$B^0_{s,d} o \phi \phi$ branching fractions & angular analysis of $B^0_s o \phi K^+ K^-$

Adam Morris

University of Edinburgh

PPE Christmas Meeting 19th Dec 2016

Photo: Phi Phi, Thailand

 $s_{,d} \rightarrow \phi \phi$ and $B_{s} \rightarrow \phi K^{+} K^{-}$

$b \rightarrow s\bar{s}s$ transitions

- Flavour-changing neutral current
- Forbidden at tree-level
 - Dominant diagram is a penguin
 - Sensitive to new particles in the loop
- Possible source of BSM CPV
- Studied in:
 - $B^0 \to \phi K^0_S$ • $B^0 \to \phi K^{*0}$
 - $B_s^0 \rightarrow \phi \phi$
 - $\Lambda_b \to \Lambda \phi$
- Results so far consistent with SM ::(

A sensitive penguin, sitting down

Outline

1 Measurement of the $B_s^0 \rightarrow \phi \phi$ branching fraction and search for $B^0 \rightarrow \phi \phi$.

- LHCb-PAPER-2015-028
- arXiv:1508.00788
- JHEP 10 (2015) 053

2 Observation of $B_s^0 \to \phi f_2'(1525)$ and angular analysis of $B_s^0 \to \phi K^+ K^-$.

• In preparation

Common selection strategy for both analyses:

- Full Run 1 dataset: 3 fb⁻¹ of *pp* collisions at $\sqrt{s} = 7$ and 8 TeV
- Cut-based pre-selection using track quality, vertex quality, isolation criteria and kinematic information
- Hadron PID requirements to suppress misidentified backgrounds
- Vetoes under different mass hypotheses to remove specific backgrounds
- Multivariate Analysis to reduce combinatorial background

$B_s^0 \rightarrow \phi \phi$ branching fraction

Introduction

Motivation:

- Important normalisation channel for other charmless b decays
- Theory predictions in the range (1.3 to 2.0) $\times\,10^{-5}$
 - Large QCD uncertainties
- Previously measured by CDF using $B_s^0 \rightarrow J/\psi \phi$ for normalisation
 - $\mathcal{B}(B^0_{\rm s} \to \phi \phi) = (1.91 \pm 0.26 \, {\rm (stat)} \pm 0.16 \, {\rm (syst)}) \times 10^{-5}.$
 - Large statistical error: LHCb can do better

This analysis:

- Measure the ${\cal B}^0_{
 m s}
 ightarrow \phi \phi$ branching fraction
 - Use $\phi \to K^+ K^-$
- Normalise to ${\it B}^0
 ightarrow \phi {\it K}^{\star 0}$
 - Differs by spectator quark
 - Use $\phi \to K^+ K^-$ and $K^{\star 0} \to K^+ \pi^-$
 - Cancellation of some systematics

Branching fraction calculation

$$\frac{\mathcal{B}(B^0_{s} \to \phi\phi)}{\mathcal{B}(B^0 \to \phi K^{\star})} = \frac{\mathcal{N}_{B^0_{s} \to \phi\phi}}{\mathcal{N}_{B^0 \to \phi K^{\star}}} \frac{\varepsilon_{\phi K^{\star}}}{\varepsilon_{\phi\phi}} \frac{\mathcal{B}(K^{\star} \to K^+\pi^-)}{\mathcal{B}(\phi \to K^+K^-)} \frac{f_d}{f_s}$$

Mass fits

• Fit to simulation for signal shape

• Fit to data with background components for yields

• Subtract s-wave from yields

 $\begin{array}{l} B_s^0 \rightarrow \phi \phi & \texttt{2212} \pm \texttt{47} \pm \texttt{50} \\ B^0 \rightarrow \phi \textit{K}^{\star} & \texttt{5026} \pm \texttt{65} \pm \texttt{107} \end{array}$

Efficiencies

Generator efficiency from generator statistics

$$rac{arepsilon_{\phi \phi \pi}^{
m gen}}{arepsilon_{\phi \phi}^{
m gen}} = rac{(18.69 \pm 0.034)\%}{(17.09 \pm 0.031)\%} = 1.094 \pm 0.004$$

