Improving coarsest level solves in multigrid for lattice QCD

Andreas Frommer

BERGISCHE UNIVERSITÄT WUPPERTAL

Joint work with

- Gustavo Ramirez Hidalgo, Postdoc in DFG Research Unit FOR 5269, formerly PhD student in EU-MCS "Stimulate"
- Henning Leemhuis, PhD student, University of Wuppertal

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 7650-

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Contents

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Problem statement

The problem

Given: square matrix D,

- D Wilson, clover improved Wilson or twisted mass discretization of Dirac operator
- periodic, anti-periodic or open boundary conditions
- ► *D* represents nearest neighbor coupling on 4*d*-lattice $(n_t \times n_x \times n_y \times n_z \text{ lattice sites})$

•
$$D \in \mathbb{C}^{n \times n}$$
, with $n = 12n_t n_x n_y n_z$

Wanted: solution ψ of $D\psi = \varphi$.

Important: D is ill-conditioned: $cond(D) = ||D|| \cdot ||D^{-1}||$ increases as n increases

Aultigrid and K-cycles

Polynomial preconditioning and GCR0

Direct factorization

Example: The Wilson-Dirac operator

$$(D_W\psi)(x) = \frac{m_0 + 4}{a}\psi(x) - \frac{1}{2a}\sum_{\mu=0}^3 \left((I_4 - \gamma_\mu) \otimes U_\mu(x) \right)\psi(x+\hat{\mu}) \\ - \frac{1}{2a}\sum_{\mu=0}^3 \left((I_4 + \gamma_\mu) \otimes U_\mu^H(x-\hat{\mu}) \right)\psi(x-\hat{\mu})$$

 $\beta = 6.0$

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Standard iterations for Dx = b

Krylov subspace

The k-th Krylov subspace for D and $r \in \mathbb{C}^n$ is

$$\mathcal{K}_k(D,r) = \operatorname{span}\{b, Dr, \dots, D^{k-1}r\}$$

An iterative Krylov subspace method takes

$$x^k \in x^0 + \mathcal{K}_k(D, r^0), \ r^0 = b - Dx^0$$
 initial residual

Examples: CG, GMRES

- variational characterization of iterates
- (pseudo-) spectrum matters, convergence speed \propto cond(D)
- Iots of theory
- Faber-Manteuffel theorem

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorizatio

The multigrid idea

- smoothing
- coarse grid correction
- ... recursively

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid in lattice QCD

Smoother:

SAP

Coarse grid operator:

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid in lattice QCD

Aggregation:

 Define aggregates: domain decomposition A₁,..., A_s

- Calculate test vectors $w_1, ..., w_N$
- Decompose test vectors over aggregates $\mathcal{A}_1, ..., \mathcal{A}_s$

Smoother:

► GMRES

SAP

Coarse grid operator:

V-cycle multigrid

Algorithm $x \leftarrow v_{cycle}(\text{level } \ell, x, r)$

- 1: $x, r \leftarrow \text{smoother}(D_{\ell}, x, r) \{ \text{pre-smoothing} \}$
- 2: $r_c \leftarrow R_\ell r \; \{ \text{restriction} \}$
- 3: if on coarsest level L then
- 4: solve $D_L e_c = r_c$ using favorite solver {low accuracy is ok}

5: **else**

6:
$$e_c \leftarrow \mathbf{v}_{-} \mathbf{cycle}(\text{level } \ell + 1, 0, r_c)$$

7: end if

- 8: $x \leftarrow x + P_{\ell}e_c$ {prolongation + coarse grid correction}
- 9: $x, r \leftarrow \text{smoother}(D_{\ell}, x, r) \{\text{post-smoothing}\}$

Algorithm $x \leftarrow v_cycle_mg(x, r)$

1: repeat

2:
$$x \leftarrow x + \mathbf{v}_{cycle}(\text{level } 1, 0, r), \quad r = b - Dx$$

3: **until** residual r is small enough

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

K-cycles

Algorithm $x \leftarrow k_cycle(level \ \ell, x, r)$

- 1: $x, r \leftarrow \text{smoother}(D_{\ell}, x, r) \{ \text{pre-smoothing} \}$
- 2: $r_c \leftarrow R_\ell r$ {restriction}
- 3: if on coarsest level L then
- 4: solve $D_L e_c = r_c$ using favorite solver {low accuracy is ok}

5: **else**

- 6: solve $D_{\ell+1}e_c = r_c$ with GMRES prec'd with **k**_cycle(level $\ell + 1, \cdot, \cdot$)
- 7: $e_c \leftarrow \mathbf{k}_{-} \mathbf{cycle}(\text{level } \ell + 1, 0, r_c) \{\text{low accuracy}\}$

8: end if

- 9: $x \leftarrow x + P_{\ell}e_c$ {prolongation + coarse grid correction}
- 10: $x, r \leftarrow \text{smoother}(D_{\ell}, x, r) \{\text{post-smoothing}\}$

Algorithm $x \leftarrow k_cycle_prec_gmres(x, r)$

- 1: repeat
- 2: do next step of GMRES prec'd with \mathbf{k} _cycle(level $1, \cdot, \cdot$)
- 3: **until** residual r is small enough

K-cycles

- are non-stationary
- visit the coarsest level often

The coarsest system

- is the smallest
- is as ill-conditioned as the finest
- is typically visited more often the more levels we have

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Twisted mass example

level	lattice dimensions							dofs	n_{tv}	n
1	96	Х	48	Х	48	Х	48	12		128M
/	3		3		3		3		24	
2	32	Х	16	Х	16	х	16	48		6.5M
/	2		2		2		2		28	
3	16	х	8	Х	8	Х	8	56		460k
/	2		2		2		2		32	
4	8	Х	4	Х	4	Х	4	64		32k

