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Hype and Potential… 

QC use cases in different sectors: the situation in 2019 
with the estimated medium (2025) and long (2035)
term impact.

2019: Google

2020: Hefei 
National Lab

https://www.nature.com/articles/s41586-019-1666-5

https://www.nature.com/articles/d41586-020-03434-7

Source: McKinsey
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Quantum Technologies



Algorithms & Applications
Quantum effects (superposition 
entanglement, no-cloning theorem, … ) 
improve and accelerate complex algorithms

• Efficient sampling, searches and 
optimization

• Linear algebra, matrices and machine 
learning

• New algorithms/methods for  cryptography
and communication
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Challenge is re-thinking algorithms design and define fair benchmarking and comparison to 
classical algorithms



Noisy Intermediate-Scale Quantum devices

• Limitations in terms of stability and connectivity
• Circuit optimisation

• De-coherence, measurement errors or gate level errors 
(noise)

• Specific error mitigation techniques
• Prefer algorithms robust against noise

• Problem size 
• Initially integrated in hybrid quantum-classical 

infrastructure (HPC + QC)
• Quantum Processing Units as new “hardware 

accelerators”
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Semiconducting transmon qubits: 
IBM Toronto



HL-LHC computing challenges



Theory

Data 
acquisition

Feature 
extraction

Data 
Analysis

Simulation



The Worldwide LHC 
Computing Grid (WLCG)

170 data centres in 42 countries

About 1 million processing cores 

>1000 Petabytes of CERN data stored worldwide



High Luminosity LHC can do physics @ unprecedented
level of precision

Higgs : measure fermions and bosons couplings at % level
Electro-weak sector, top quark, multi-bosons states
New physics searches, dark matter, etc..

HL-LHC: Computing Challenges

Large amount of data, O(100) simultaneous
collisions, high granularity detectors will require:

• Equally accurate theoretical predictions: improved
theory calculations, faster Monte Carlo simulation

• Fast and accurate analysis methods (AI-based?)

S. Campana et al. arXiv:2203.07237
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Quantum Field Theory1
• Lattice QCD, Sign problems

Parton showering
Event Generation & Cross section integration
Phase space sampling scales exponentially with number of final
state particles2

• HL-LHC @ 3 10-3 fb-1 will have percent-level precision @Njet = 9 
• Need comparable (higher-order) MC 
• Njet increases with center-of-mass energy

Precision studies at FCC

Theory and Simulation

1 D. Grabowska’s presentation at the CERN QTI workshop 
(https://indico.cern.ch/event/1098355)
2 arxiv:1905.05120

Time and memory usage (Sherpa 3.x.y + HDF5) (H. Schulz 2018)

25.04.23 11

https://indico.cern.ch/event/1098355


Quantum Machine 
Learning

… or Quantum Computing to “improve” classical ML



Studying Deep Learning in physics

• High quality labelled training data from realistic MC simulation
• Large experimental datasets
• Interestingly structured data at multiple scales
• Detailed understanding of systematic uncertainties

M. Erdmann, J. Glombitza,G. Kasieczka, U. Klemradt, Deep Learning for physics research

Quantum Machine



High Energy Physics use cases

• Simulation
• Anomaly Detection and trigger 
• Binary Classification and data analysis
• Reconstruction: Tracking, Calorimetry 

and Jets
• Engineering: Reinforcement Learning 

for beams steering in the accelerator 
sector

Major challenges:
Defining fair benchmarks
Processing large data sets
Different computational 
requirements 



Quantum Advantage for QML

Different advantage definitions
Runtime speedup 
Sample complexity
Representational power

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically
• No established recipe for classical data
• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 

15

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 
networks." Nature Computational Science 1.6 (2021): 403-409.



(Quantum) ML Lifecycle Data Reduction
Data Encoding

The advantage of many
known QML algorithms

is impeded by I/O 
bottleneck

Read Out  and 
measurement “shots”

Trainability (BP…)
Generalization 

Data 
Preparation

Model 
Definition

Model 
TrainingModel Testing

Model 
Interpretation

Variational 
Kernel based



Model definition

Parametric ansatz
Gradient-free or gradient-based optimization

Data Embedding can be learned
Ansatz design can leverage data symmetries1

Variational algorithms

Kernel methods
Feature maps as quantum kernels
Use classical kernel-based training
• Convex losses
• Compute pair-wise distances in Ndata

Identify classes of kernels that relate to specific
data structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant 
quantum kernels for data with group 
structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz 
group equivariant neural network for 
particle physics." PMLR, 2020.

