
Improving coarsest level solves in multigrid for
lattice QCD

Andreas Frommer

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Joint work with

I Gustavo Ramirez Hidalgo,
Postdoc in DFG Research Unit FOR 5269, formerly PhD
student in EU-MCS “Stimulate”

I Henning Leemhuis,
PhD student, University of Wuppertal

Andreas Frommer, Improving coarsest level solves 1/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Contents

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Andreas Frommer, Improving coarsest level solves 2/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Andreas Frommer, Improving coarsest level solves 3/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Problem statement

The problem

Given: square matrix D,

I D Wilson, clover improved Wilson or twisted mass
discretization of Dirac operator

I periodic, anti-periodic or open boundary conditions

I D represents nearest neighbor coupling on 4d-lattice
(nt × nx × ny × nz lattice sites)

I D ∈ Cn×n, with n = 12ntnxnynz

Wanted: solution ψ of Dψ = ϕ.

Important: D is ill-conditioned:

cond(D) = ‖D‖ · ‖D−1‖ increases as n increases

Andreas Frommer, Improving coarsest level solves 4/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Example: The Wilson-Dirac operator

(DWψ)(x) =
m0 + 4

a
ψ(x) − 1

2a

3∑
µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x+ µ̂)

− 1

2a

3∑
µ=0

(
(I4 + γµ)⊗ UHµ (x− µ̂)

)
ψ(x− µ̂)

β = 5.0 β = 6.0

0 1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

4

0 2 4 6 8 10 12 14
−4

−3

−2

−1

0

1

2

3

4

Andreas Frommer, Improving coarsest level solves 5/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Standard iterations for Dx = b

Krylov subspace

The k-th Krylov subspace for D and r ∈ Cn is

Kk(D, r) = span{b,Dr, . . . , Dk−1r}

An iterative Krylov subspace method takes

xk ∈ x0 +Kk(D, r0), r0 = b−Dx0 initial residual

Examples: CG, GMRES

I variational characterization of iterates

I (pseudo-) spectrum matters, convergence speed ∝ cond(D)

I lots of theory

I Faber-Manteuffel theorem

Andreas Frommer, Improving coarsest level solves 6/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

The multigrid idea

I hierarchy of
operators

I smoothing

I coarse grid
correction

I . . . recursively

Fewer

First Coarse Grid

Finest Grid

Smooth
The Multigrid
 V−cycle

Restriction

Prolongation

Dofs

Andreas Frommer, Improving coarsest level solves 7/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid in lattice QCD

Smoother:

I GMRES

I SAP

Coarse grid
operator:

I aggregation

Aggregation:

I Define aggregates: domain
decomposition A1, ...,As

A2

A1

A4

A3

P

P †

I Calculate test vectors w1, ..., wN

I Decompose test vectors over aggregates
A1, ...,As

(v(1), . . . , v(k)) = =
A2

A1

As

→ P =

A1

A2

As

Andreas Frommer, Improving coarsest level solves 8/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid in lattice QCD

Smoother:

I GMRES

I SAP

Coarse grid
operator:

I aggregation

Aggregation:

I Define aggregates: domain
decomposition A1, ...,As

A2

A1

A4

A3

P

P †

I Calculate test vectors w1, ..., wN

I Decompose test vectors over aggregates
A1, ...,As

(v(1), . . . , v(k)) = =
A2

A1

As

→ P =

A1

A2

As

Andreas Frommer, Improving coarsest level solves 8/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

V-cycle multigrid

Algorithm x← v cycle(level `, x, r)

1: x, r ← smoother(D`, x, r) {pre-smoothing}
2: rc ← R`r {restriction}
3: if on coarsest level L then
4: solve DLec = rc using favorite solver {low accuracy is ok}
5: else
6: ec ← v cycle(level `+ 1, 0, rc)
7: end if
8: x← x+ P`ec {prolongation + coarse grid correction}
9: x, r ← smoother(D`, x, r) {post-smoothing}

Algorithm x← v cycle mg(x, r)

1: repeat
2: x← x+ v cycle(level 1, 0, r), r = b−Dx
3: until residual r is small enough

r
C
CCr
C
CCr
C
CCr���
r���
r���
r
C
CCr
C
CCr
C
CCr���
rpppppppp
pppp

Andreas Frommer, Improving coarsest level solves 9/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

K-cycles

Algorithm x← k cycle(level `, x, r)
1: x, r ← smoother(D`, x, r) {pre-smoothing}
2: rc ← R`r {restriction}
3: if on coarsest level L then
4: solve DLec = rc using favorite solver {low accuracy is ok}
5: else
6: solve D`+1ec = rc with GMRES prec’d with k cycle(level `+1, ·, ·)
7: ec ← k cycle(level `+ 1, 0, rc) {low accuracy}
8: end if
9: x← x+ P`ec {prolongation + coarse grid correction}