Selection efficiency from simulation

$$rac{arepsilon^{ ext{sel}}_{\phi K^*}}{arepsilon^{ ext{sel}}_{\phi \phi \phi}} = rac{(1.86 \pm 0.006)\%}{(2.39 \pm 0.013)\%} = 0.778 \pm 0.006$$

Particle identification efficiency from data-driven method

$$\frac{\varepsilon_{\phi K^*}^{\text{PID}}}{\varepsilon_{\phi \phi}^{\text{PID}}} = \frac{(84.9 \pm 0.1)\%}{(90.7 \pm 0.2)\%} = 0.936 \pm 0.001$$

Total ratio:

$$\frac{\varepsilon_{\phi K^*}}{\varepsilon_{\phi \phi}} = \frac{\varepsilon_{\phi K^*}^{\text{gen}}}{\varepsilon_{\phi \phi}^{\text{gen}}} \frac{\varepsilon_{\phi K^*}^{\text{sel}}}{\varepsilon_{\phi \phi}^{\text{sel}}} \frac{\varepsilon_{\phi K^*}^{\text{PID}}}{\varepsilon_{\phi \phi}^{\text{PID}}} = 0.796 \pm 0.007$$

A. Morris (Edinburgh)

Result

Relative branching fraction:

$$rac{\mathcal{B}(B_s^0 o \phi \phi)}{\mathcal{B}(B^0 o \phi K^*)} = 1.82 \pm 0.05 \, (ext{stat}) \pm 0.07 \, (ext{syst}) \pm 0.11 \, (f_s/f_d)$$

Absolute branching fraction:

 $\mathcal{B}(B_{\rm s}^0 o \phi \phi) = (1.82 \pm 0.05 \pm 0.07 \pm 0.11 \, (f_{\rm s}/f_{\rm d}) \pm 0.12 \, ({
m norm})) imes 10^{-5}$

Total uncertainty: $\pm 0.18 \times 10^{-5}$ ($\pm 9.6\%$)

Theoretical predictions

BF (×10 ⁻⁶)	Approach
$19.5 \pm 1.0^{+13.0}_{-8.0}$	QCD factorisation
13.1	QCD factorisation
$16.7^{+2.6}_{-2.1}{}^{+11.3}_{-8.8}$	QCD factorisation
$16.7^{+8.9}_{-7.1}$	pQCD

Previous result from CDF:

 $(1.91\pm0.26\pm0.16) imes10^{-5}$

Factor 5 reduction in statistical error :)

Search for $B^0 \to \phi \phi$

Introduction

Motivation:

- Unobserved and highly suppressed
- Theory predictions in the range (0.1 to 3) $\times\,10^{-8}$
- Previous limit from BaBar
 - $\mathcal{B}(B^0
 ightarrow \phi \phi) < 2.0 imes 10^{-7}$ 90 % CL

This analysis:

- Search for $B^0 \rightarrow \phi \phi$
- Normalise to $B_s^0 \rightarrow \phi \phi$
 - Same final state
 - Cancellation of many systematics
- Improve the limit on its branching fraction

Don't ask

Search for $B^0 \rightarrow \phi \phi$

Fit two PDFs to data

- P_{s+b} with a B_d component,
- *P_b* without.

Ratio of log-likelihoods used as test statistic

$$R_L = \frac{\mathcal{L}(P_{s+b})}{\mathcal{L}(P_b)}$$

For each point in scan through $\mathcal{B}(B^0 \to \phi \phi)$:

- Calculate $-2 \ln R_L$ from data fit
- Generate toys from P_{s+b} & P_b
- Calculate $-2 \ln R_L$ for each toy
- Take CL_{s+b} and CL_b as fraction of toys with $-2 \ln R_L$ above the value found in data.

$$\mathsf{CL}_{s} = \frac{\mathsf{CL}_{s^{+}b}}{\mathsf{CL}_{b}}$$

Upper limit to 90% C.L. is where $CL_s = 0.1$.