Representer theorem: implicit models achieve better accuracy3

Explicit models exhibit better generalization performance
Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).
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Example QML
applications

Event generation and Simulation



Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ)
by projective measurement through 
Born rule: 𝐩𝛉 𝐱 = |*𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN
Multiple implementations, mostly classical-quantum hybrid

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM
Network of stochastic binary units with a quadratic energy function
that follows the Boltzman distribution (Ising Hamiltonian)

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.

Typical metrics:

19



qGAN for event generation

Generate  Mandelstam (s,t) + y
variables for t-tbar production
Introduce a style-based
approach

Bravo-Prieto et al. "Style-based quantum generative 
adversarial networks for Monte Carlo events." Quantum 6, 
777 (2022) , arXiv preprint arXiv:2110.06933 (2021).

IBM Q Santiago

Quantum simulator
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Muon Force Carriers, in muon fixed-target 
experiments (FASER) or muon interactions in 
calorimeters (ATLAS)1. 

Generate multivariate distribution (E, pt, η)

Maximum Mean Discrepancy for training

QCBM for event generation

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS 
detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

25.04.23 21



QML can realistically simulate the energy deposited by particles in a detector

QNN (MMD loss)

The case of detector simulation

Scale is the  main
problem
Entirely change the 
formulation?

25.04.23 22

Rehm Florian, et al. , ACAT2022



QML training process seems robust
against noise (error mitigation is needed
in extreme cases)

Robustness against noise
Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum 
Generative Adversarial Networks." ACAT2021, arXiv preprint 
arXiv:2203.01007 (2022).
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Example QML 
applications

Data Processing



Quantum Data 
Classification



QML for quantum data: drawing phase diagrams

1. Supervised classification of the 
ground state using a convolutional 
QNN

2. Quantum states are exponentially 
hard to save classically. 

3. Bottleneck from access to classical 
training labels (Interpolation does not 
work)
§ Train in integrable subregions 
§ Generalize to a full model1

Model: Axial Next Nearest Neighbor Ising 

(ANNNI) Hamiltonian:

Integrable for 
𝜅 = 0 or ℎ = 0.

Senk, Physics Reports, 170, 4 (1988)



Setting the stage

Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022), accepted PRB 

Autoencoder1QCNN (95%)

1Kottman, et al., Phys. Rev. Research 3, 043184 (2021)
2M..Caro et al., arxiv:2204.10268, Banchi et all., PRX QUANTUM 2, 040321 (2021)

1. Out of Distribution Generalization2? 
2. Performance increases with the system’s 

size N=6 à N=12). 
3. QCNN gives quantitative predictions



Anomaly Detection



So far only negative results in direct (model dependent) searches 

New Physics at the LHC

How to insure we 
do not miss 
potential 
discoveries?

Anomaly 
detection can 
point to new 
physics

Model-agnostic! 



A typical hybrid QML workflow

Data 
compression

Quantum 
algorithm

«Normal» 
training data

Output

V. Belis et al., Quantum anomaly detection in the latent space of proton
collision events at the LHC, arxiv:2301.10780



Results

Quantum kernel machine works best for 
more complex physics

Comparison to best-performing classical algorithm 
with similar complexity trained and tested on the same 
data
• RBF –based SVM

AUC shows marginal advantage for quantum algorithm

Evaluate performance at typical working, where εs = 
0.6, 0.8



Characterizing the advantage Higher is
better

NE0: encoding layer only
NE1: no entanglement

All-to-all entanglement

Given signal and background efficiencies, 
εs and εb respectively:

Performance advantage is consistent
• Increase in the expressibility and entanglement 

up to L=4  improve performance, reduce it above
• Full entanglement is not better

Classical is better than 4 qubit QSVM

8 qubits



Reinforcement
learning



Agent interacts with environment
• Follow policy 
• Find policy that maximizes reward

Quantum Reinforcement Learning 

Expected reward is estimated by value function 𝑸(𝒔, 𝒂)
• DQN: Deep Q-learning (NN-based)
• FERL: Free energy-based RL (clamped Quantum Boltzmann Machine)

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement 
learning at CERN beam lines. arXiv:2209.11044

Implement the quantum NN on a set of qubits
Quantum computer calculates the reward as the energy of 
the qubit system
In this framework the agent is classical



Beam optimisation in linear accelerators

• Action: (discrete) deflection angle 
• State: (continuous) BPM position 
• Reward: integrated beam intensity on 

target
• Optimality: fraction of states in which the 

agent takes the right decision

• Quantum RL  massively
outperforms classical Q-
learning (8±2 vs. 320±40 steps 
with e. r.)

