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Problem statement

The problem

Given: square matrix D,

I D Wilson, clover improved Wilson or twisted mass
discretization of Dirac operator

I periodic, anti-periodic or open boundary conditions

I D represents nearest neighbor coupling on 4d-lattice
(nt × nx × ny × nz lattice sites)

I D ∈ Cn×n, with n = 12ntnxnynz

Wanted: solution ψ of Dψ = ϕ.

Important: D is ill-conditioned:

cond(D) = ‖D‖ · ‖D−1‖ increases as n increases
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Example: The Wilson-Dirac operator

(DWψ)(x) =
m0 + 4

a
ψ(x) − 1

2a

3∑
µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x+ µ̂)

− 1

2a

3∑
µ=0

(
(I4 + γµ)⊗ UHµ (x− µ̂)

)
ψ(x− µ̂)
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Standard iterations for Dx = b

Krylov subspace

The k-th Krylov subspace for D and r ∈ Cn is

Kk(D, r) = span{b,Dr, . . . , Dk−1r}

An iterative Krylov subspace method takes

xk ∈ x0 +Kk(D, r0), r0 = b−Dx0 initial residual

Examples: CG, GMRES

I variational characterization of iterates

I (pseudo-) spectrum matters, convergence speed ∝ cond(D)

I lots of theory

I Faber-Manteuffel theorem
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The multigrid idea

I hierarchy of
operators

I smoothing

I coarse grid
correction

I . . . recursively

Fewer

First Coarse Grid

Finest Grid

Smooth
The Multigrid
    V−cycle

Restriction

Prolongation

Dofs
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Multigrid in lattice QCD

Smoother:

I GMRES

I SAP

Coarse grid
operator:

I aggregation

Aggregation:

I Define aggregates: domain
decomposition A1, ...,As

A2

A1

A4

A3

P

P †

I Calculate test vectors w1, ..., wN

I Decompose test vectors over aggregates
A1, ...,As

(v(1), . . . , v(k)) = =
A2

A1

As

→ P =

A1

A2

As
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V-cycle multigrid

Algorithm x← v cycle(level `, x, r)

1: x, r ← smoother(D`, x, r) {pre-smoothing}
2: rc ← R`r {restriction}
3: if on coarsest level L then
4: solve DLec = rc using favorite solver {low accuracy is ok}
5: else
6: ec ← v cycle(level `+ 1, 0, rc)
7: end if
8: x← x+ P`ec {prolongation + coarse grid correction}
9: x, r ← smoother(D`, x, r) {post-smoothing}

Algorithm x← v cycle mg(x, r)

1: repeat
2: x← x+ v cycle(level 1, 0, r), r = b−Dx
3: until residual r is small enough

r
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K-cycles

Algorithm x← k cycle(level `, x, r)
1: x, r ← smoother(D`, x, r) {pre-smoothing}
2: rc ← R`r {restriction}
3: if on coarsest level L then
4: solve DLec = rc using favorite solver {low accuracy is ok}
5: else
6: solve D`+1ec = rc with GMRES prec’d with k cycle(level `+1, ·, ·)
7: ec ← k cycle(level `+ 1, 0, rc) {low accuracy}
8: end if
9: x← x+ P`ec {prolongation + coarse grid correction}

10: x, r ← smoother(D`, x, r) {post-smoothing}

Algorithm x← k cycle prec gmres(x, r)
1: repeat
2: do next step of GMRES prec’d with k cycle(level 1, ·, ·)
3: until residual r is small enough
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K-cycles

I are non-stationary

I visit the coarsest level oftenr
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The coarsest system

I is the smallest

I is as ill-conditioned as the finest

I is typically visited more often the more levels we have
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Twisted mass example

level lattice dimensions dofs ntv n

1 96 x 48 x 48 x 48 12 128M
/ 3 3 3 3 24

2 32 x 16 x 16 x 16 48 6.5M
/ 2 2 2 2 28

3 16 x 8 x 8 x 8 56 460k
/ 2 2 2 2 32

4 8 x 4 x 4 x 4 64 32k
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GMRES on coarsest level
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Polynomial preconditioning I

Dx = b → D q(D)︸ ︷︷ ︸
=x

y = b, cond(Dq(D)� cond(D)

