact of data reduction techniques? Can we find the right balance of trainability vs generalization? Can we build a «continuous path» toward fault tolerance?

Exclusion Region for QML in HEP?

QML is the right solution

CERN is formulating a **longer term research plan** dedicated to **understanding impact for High Energy Physics**

> QUANTUM TECHNOLOGY

2019 🥝	2020 🥝	2021 🥝	2022 🥝	2023	2024	2025	2026+
Run quantum circuits on the IBM cloud	Demonstrate and prototype quantum algorithms and applications	Run quantum programs 100x faster with Qiskit Runtime	Bring dynamic circuits to Qiskit Runtime to unlock more computations	Enhancing applications with elastic computing and parallelization of Qiskit Runtime	Improve accuracy of Qiskit Runtime with scalable error mitigation	Scale quantum applica- tions with circuit knitting toolbox controlling Qiskit Runtime	Increase accuracy and speed of quantum workflows with integration of error correction into Qiskit Runtime
				Prototype quantum softwa	re applications ${\mathfrak Y} \longrightarrow$	Quantum software applicati	ions
						Machine learning Natural s	science Optimization
	Quantum algorithm and ap	plication modules	\odot	Quantum Serverless 🥹			
	Machine learning Natural	science Optimization			Intelligent orchestration	Circuit Knitting Toolbox	Circuit libraries
Circuits	$\overline{\mathbf{O}}$	Qiskit Runtime 🛛 🔗					
			Dynamic circuits 🥑	Threaded primitives 👌	Error suppression and mitig	gation	Error correction
Falcon 27 qubits	Hummingbird 🔗 65 qubits	Eagle 🔗 127 qubits	Dynamic circuits Osprey 433 qubits	Threaded primitives Condor 1,121 qubits	Error suppression and mitig Flamingo 1,386+ qubits	tion Kookaburra 4,158+ qubits	Error correction Scaling to 10K-100K qubits with classical and quantum communication
Falcon 27 qubits	Hummingbird 65 qubits	Eagle 📀 127 qubits	Dynamic circuits Osprey 433 qubits Image: Comparison of the second sec	Threaded primitives	Error suppression and mitig Flamingo 1,386+ qubits	ation Kookaburra 4,158+ qubits	Error correction Scaling to 10K-100K qubits with classical and quantum communication

Thank you!

November 20th-24th, 2023 @CERN

Quantum Techniques in Machine Learning

Sofia.Vallecorsa@cern.ch

Model Convergence and Barren Plateau

The size of the Hilbert space requires compromises between **expressivity**, **convergence** and **generalization**

Classical gradients vanish exponentially with the number of

layers (J. McClean *et al.*, arXiv:1803.11173)

• Convergence still possible if gradients consistent between batches.

Quantum gradient decay exponentially in the number of qubits

- Random circuit initialization
- Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
- Ansatz choice: TTN, CNN (Zhang *et al.,* arXiv:2011.06258, A Pesah, *et al., Physical Review X* 11.4 (2021): 041011.)
- Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

QCNN: A Pesah, *et al.*, *Physical Review X* 11.4 (2021): 041011

 $\rho_{\rm out}$

J. McClean et al., arXiv:1803.11173

Kernel trainability and kernel concentration

Kernel values can concentrate exponentially around a common value

Need **exponentially larger number of measurements** to resolve

Figure 1. Kernel concentration and its implications on trainability: The exponential concentration (in the number of qubits n) of quantum kernels $\kappa(\boldsymbol{x}, \boldsymbol{x}')$, over all possible input data pairs $\boldsymbol{x}, \boldsymbol{x}'$, can be seen to stem from the difficulty of information extraction from data quantum states due to various sources (illustrated in panels (a) and (b)). The kernel concentration has a detrimental impact on the trainability of quantum kernel-based methods. As shown in panel (c), for a polynomial (in n) number of measurement shots, the sampling noise $\tilde{\Delta}$ dominates for large n and, as $\Delta \ll \tilde{\Delta}$, $\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j)$ cannot be resolved from some other $\kappa(\boldsymbol{x}_k, \boldsymbol{x}_l)$, leading to a poorly trained model.

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)

Equivalent interpretations?

Characterize models behaviour, similarities among them and link to data properties.

Ex:

- Data Re-Uploading circuits: alternating data encoding and variational layers.
 - Represented as **explicit linear models** (variational) in larger feature space
 - → can be reformulated as **implicit models** (kernel)
- Representer theorem: implicit models achieve better
 accuracy
 - Explicit models exhibit better generalization performance

Jerbi, Sofiene, et al. **"Quantum machine learning beyond kernel methods**." *arXiv preprint arXiv:2110.13162* (2021).