Michael Schenk et al., Hybrid actor-critic algorithm for 
quantum reinforcement learning at CERN beam lines, 
e-Print: 2209.11044 [quant-ph]



Convergence and representational power
QRL use cases confirms advantage in 
terms of model size and training steps

Michael Schenk, Elías F. Combarro, Michele Grossi, Verena Kain, Kevin Shing Bruce Li, 
Mircea-Marian Popa, Sofia Vallecorsa, Hybrid actor-critic algorithm for quantum 
reinforcement learning at CERN beam lines. arXiv:2209.11044

Without experience replay



Quantum Machine Learning is a broad-lively research field
• Some preliminary hints of advantage
• Need more robust theoretical studies to interpret experimental results and build

efficient circuits (physics-based..)
• Need to establish «fair comparison» to classical tools on realistic use cases
• Studying the behviour of trainable systems in the NISQ regime is useful

Can we reduce the impact of data reduction techniques?
Can we find the right balance of trainability vs generalization?
Can we build a «continuous path» toward fault tolerance? 

Outlook and Questions



QML is the right 
solutionExclusion Region for QML in HEP?

M. Grossi, CERN

CERN is
formulating a 
longer term
research plan
dedicated to 
understanding
impact for High 
Energy Physics





Thank you!

November 20th-24th, 2023 
@CERN

Sofia.Vallecorsa@cern.ch



The size of the Hilbert space requires compromises between 
expressivity, convergence and generalization
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Kernel values can 
concentrate 
exponentially 
around a common 
value
Need exponentially 
larger number of 
measurements to 
resolve

Kernel trainability and kernel concentration

Study kernel trainability in our Anomaly Detection model (arxiv:2208.11060)



Characterize models behaviour, similarities among them
and link to data properties. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better 
accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL



Model definition

Define a parametric quantum circuit with trainable parameters 𝜗
𝑈 𝑥, 𝜗

Given an observable O, build a model 
𝑦 𝑥, 𝜗 = 0 𝑈#(𝑥, 𝜗)𝑂𝑈(𝑥, 𝜗) 0

• Trained using gradient-free or gradient-based optimization in a classical loop

• Data Embedding 𝒱$ 𝑥 can be learned

• Improve performance by designing architectures to leverage data symmetries1

• Aim at quantum circuits that are hard to simulate classically

Variational algorithms - EXPLICIT

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." International Conference on Machine Learning. PMLR, 2020.

Image credit SwissQuantumHub



Unsupervised Anomaly Detection

Quantum and classical AD algorithms are trained on QCD 
multijet events in the signal region |∆ηjj | ≤ 1.4. 
Tested on three representative BSM:
• Narrow Randall-Sundrum gravitons (G →WW )
• Broad Randall-Sundrum gravitons (G →WW )
• Scalar boson (A → HZ, HàZZ)
Compare performance of three unsupervised methods:
• One-class SVM
• Q-Means clustering
• Q-Medians clustering



Simulate QCD multijet production at 
the LHC (64 fb -1)

Standard Model jet data

Event selection: 
• Two jets with pT > 200 GeV and |η| < 2.4
• mjj > 1260 GeV (emulate online selection) 
• Each event is represented by its two highest-pT

jets.

Jet is built of 100 highest-pT
particles within ∆R < 0.8 from 
its axis.

Convolutional AutoEncoder compresses
particle jet learning the internal structure

• Trained on background events

ℝ;<< → ℝℓ , ℓ = 4, 8,16



Train a kernel machine to find the hyperplane that 
maximizes the distance of the data from the 
origin of the feature vector space

Unsupervised kernel machine
Data Embedding circuit

Is a upper bound on the fraction of anomalies in the training data set at 0.01 (at most
1% QCD training data are falsely flagged) 

“Standard” kernel definition



Unsupervised vector machine kernels

Study expressibility of embedding circuit and variance of the quantum kernel
Expressibility is roughly constant vs Nq
Kernel variance does not decay exponentially 

We observe no exponential concentration due to expressibility or global measurements. 

