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ML and LFT

o understand ML using

, physics insights, stat mech and LFT
o ensemble generation

, o stochastic gradient descent
o analysis

_ _ O quantum ML
o sign and noise problems

o new applications, anything else
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ML applied to many problems in LFT

o ensemble generation
* normalising flow, trivialising maps
* learning from data
* equivariant multi-grid
* learn parameters in nonstandard actions

o questions to discuss:
* (provable) exactness, in theory and in practice
* ergodicity
* scalability
* implementation of gauge equivariant formulations
* from low-dimensional modes to QCD



Abbott et al, 2211.07541
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Ryan Abbott

R
Disussion — Normalizing Flows

@ Current status: can build flows for QCD, but more work is needed
particularly on expressivity and scaling to larger models

o Flow layers: spectral[Boyda et al. 2008.05456], residual[Abbott et al.
2304 .xxxx|, continuous/ODE [Bacchio et al., 2212.08469]

o Gauge equivariance greatly restricts map (particularly for SU(N))
—> need more work on gauge-equivariant SU(N) flows

o Need deeper and more expressive flows for scaling towards practical
parameters (current flows are very shallow — only O(1-5) updates/link)

e Fermions — flows work w/exact det, but need more scalable approach

o Possibilities: [Albergo et al. 2106.05934]

@ Autoregressive modeling: model p(U) and p(¢ | U)
e Gibbs sampling: model p(U | ¢), sample p(¢ | U) exactly
e Full joint sampling: transform U and ¢ together to p(U, ¢)

e So far focused on autogressive pseudofermion modeling

Ryan Abbott (MIT
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Tilo Wetting & Christoph Lehner

High-level questions

o deep learning versus multigrid paradigm

o building global and local symmetries into the network versus learning the symmetries



]
Disussion — Normalizing Flows

@ Hybrid algorithms — many possibilities to explore

HMC on trivialized distribution [Liischer 0907.5491]

Generalize proposal distribution for HMC [Foreman et al., 2112.01582]
Subdomain modeling [Finkenrath, 2201.02216]

Stochastic Normalizing Flows [Wu et al. 2002.0670]

CRAFT /Annealed Importance Sampling [Matthews et al. 2201.13117]

@ Beyond sampling

e Mapping between different actions

e Contour deformation and density of states approaches to the sign
problem [Detmold et al., 2101.12668] [Pawlowski+Urban, 2203.01243]
[Lawrence et al., 2205.12303]
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ML applied to many problems in LFT

o analysis
* phase classification, detection of order parameters
* inverse problems: spectral functions, transport, parton distribution functions
* error reduction

o questions to discuss:
* precision
* reliable error estimates: systematic and statistical
* comparison with known methods/learn something new
* parametrised vs non-parametrised approaches



Inverse problem: spectral function reconstruction

o given p(w): computation of G(7) is easy G(t) = j dw K (7, w)p(w)
o given G(7): computation of p(w) is hard, ill-posed inversion problem

standard argument:
o G(t) known numerically at 0(16 — 64) points
o p(w) in principle continuous function, with sharp and broad structures

o integral over known kernel K(t, w) washes out information



ML & inverse problems

- Probabilistic algorithms for Fredholm integral inversion
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- Must-have: reliable uncertainty estimates
- Should-have: incorporating various types of prior knowledge
— Spectral densities of QCD correlators for real-time physics
— Extraction of parton distribution functions
— CMT stuff, e.g. optical conductivity in Hubbard model
- Inverse problems with known solutions as pretext tasks
- Action parameter regression from raw configurations

—— Identifying order parameters and effective d.o.f.
.




RG & optimal transport

- ERG and OT recently shown to be mathematically equivalent
(Polchinski flow = OT gradient flow of relative entropy)

- RG picture of Wilson flow, trivializing maps

- Functional RG interpretation of regularized stochastic

quantization (colored-noise Langevin)

- Relation of OT to normalizing flows

— Interesting parallels and connections, but can we

exploit these formal insights computationally?




ML applied to many problems in LFT

o sign and noise problems
* complex actions: finite density, real time
* signal-to-noise deterioration

o questions to discuss:
» deformations in complex plane (complex Langevin, thimbles, holomorphic flow)
* optimise manifold
* reduce average sign, variance
* reliable error estimates: systematic and statistical



Tej Kanwar

Exactness in ML for lattice

Sampling algorithms:

- Markov chain guarantees vs practical ergodicity

Reliability of Effective sample size metric?

- Usage for thermalization? gﬂeLazzF:jg?;i?cn;;l;S:;igned to

- Hybrid ML + HMC approaches?

Need to ask about practical
Non-sampling app|ications: " exactness in real applications.

- Sign/signal-to-noise problems

- Interpolating operators



Learned contour deformations for StN problems
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ML applied to many problems in LFT

O understand ML using physics, stat mech and LFT
* stochastic gradient descent
* quantum machine learning
* energy based models, e.g. Restricted Boltzmann Machines
* phase structure of energy based models [2011.11307]
relation to Markov random fields [2102.09449]
partition function formulation of deep neural nets [2209.04882]



https://arxiv.org/abs/2011.11307
https://arxiv.org/abs/2102.09449
https://arxiv.org/abs/2209.04882

ML applied to many problems in LFT

o stochastic gradient descent
* loss function landscape and (discretised) updates
* implicit gradient regularisation for popular methods, such as Adam
* batch size dependence and effective noise
* exactness?



ML applied to many problems in LFT

o quantum machine learning
* architecture of hardware vs algorithms
* all-to-all vs nearly linearly connected qubits

* joint developments?
* should algorithms/hardware be designed with hardware/algorithms in mind?

* demonstrate quantum advantage for physically relevant problems?



Quantum Restricted Boltzmann Machine

guantum ground states iecks
guantum variational approaches Visible _,

Nodes
learn from 100 years of quantum experience

compare/compete with tensor networks, exact methods (small systems), ...

what is the target? physics, QC, larger systems, ...

https://medium.datadriveninvestor.com/an-intuitive-introduction-of-restricted-boltzmann-machine-rbm-14f4382a0dbb



Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM): two-layer generative network
visible layer and hidden layer
restricted: no connections within a layer

standard RBM: spin degrees of freedom on

each node v; = {0, 1}, i=1,...,N, he ={0,1},

energy function, distribution

E(U, h) = - Z ViW;ighe — Z b;v; — Z 77aha, p(v, h) — %e‘E(”’h)

7 — Z e—E(v,h)

{vi},{ha}
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Restricted Boltzmann Machines, recent
advances and mean-field theory
A. Decelle and C. Furtlehner,

Binary RBM phase diagram arXivi2011.11307
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Figure 4: Left: the phase diagram of the model. The y-axis corresponds to the variance of the noise matrix,
the x-axis to the value of the strongest mode of w. We see that the ferromagnetic phase is characterized by
having strong mode eigenvalues. In this phase, the system can behave either by recalling one eigenmode of w
or by composing many modes together (compositional phase). For the sake of completeness, we indicate the AT
region where the replica symmetric solution is unstable, but for practical purpose we are not interested in this
phase. Right: An example of a learning trajectory on the MNIST dataset (in red) and on a synthetic dataset
(in blue). It shows that starting from the paramagnetic phase, the learning dynamics brings the system toward

the ferromagnetic phase by learning a few strong modes.



Summary and outlook

v new solutions to old problems/old solutions to new problems

v new insights to both LFT and ML