10: x, r ← smoother(D`, x, r) {post-smoothing}

Algorithm x← k cycle prec gmres(x, r)
1: repeat
2: do next step of GMRES prec’d with k cycle(level 1, ·, ·)
3: until residual r is small enough

Andreas Frommer, Improving coarsest level solves 10/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

K-cycles

I are non-stationary

I visit the coarsest level oftenr
C
CCr
C
CCr
C
CCr���
r
C
CCr���
r
C
CCr���
r
C
CCr���
r���
r
C
CCr
C
CCr���
r
C
CCr���
r���
r
C
CCr
C
CCr���
r
C
CCr���
r
C
CCr���
r���
r���
rr
C
CCr
C
CCr
C
CCr���
r���
r
C
CCr
C
CCr���
r
C
CCr���
r���
r
C
CCr
C
CCr���
r
C
CCr���
r
C
CCr���
r���
r
C
CCr
C
CCr���
r
C
CCr���
r
C
CCr���
r���
r���
rpppppppppppp

The coarsest system

I is the smallest

I is as ill-conditioned as the finest

I is typically visited more often the more levels we have

Andreas Frommer, Improving coarsest level solves 11/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Andreas Frommer, Improving coarsest level solves 12/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Twisted mass example

level lattice dimensions dofs ntv n

1 96 x 48 x 48 x 48 12 128M
/ 3 3 3 3 24

2 32 x 16 x 16 x 16 48 6.5M
/ 2 2 2 2 28

3 16 x 8 x 8 x 8 56 460k
/ 2 2 2 2 32

4 8 x 4 x 4 x 4 64 32k

Andreas Frommer, Improving coarsest level solves 13/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

GMRES on coarsest level

0 500 1000 1500 2000

10
-6

10
-4

10
-2

10
0

restarted GMRES

m = 50

m = 100

m = 150

m = 200

m = 250

m = 300

m = 350

m = 400

m = 450

m = 500

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Andreas Frommer, Improving coarsest level solves 14/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Polynomial preconditioning I

Dx = b → D q(D)︸ ︷︷ ︸
=x

y = b, cond(Dq(D)� cond(D)

GMRES with Dq(D) instead of D

◦ deg(q) + 1 mvms with D per iteration

◦ Krylov subspace is Kk(Dq(D), b) ⊆ Kk(deg(q)+1)(D, b)

− worse iterate for the same effort

+ might avoid restarts

+ q obtainable via “bootstrap” approach

+ no inner products

Andreas Frommer, Improving coarsest level solves 15/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

GMRES refresher

I build ONB v1, . . . , vk for Kk(D, r0) via the Arnoldi process
(orthogonalize Dvj against v1, . . . , vj)

I Arnoldi relation

DVk = VkHk + hk+1,kvk+1e
T
k , Vk = [v1| · · · |vk]

I Hk = V ∗k DVk is upper Hessenberg

I x = x0 + Vkζk minimizes ‖b−Dxk‖ iff ζk minimizes

‖‖r0‖e1 −Hkζ‖, Hk =
[

Hk

hk+1,ke
T
k

]

Andreas Frommer, Improving coarsest level solves 16/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Polynomial preconditioning II

How to get q:

I GMRES (implicitly) builds polynomial qk−1 with for which
‖b−D(x0 + qk−1(D)r0)‖2 = ‖(I −Dqk−1(D))r0‖ is minimal
→ Dqk−1(D) ≈ I

I qk−1 can be retrieved from the harmonic Ritz values θi of the
Hessenberg matrix of the Arnoldi process

qk−1(D) =

k∑
i=1

1

θi

i−1∏
j=1

(
I − 1

θj
D
)

I Caveat: Use Lejà ordering for the θi:

i−1∏
j=1

|θi − θj | =
k

max
`=i

i−1∏
j=1

|θ` − θj |

Andreas Frommer, Improving coarsest level solves 17/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Deflation

I undeflated GMRES: xk ∈ x0 +Kk(D, r0)
I deflated GMRES: xk ∈ x0 +Kk(D, r0) + U ,
U deflation subspace

such that ‖b−Dxk‖ is minimal

Deflation à la GCRO-DR

I do a first GMRES cycle, then extract basis U for the m
smallest harmonic Ritz vectors

I in all subsequent cycles:
I extract minimal residual iterate from Kk(D, r) + U

(“extended” Arnoldi with orth. projection on DU)
I update U using harmonic Ritz vectors from current cycle

I stop updating when no further gain

I works for sequences of systems

Andreas Frommer, Improving coarsest level solves 18/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Strong scaling study

old
new

ex
ec

u
ti

o
n

 ti
m

e

10

2

5

20

50

number of nodes

10 100

96× 483 lattice, µ = 7.2 · 10−4, JUWELS, deg(q) = 20,
dim(U) = 400,
32 MPI procs/node, 1 thread/process.