Expressibility as a function of 
different circuit architectures Entanglement capability Expressibility as a function 

of the number of qubit

Kernels 
Variance



Comparison to Supervised QSVM
Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Our initial study trained a supervised QSVM using the same setup.
Classical SVM outperform quantum 



Comparison to 
unsupervised
clustering
Quantum* clustering algorithms do not outperform
classical counterpart

QMEANS performs worst



Preliminary hardware runs

Stable performance on Hardware ibmq_toronto :

• Design circuit taking qubits topology into account
• Use 8 qubits and native gates
• Reduced training set size (100 )  à increased

statistical uncertainty
• Use AUC (less affected by statistics)
• Monitor mean purity of states to verify state 

coherence during computation
• Fully mixed state yields a purity of 0.39 10-2

(1/2n)



Improving
robustness



Improving robustness

• Correlate expected model performance to data set properties
• Stabilizing training on NISQ 
• Trainability vs expressivity robustness studies
• Evaluating generalisation
• Quantum vs classical data
• Algorithms beyond QML



NISQ regime affects QML performance. Can we build ensembles?

Ensembles of quantum neural networks
Incudini, M. , et al. "Resource Saving via Ensemble Techniques 
for Quantum Neural Networks." arXiv:2303.11283 (2023).

Bagging: best for high variance; reduces
BPs by keeping the feature space limited
• 10 independently trained instances
• rf :% of samples, rn:% features

Boosting: high bias models (little
sensitivity to subsampling)
• AdaBoost, 10 repetitions

Study regression and classification
tasks in toy and realistic datasets



QNN setup and simulated results
1 layer

Measure the generalisation error on test sample (20 %)
Bagging methods outperform full model and Boosting: shallower networks, fewer input features

Choose relatively simple QNN:
n qubits = n features
Ry single rotation gates
CNOT in linear entanglement
Local observable (σz) 

Concrete (MSE) Diabetes (MSE) Diabetes (CCE)



Bagging brings significant advantage

Reducing resources:
Best performance for low
dimensionality

Robustness against noise:
Linear regression task on IBM QPU 
(ibm_lagos):

Bagging: 80% features, 20% 
samples
QNN: 4 qubit, 1 layer

Linear 
Concrete
Diabetes
Wine

Linear 
Concrete
Diabetes
Wine



Uncertainties: Diabetes and Wine dataset



Train models using noisy simulator and  test the inference of the model on the  superconducting (IBMQ) and 
trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest CNOT gate error

qGAN Benchmarks on hardware
Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21



Actor-Critic Q-learning training D-Wave Advantage

CERN AWAKE facility
2GeV electron 
beam line

QBM
QA

Successful
evaluation on the real
beam-line

Real
Simulated

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement
learning at CERN beam lines, e-Print: 2209.11044 [quant-ph]



Change of quantum state 
caused by the interaction 
with an external system:
• transition between 

superconducting and 
normal-conducting

• transition of an atom from 
one state to another

• change of resonant 
frequency of a system 
(quantized)

Quantum sensing
M. Doser, Physics frontiers, 9/10 Mar 2022



QFT: Focus on computations that are exponentially hard with classical methods.  Ex. Sign 
problems in particle theory

• Dynamical Simulations of Lattice Gauge Theories
• Finite-Density Nuclear Matter
• Challenges related to digitization and truncation of filed representation (on a finite number of quantum 

states) and redundancy in the Hilbert space1

Cross section integration as quantum amplitude estimation3

Event generation with quantum generative models or direct simulation
Parton showering as quantum random walk2

Theory and Simulation

1 D. Grabowska’s presentation at the CERN QTI workshop (https://indico.cern.ch/event/1098355)
2 A quantum walk approach to simulating parton showers Khadeejah Bepari, Sarah Malik, Michael 
Spannowsky, Simon Williams arxiv:2109.13975 and presentation at the CERN QTI workshop 
(https://indico.cern.ch/event/1098355)
3Agliardi, Gabriele, et al. "Quantum integration of elementary particle processes." arXiv preprint 
arXiv:2201.01547 (2022)

https://indico.cern.ch/event/1098355
https://indico.cern.ch/event/1098355