Model definition

Variational algorithms - EXPLICIT

Define a **parametric quantum circuit** with trainable parameters ϑ $U(x, \vartheta)$

Given an observable *O*, build a model

 $y(x,\vartheta) = \left\langle 0 \left| U^{\dagger}(x,\vartheta) O U(x,\vartheta) \right| 0 \right\rangle$

- Trained using gradient-free or gradient-based optimization in a classical loop
- Data Embedding $\mathcal{V}_{\phi}(x)$ can be learned
- Improve performance by designing architectures to leverage data symmetries¹
- Aim at quantum circuits that are hard to simulate classically

Unsupervised Anomaly Detection

Quantum and classical AD algorithms are trained on QCD multijet events in the **signal region** $|\Delta \eta_{jj}| \le 1.4$. Tested on three **representative BSM**:

- Narrow Randall-Sundrum gravitons (G \rightarrow WW)
- Broad Randall-Sundrum gravitons (G \rightarrow WW)
- Scalar boson (A \rightarrow HZ, H \rightarrow ZZ)

Compare performance of three unsupervised methods:

- One-class SVM
- Q-Means clustering
- Q-Medians clustering

Standard Model jet data

Simulate QCD multijet production at the LHC (64 fb ⁻¹)

Jet is built of **100 highest-p**_T **particles** within $\Delta R < 0.8$ from its axis.

100 particles

Event selection:

- Two jets with $p_T > 200$ GeV and $|\eta| < 2.4$
- m_{jj} > 1260 GeV (emulate online selection)
- Each event is represented by its two highest-p_T jets.

Convolutional AutoEncoder compresses particle jet learning the **internal structure**

• Trained on background events

$$\mathbb{R}^{300}
ightarrow \mathbb{R}^{\ell}$$
 , $\ell = 4, 8, 16$

Unsupervised kernel machine

"Standard" kernel definition

$$egin{aligned} k(x_i,x_j) \coloneqq ext{tr}[
ho(x_i)
ho(x_j)] &= ig|\langle 0|U^\dagger(x_i)U(x_j)|0
angleig|^2 \
ho(x_i) \coloneqq U(x_i) \left|0
ight
angle \left\langle 0|U^\dagger(x_i)
ight. \end{aligned}$$

Train a kernel machine to find the hyperplane that **maximizes the distance of the data from the origin of the feature vector space**

$$egin{aligned} \min_{w\in\mathcal{F},\,\xi\in\mathbb{R}^\ell,\,
ho\in\mathbb{R}} & rac{1}{2}||w||^2+rac{1}{
u\ell}\sum_i\xi_i-
ho \ \mathrm{subject \ to} & w\cdot\Phi(x_i)\geq
ho-\xi_i,\,\xi_i\geq 0,\ orall i, \end{aligned}$$

Data Embedding circuit

 $\nu \in (0,1)$ Is a **upper bound** on the fraction of anomalies in the training data set at 0.01 (at most 1% QCD training data are falsely flagged)

Unsupervised vector machine kernels

Study expressibility of embedding circuit and variance of the quantum kernel

Expressibility is roughly constant vs N_q

Kernel variance does not decay exponentially

We observe no exponential concentration due to expressibility or global measurements.

Comparison to Supervised QSVM

Our initial study trained a supervised QSVM using the same setup. Classical SVM outperform quantum

QUANTUM TECHNOLOGY INITIATIVE

Kinga Wozniak, Unsupervised clsutering for a Randall–Sundrum Graviton at 3.5TeV narrow resonance, 5th IML workshop, May 2022

Comparison to unsupervised clustering

clustering Quantum* clustering algorithms **do not outperform classical** counterpart

QMEANS performs worst

10

10²

10¹

AUC Quantum

Classical

65.37±0.50 | 86.05±0.40

78.15± 0.42 83.33± 0.42

QKmeans

<u>لہ</u> 10

ΗĐ

10

104

10¹

AUC

Quantum

Classica

87.36± 0.34 | 89.53± 0.33

Quantum

-- Classical

— 32

- 16

- 8

— 4

QKmeans

Quantum

-- Classical

Train size

- 6000

- 600

- 10

Preliminary hardware runs

Stable performance on Hardware *ibmq_toronto* :

- Design circuit taking **qubits topology** into account
- Use **8 qubits** and native gates
- Reduced training set size (100) → increased statistical uncertainty
- Use AUC (less affected by statistics)
- Monitor **mean purity of states** to verify state coherence during computation
 - Fully mixed state yields a purity of 0.39 10⁻² (1/2ⁿ)

Kernel Machine Run	AUC	$\langle {\rm tr} \rho^2 \rangle$
Hardware $L = 1$ Ideal $L = 1$	$0.844 \\ 0.999$	0.271(6) 1
Hardware $L = 3$ Ideal $L = 3$	$0.997 \\ 1.0$	$ \begin{array}{c} 0.15(2) \\ 1 \end{array} $
Classical	0.998	-

Improving robustness

- Correlate expected model performance to data set properties
- Stabilizing training on NISQ
- Trainability vs expressivity robustness studies
- Evaluating generalisation
- Quantum vs classical data
- Algorithms beyond QML

Ensembles of quantum neural networks

NISQ regime affects QML performance. Can we build ensembles?