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

GMRES on coarsest level

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Polynomial preconditioning I

$$Dx = b \ \rightarrow \ D\underbrace{q(D)}_{=x} y = b, \ \operatorname{cond}(Dq(D) \ll \operatorname{cond}(D)$$

GMRES with Dq(D) instead of D

- $\circ \deg(q) + 1$ mvms with D per iteration
- \circ Krylov subspace is $\mathcal{K}_k(Dq(D), b) \subseteq \mathcal{K}_{k(\deg(q)+1)}(D, b)$
- worse iterate for the same effort
- + might avoid restarts
- + q obtainable via "bootstrap" approach
- + no inner products

GMRES refresher

- ▶ build ONB v₁,..., v_k for K_k(D, r⁰) via the Arnoldi process (orthogonalize Dv_j against v₁,..., v_j)
- Arnoldi relation

$$DV_k = V_k H_k + h_{k+1,k} v_{k+1} e_k^T, \ V_k = [v_1|\cdots|v_k]$$

►
$$H_k = V_k^* D V_k$$
 is upper Hessenberg
► $x = x^0 + V_k \zeta_k$ minimizes $||b - D x^k||$ iff ζ_k minimizes
 $|||r^0||e_1 - \overline{H}_k \zeta||$, $\overline{H}_k = \begin{bmatrix} H_k \\ h_{k+1,k} e_k^T \end{bmatrix}$

Polynomial preconditioning II

How to get q:

- GMRES (implicitly) builds polynomial q_{k-1} with for which $\|b - D(x^0 + q_{k-1}(D)r^0)\|_2 = \|(I - Dq_{k-1}(D))r^0\|$ is minimal $\rightarrow Dq_{k-1}(D) \approx I$
- ▶ q_{k-1} can be retrieved from the harmonic Ritz values θ_i of the Hessenberg matrix of the Arnoldi process

$$q_{k-1}(D) = \sum_{i=1}^{k} \frac{1}{\theta_i} \prod_{j=1}^{i-1} \left(I - \frac{1}{\theta_j} D \right)$$

• Caveat: Use Lejà ordering for the θ_i :

$$\prod_{j=1}^{i-1} |\theta_i - \theta_j| = \max_{\ell=i}^k \prod_{j=1}^{i-1} |\theta_\ell - \theta_j|$$

BERGISCHE

UNIVERSITÄT WUPPERTAL Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Deflation

- undeflated GMRES: $x^k \in x^0 + \mathcal{K}_k(D, r^0)$
- deflated GMRES: $x^k \in x^0 + \mathcal{K}_k(D, r^0) + \mathcal{U}$,
 - \mathcal{U} deflation subspace

such that $\|b - Dx^k\|$ is minimal

Deflation à la GCRO-DR

- do a first GMRES cycle, then extract basis U for the m smallest harmonic Ritz vectors
- in all subsequent cycles:
 - extract minimal residual iterate from $\mathcal{K}_k(D, r) + \mathcal{U}$ ("extended" Arnoldi with orth. projection on $D\mathcal{U}$)
 - update \mathcal{U} using harmonic Ritz vectors from current cycle
- stop updating when no further gain
- works for sequences of systems

Multigrid and K-cycle

Polynomial preconditioning and GCRO-DR

Direct factorization

Strong scaling study

 96×48^3 lattice, $\mu = 7.2 \cdot 10^{-4}$, JUWELS, $\deg(q) = 20$, $\dim(\mathcal{U}) = 400$, 32 MPI procs/node, 1 thread/process.

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Preliminary results!

Why not solve the coarsest system using Gaussian elimination?

 $D = PLU, Dx = b \Leftrightarrow Ly = P^Tb, Ux = y$

- factorization should be cheap \rightarrow exploit sparsity
- factorization should be fast
 - group into matrix-matrix operations ("blocking")
 - make blocks data-sparse
- forward and backward substitution should be fast
 - make blocks data-sparse

▶ non-zero block $B \in \mathbb{C}^{m \times \ell}$ in L, U is represented as $B = B_1 B_2, B_1 \in \mathbb{C}^{m \times r}, B_2 \in \mathbb{C}^{r \times \ell}, r \ll m, \ell$

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

MUMPS

MUMPS: multifrontal massively parallel sparse direct solver https://mumps-solver.org/

- state-of-the-art
- parallel

BERGISCHE

UNIVERSITÄT WUPPERTAI

- developed since 1991
- scottish and french
- ▶ since 2022: BLR user can specify approximation accuracy

For coarsest grid operator:

- + blocks come naturally
- preserving sparsity is hard due to 4d coupling

We interface MUMPS with DD α AMG and use it as a black box.

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

BLR accuracy

usual 96×48^3 configuration, no SSE, no multithreading for MUMPS solve

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Agglomeration

Faster on coarser levels using fewer nodes? \rightarrow agglomeration

finest level: 96	48 48 48
local lattice:	:
case1:	16 16 16 16
case2,3:	16 16 16 24
case4,5:	16 16 24 24
depth 1: 24 12	12 12
local lattice:	:
case1:	4444
case2:	4446
case3:	4 4 4 12
case4:	4466
case5:	4 4 6 12

depth 2: 12 6 6 6 local lattice: case1: 2 2 2 2 case2,3: 2 2 2 6 case4,5: 2 2 6 6

depth 3: 6 3 3 3 local lattice: case1: 1 1 1 1 1 case2,3: 1 1 1 3 case4,5: 1 1 3 3

Results with agglomeration

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Results with agglomeration

Conclusions

- Coarse grid solves tend to become the bottleneck
- polynomial preconditioning + deflation help
- both can be done adaptively
- direct approximate factorizations become increasingly interesting