Status And Prospects For $|V_{ub}|$ At LHCb

Iwan Smith Supervised by Franz Muheim Edinburgh University Christmas Group Meeting 19 December 2016

The CKM Matrix and $|V_{ub}|$

- |V_{ij}| describes the amplitude of quark i transitioning to quark j via charged weak current.
- $|V_{ub}|$ has the largest relative uncertainty.

An improved measurement of $|V_{ub}|$ will:

- Improve precision of apex of unitary triangle.
 - Could indicate new physics in $sin(2\beta)$.
- Test non-perturbative QCD.
- Help predict $\mathcal{B}(B^+ \to \tau \nu)$.

Current Status of $\left|V_{ub}\right|$

- Most recent $|V_{ub}|$ measurement comes from LHCb: $\Lambda_b \to p \mu \nu$
 - \circ |V_{ub}| = (3.27 ± 0.15 (exp.) ± 0.16 (theor.) ± 0.06 (|V_{cb}|)
- Tension between inclusive and exclusive measurements. $\sim 3\sigma$
- Right handed currents could explain the tension.
 - Less convincingly after $\Lambda_b \to p \mu \nu$.
- Aim is to improve precision of $|V_{ub}|$ (~ 12% error). $|V_{cb}|$ (~ 3%)

How To Measure $|V_{ub}|$

How V_{ub} is measured:

• Use exclusive decays:

$$\circ \ B \to \pi^{\pm} \mu^{\mp} \nu, \quad B_s \to K^{\pm} \mu^{\mp} \nu, \quad \Lambda_b \to p \mu \nu$$

- Inclusive decays (Very difficult with LHCb) $\circ \ B^+ \to \tau^+ \nu {\rm X}$
- Annihilation decays:

$$\circ \quad B^+ \to \mu^+ \mu^- \mu^+ \nu \text{,} \quad B^+ \to \phi \mu^+ \nu$$

Exclusive type decay (left) and annihilation type (right).

How To Measure $|V_{ub}|$ at LHCb

- Measure $|V_{ub}|$ relative to $|V_{cb}|$:
 - Take the ratio of branching fractions, and combine with a theoretical input

Feynman diagram for the signal (left) and normalisation (right).

 B_s

Theory form factor prediction for the signal (left, PhysRevD.91.07451) and control (right, PhysRevD.92.054510)

Semileptonic Decays

Semileptonic Decays

- B decays into $l\nu X$
- High statistics: $\mathcal{B}(B \to \mu \nu_{\mu} X) = (10.2 \pm 1.0)\%$
- Events are always partially reconstructed

<u>Tools</u>

• Use corrected mass:

$$\bigcirc \quad m_{corr} = \sqrt{m_{charm+\mu}^2 + p_{\perp}^2} + p_{\perp}$$

- Reconstruct neutrino momentum from the topology. (2-fold ambiguity)
- Use machine learning to help find the correct solution.

В

p

 p_{\perp}

Why $B_s \to K^- \mu^+ \nu$

Channel is theoretically very nice:

- Good form factor precision
- Control channel is very well understood:

 $\circ B_s \to D_s \mu^+ \nu$

However:

- There are many difficult backgrounds
- Statistics will be lower than $\Lambda_b \to p \mu \nu$

Decay	Λ_b^0	B^0_s
theory error	5%	3%
prod frac	20%	10%
BF	4×10^{-4}	1×10^{-4}
$\mathcal{B}(X_c)$ error	$^{+5.3}_{-4.7}\%$	$\pm 3.9\%$
background	Λ_c^+	$\Lambda_c^+, D_s, D^+, D^0$
	Tab	le from Patrick Owen

 $\Lambda_b \rightarrow p\mu v$ form factor error budget PhysRevD.92.034503

Backgrounds

Several Sources of backgrounds:

- Additional charged tracks
 - $\circ~~{\rm e.g.}~B^+ \rightarrow J/\psi K^+$, $B_S \rightarrow D_S \mu \nu$
- Additional neutral tracks
 - $\circ \quad \text{e.g.} \ B_s \to K^* \mu \nu (K^* \to K \pi^0)$
- Misidentified particles

$$ho$$
 e.g. $\Lambda_b
ightarrow p \mu
u$, $J/\psi
ightarrow \mu^+ \mu^-$

- Combinatorial
 - Random combination of kaon and muon.

Additional Neutral Tracks

- Draw cones around track in ΔR .
- Search for hits in neutral calorimeters.
- Reconstruct photons or π^0 using existing tools.
- Veto event if high pion likelihood and $m(K^{\pm}\pi^0) \approx m(K^*)$

Non Isolated Charged Tracks

- Search through every track in event
 - Does the track originate from the same decay? (bad)
 - Or is the track isolated? (good)
- Use a previously trained BDT to find these tracks.

Signal Fit - Constraining Yields

- $B^+ \rightarrow J/\psi K^+$ has a very similar shape to signal in corrected mass.
- Reconstruct B⁺ peak using least isolated track before selection.
- Calibrate B⁺ yield with efficiencies.
 - Fix $B^+ \to J/\psi K^+$ yield in the fit.

Signal Fit

- Use the Beeston-Barlow "lite" template fitter.
 - Sums source templates to match the data.
 - Allows bin contents to vary within uncertainty.
- Templates determined from Monte Carlo.
- More backgrounds to be added.

- Data
- Signal,
$$B_s \rightarrow K^- \mu^+ \nu$$

- $B^+ \rightarrow J/\psi K^+$
- Combinatorial
- Model

Control Fit, Background Removal

 $m_{corr}(B_s^0)$

Every point corresponds to a fit to the $KK\pi$ invariant mass.

Only remaining combinatorial is $D_{r}+\mu$.

Control Fit

- Uses the same Beeston-Barlow "lite" fitter.
- Combinatorial background almost entirely eliminated.
- Templates with similar shape are combined.

Backgrounds include:

- Excited D_s modes.
- Tauonic decays.
- B→Double charm.
- Same Sign, Fake µ.

Summary

- LHCb has successfully measured $|{\rm V}_{\rm ub}|$ using $\Lambda_b \to p \mu \nu$
- Research into $|V_{ub}|$ has grown rapidly at LHCb.
- $B_s \to K^- \mu^+ \nu$ aims to improve our understanding.
- Aim to have a result ready for summer conferences.

Thank You

Backup

Removing Charged Backgrounds

- Train BDT to discriminate against charged backgrounds
 - Signal: $B_s \to K^- \mu^+ \nu$ Monte Carlo. Ο
 - Background: Weighted sum of MC and Same Sign data. Ο
- Training variables include output of charged isolation tool, kinematics.

bkg rej

- Additional charged tracks
- Combinatorial
- Miss-ID
- Additional neutral track