Bagging: best for **high variance**; reduces BPs by keeping the feature space limited

- 10 independently trained instances
- r_f :% of samples, r_n:% features

Study **regression** and **classification** tasks in toy and realistic datasets

Boosting: high bias models (little sensitivity to subsampling)

• AdaBoost, 10 repetitions

Dataset	Source	Nature	# Features	# Samples	Task
Linear	-	Synthetic	5	250	Regression
Concrete	UCI	Real-world	8	1030	Regression
Diabetes	Scikit-Learn	Real-world	10	442	Regression
Wine	UCI	Real-world	13	178	Classification

1 layer

QNN setup and simulated results

Choose relatively simple QNN:

n qubits = n features Ry single rotation gates CNOT in linear entanglement Local observable (σ_z)

Measure the generalisation error on test sample (20 %)

Bagging methods outperform full model and Boosting: shallower networks, fewer input features

Bagging brings significant advantage

Reducing resources: Best performance for low dimensionality

Robustness against noise:

Linear regression task on **IBM QPU** (ibm_lagos):

Bagging: 80% features, 20%samplesQNN: 4 qubit, 1 layer

QUANTUM TECHNOLOGY

Uncertainties: Diabetes and Wine dataset

qGAN Benchmarks on hardware

Chang S.Y. *et al.*, Running the Dual-PQC GAN on Noisy Simulators and Real Quantum Hardware, QTML2021, ACAT21

ġ.

Train models using **noisy simulator** and test the inferen $\frac{1}{2}$ **trapped-ion (IONQ) quantum hardware**

• For IBMQ machines, choose the qubits with the lowes⁴

Dovico	Readout error	$D_{KL}/D_{KL,ind}$
Device	CX error	$(\times 10^{-2})$
ibma jakarta	0.028	0.14 ± 0.14
	$1.367 \cdot 10^{-2}$	6.49 ± 0.54
ibm lagos	0.01	0.26 ± 0.11
	$5.582 \cdot 10^{-3}$	6.92 ± 0.71
ibma casablanca	0.026	4.03 ± 1.08
ibiliq_casabialica	$4.58 \cdot 10^{-2}$	6.58 ± 0.81
IONO	NULL	1.24 ± 0.74
	$1.59 \cdot 10^{-2}$	10.1 ± 5.6

QUANTUM TECHNOLOGY

Figure 4: Mean (a,c) and individual images (b,d) obtained by inference test on ibmq_jakarta (a,b) and IONQ (c,d).

Michael Schenk et al., **Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines**, e-Print: 2209.11044 [quant-ph]

Policy Gradient: $\nabla_{\theta^{\mu}}\mu = \mathbb{E}_{\mu}[\nabla_{\theta^{\mu}}Q(s,\mu(s|\theta^{\mu})|\theta^{Q})] = \mathbb{E}_{\mu}[\nabla_{a}Q(s,a|\theta^{Q})\cdot\nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})]$

Actor-Critic Q-learning training D-Wave Advantage

Figure 11: Single RL agent training evolution on D-Wave Advantage Systems using the simulated AWAKE environment with a reward objective of -2 mm.

Successful evaluation on the real beam-line

Quantum sensing

Change of quantum state caused by the interaction with an external system:

- transition between superconducting and normal-conducting
- transition of an atom from one state to another

QUANTUM TECHNOLOGY

 change of resonant frequency of a system (quantized) quantum sensors & particle physics: what are we talking about?

Theory and Simulation

QFT: Focus on computations that are exponentially hard with classical methods. Ex. Sign problems in particle theory

- Dynamical Simulations of Lattice Gauge Theories
- Finite-Density Nuclear Matter
- Challenges related to digitization and truncation of filed representation (on a finite number of quantum states) and redundancy in the Hilbert space¹

Cross section integration as quantum amplitude estimation³ Event generation with quantum generative models or direct simulation Parton showering as quantum random walk² ¹ D. Grabowska's presentation at the CERN QTI workshop (https://indico.cem.ch/event/1098355) ² A quantum walk approach to simulating parton showers Khadeejah Bepari, Sarah Malik, Michael Spannowsky, Simon Williams arxiv:2109.13975 and presentation at the CERN QTI workshop (https://indico.cem.ch/event/1098355) ³Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." arXiv preprint arXiv:2201.01547 (2022)