GMRES with Dq(D) instead of D

◦ deg(q) + 1 mvms with D per iteration

◦ Krylov subspace is Kk(Dq(D), b) ⊆ Kk(deg(q)+1)(D, b)

− worse iterate for the same effort

+ might avoid restarts

+ q obtainable via “bootstrap” approach

+ no inner products
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GMRES refresher

I build ONB v1, . . . , vk for Kk(D, r0) via the Arnoldi process
(orthogonalize Dvj against v1, . . . , vj)

I Arnoldi relation

DVk = VkHk + hk+1,kvk+1e
T
k , Vk = [v1| · · · |vk]

I Hk = V ∗k DVk is upper Hessenberg

I x = x0 + Vkζk minimizes ‖b−Dxk‖ iff ζk minimizes

‖‖r0‖e1 −Hkζ‖, Hk =
[

Hk

hk+1,ke
T
k

]
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Polynomial preconditioning II

How to get q:

I GMRES (implicitly) builds polynomial qk−1 with for which
‖b−D(x0 + qk−1(D)r0)‖2 = ‖(I −Dqk−1(D))r0‖ is minimal
→ Dqk−1(D) ≈ I

I qk−1 can be retrieved from the harmonic Ritz values θi of the
Hessenberg matrix of the Arnoldi process

qk−1(D) =

k∑
i=1

1

θi

i−1∏
j=1

(
I − 1

θj
D
)

I Caveat: Use Lejà ordering for the θi:

i−1∏
j=1

|θi − θj | =
k

max
`=i

i−1∏
j=1

|θ` − θj |
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Deflation

I undeflated GMRES: xk ∈ x0 +Kk(D, r0)
I deflated GMRES: xk ∈ x0 +Kk(D, r0) + U ,
U deflation subspace

such that ‖b−Dxk‖ is minimal

Deflation à la GCRO-DR

I do a first GMRES cycle, then extract basis U for the m
smallest harmonic Ritz vectors

I in all subsequent cycles:
I extract minimal residual iterate from Kk(D, r) + U

(“extended” Arnoldi with orth. projection on DU)
I update U using harmonic Ritz vectors from current cycle

I stop updating when no further gain

I works for sequences of systems

Andreas Frommer, Improving coarsest level solves 18/27



Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Strong scaling study
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Preliminary results!

Why not solve the coarsest system using Gaussian elimination?

D = PLU, Dx = b⇔ Ly = P T b, Ux = y

I factorization should be cheap → exploit sparsity
I factorization should be fast

I group into matrix-matrix operations (“blocking”)
I make blocks data-sparse

I forward and backward substitution should be fast
I make blocks data-sparse

BLR-factorization (“block low rank”)

I PrDPc ≈ LU
I non-zero block B ∈ Cm×` in L,U is represented as
B = B1B2, B1 ∈ Cm×r, B2 ∈ Cr×`, r � m, `
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MUMPS

MUMPS: multifrontal massively parallel sparse direct solver
https://mumps-solver.org/

I state-of-the-art

I parallel

I developed since 1991

I scottish and french

I since 2022: BLR – user can specify approximation accuracy

For coarsest grid operator:

+ blocks come naturally

− preserving sparsity is hard due to 4d coupling

We interface MUMPS with DDαAMG and use it as a black box.
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BLR accuracy
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Agglomeration

Faster on coarser levels using fewer nodes? → agglomeration

finest level: 96 48 48 48
local lattice:

case1: 16 16 16 16
case2,3: 16 16 16 24
case4,5: 16 16 24 24

depth 1: 24 12 12 12
local lattice:

case1: 4 4 4 4
case2: 4 4 4 6
case3: 4 4 4 12
case4: 4 4 6 6
case5: 4 4 6 12

depth 2: 12 6 6 6
local lattice:

case1: 2 2 2 2
case2,3: 2 2 2 6
case4,5: 2 2 6 6

depth 3: 6 3 3 3
local lattice:

case1: 1 1 1 1
case2,3: 1 1 1 3
case4,5: 1 1 3 3
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Results with agglomeration
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Results with agglomeration
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Conclusions

I Coarse grid solves tend to become the bottleneck

I polynomial preconditioning + deflation help

I both can be done adaptively

I direct approximate factorizations become increasingly
interesting
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