Andreas Frommer, Improving coarsest level solves 19/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Multigrid and K-cycles

Polynomial preconditioning and GCRO-DR

Direct factorization

Andreas Frommer, Improving coarsest level solves 20/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Preliminary results!

Why not solve the coarsest system using Gaussian elimination?

D = PLU, Dx = b⇔ Ly = P T b, Ux = y

I factorization should be cheap → exploit sparsity
I factorization should be fast

I group into matrix-matrix operations (“blocking”)
I make blocks data-sparse

I forward and backward substitution should be fast
I make blocks data-sparse

BLR-factorization (“block low rank”)

I PrDPc ≈ LU
I non-zero block B ∈ Cm×` in L,U is represented as
B = B1B2, B1 ∈ Cm×r, B2 ∈ Cr×`, r � m, `

Andreas Frommer, Improving coarsest level solves 21/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

MUMPS

MUMPS: multifrontal massively parallel sparse direct solver
https://mumps-solver.org/

I state-of-the-art

I parallel

I developed since 1991

I scottish and french

I since 2022: BLR – user can specify approximation accuracy

For coarsest grid operator:

+ blocks come naturally

− preserving sparsity is hard due to 4d coupling

We interface MUMPS with DDαAMG and use it as a black box.

Andreas Frommer, Improving coarsest level solves 22/27

https://mumps-solver.org/

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

BLR accuracy

10 5 10 4 10 3

drop tol

0

5

10

15

20

25
tim

e
in

 [s
]

0

50

100

150

200

250

300

nu
m

be
r o

f m
um

ps
 so

lv
es

timing and iterations for different drop tols
entire solve time
coarsest time
mumps solve time
mumps fact time
number of mumps solves
plainGMRES solve time

usual 96× 483 configuration, no SSE, no multithreading for
MUMPS solve

Andreas Frommer, Improving coarsest level solves 23/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Agglomeration

Faster on coarser levels using fewer nodes? → agglomeration

finest level: 96 48 48 48
local lattice:

case1: 16 16 16 16
case2,3: 16 16 16 24
case4,5: 16 16 24 24

depth 1: 24 12 12 12
local lattice:

case1: 4 4 4 4
case2: 4 4 4 6
case3: 4 4 4 12
case4: 4 4 6 6
case5: 4 4 6 12

depth 2: 12 6 6 6
local lattice:

case1: 2 2 2 2
case2,3: 2 2 2 6
case4,5: 2 2 6 6

depth 3: 6 3 3 3
local lattice:

case1: 1 1 1 1
case2,3: 1 1 1 3
case4,5: 1 1 3 3

Andreas Frommer, Improving coarsest level solves 24/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Results with agglomeration

1 2 3 4 5
case number

0

2

4

6

8

10

12

14

16
tim

e
in

 [s
]

0

10

20

30

40

50

60

nu
m

be
r o

f s
ol

ve
s

timing for different cases of agglomeration

entire solve time
coarsest time
mumps solve time
mumps fact time
number of mumps solves
plainGMRES solve time

Andreas Frommer, Improving coarsest level solves 25/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Results with agglomeration

1 2 3 4 5
case number

0

2

4

6

8

10

12

14

16
tim

e
in

 [s
]

0

200

400

600

800

1000

1200

1400

tim
e

m
ul

tip
lie

d
by

 n
o.

 o
f p

ro
ce

ss
es

 in
 [s

]

0

1

2

3

4

5

6

7

co
re

-h
ou

rs
 in

 [h
]

timing for different cases of agglomeration

entire solve time
coarsest time
mumps solve time
mumps fact time
solve time * no. process
consumed c. hours
plainGMRES solve time

Andreas Frommer, Improving coarsest level solves 26/27

Multigrid and K-cycles Polynomial preconditioning and GCRO-DR Direct factorization

Conclusions

I Coarse grid solves tend to become the bottleneck

I polynomial preconditioning + deflation help

I both can be done adaptively

I direct approximate factorizations become increasingly
interesting

Andreas Frommer, Improving coarsest level solves 27/27

	Multigrid and K-cycles
	Polynomial preconditioning and GCRO-DR
	Direct factorization