Upper limit to 90% C.L.

$$\mathcal{B}(B^0 o \phi \phi) < 2.8 imes 10^{-8}$$

- Theoretical predictions in range $[0.1, 3.0] \times 10^{-8}$
- Previous result from BaBar: $< 2.0 \times 10^{-7}$ (90% C.L.)
 - Factor of 7 improvement :)

Angular analysis of $B_s^0 \rightarrow \phi K^+ K^-$

Introduction

Motivation:

- $B_s^0 \to \phi K^+ K^-$ in the region $m(K^+ K^-) < m(D^0)$ is $b \to s\bar{s}s$
- Several K^+K^- resonances, including unobserved $B^0_s o \phi f_2'(1525)$
- pQCD predictions:
 - $\mathcal{B}\left(B_{s}^{0} \rightarrow \phi f_{2}^{\prime}(1525)\right) = \left(3.1^{+1.8}_{-1.4} \pm 0.6\right) \times 10^{-6}$
 - $\mathcal{F}_L = |A_0|^2 / \sum_i |A_i|^2 = (75.3^{+3.0+3.5}_{-3.2-1.7})$ %.
- Complementary to tree-level $B_s^0 \rightarrow J/\psi K^+ K^-$ analysis

This analysis:

- Amplitude fit in region m(K⁺K⁻) < 1800 MeV
- First observation of $B_s^0 \rightarrow \phi f'_2$
 - Measure branching fraction
 - Measure polarisation amplitudes
- Normalise to $B^0_s o \phi \phi$

- Used to s-weight the data
- $3990 \pm 70 B_s^0 \rightarrow \phi K^+ K^-$ events

Angular distributions

Angular distribution of $P
ightarrow (X_1
ightarrow PP)(X_2
ightarrow PP)$ in the helicity basis

$$F(\Phi,\theta_1,\theta_2) = \sum_{\lambda=-J_{\min}}^{+J_{\min}} \mathcal{A}_{\lambda} Y_{J_1}^{-\lambda} (\pi - \theta_1, -\Phi) Y_{J_2}^{\lambda} (\theta_2, 0)$$

Resonance lineshapes: Relativistic Breit-Wigner

$$T(m|m_0,\Gamma_0)\propto rac{1}{m_0^2-m^2-im_0\Gamma(m)},$$

where

$$\Gamma(m) = \Gamma_0 \left(\frac{q}{q_0}\right)^{2J+1} \left(\frac{m_0}{m}\right) B'_J(q,q_0)^2,$$

For resonances close to a threshold (e.g. $f_0(980) \rightarrow K^+K^-$)

$$T(m|m_0, g_{\pi^+\pi^-}, g_{K^+K^-}) \propto rac{1}{m_0^2 - m^2 - im_0\left(\Gamma_{\pi^+\pi^-}(m) + \Gamma_{K^+K^-}(m)
ight)}$$

where

-

$$\Gamma_{\pi^+\pi^-}(m) = g_{\pi^+\pi^-} \sqrt{rac{m^2}{4} - m_{\pi^+}^2}$$

and

$$\Gamma_{K^+K^-}(m) = \begin{cases} g_{K^+K^-} \sqrt{\frac{m^2}{4} - m_{K^+}^2} & m > 2m_{K^+} \\ \\ ig_{K^+K^-} \sqrt{m_{K^+}^2 - \frac{m^2}{4}} & m < 2m_{K^-} \end{cases}$$

Time-independent decay rate

$$A(m, \Phi, \theta_1, \theta_2) = \sum_{\text{resonances}} T(m)F(\Phi, \theta_1, \theta_2) \left(\frac{q}{m}\right)^J B'_J(q, q_0)B'_0(p, p_0)$$
$$\Gamma(m, \Phi, \theta_1, \theta_2) = |A(m, \Phi, \theta_1, \theta_2)|^2 pq$$

Time integral

Time-evolution of decay amplitudes from $B_s^0 - \bar{B}_s^0$ mixing:

$$A(t) = A(0)g_{+}(t) + \frac{q}{p}\bar{A}(0)g_{-}(t)$$

$$\bar{A}(t) = \bar{A}(0)g_{+}(t) + \frac{p}{q}A(0)g_{-}(t)$$

where

$$g_{\pm}(t) = \frac{1}{2} \left(e^{-(im_{H}+\Gamma_{H}/2)t} \pm e^{-(im_{L}+\Gamma_{L}/2)t} \right)$$

Assuming no CP violation and uniform time acceptance

$$\int_{0}^{\infty} \Gamma(t) + \bar{\Gamma}(t) dt = \frac{1}{2} \left(\left| A(0) \right|^{2} + \left| \bar{A}(0) \right|^{2} \right) \left(\frac{1}{\Gamma_{H}} + \frac{1}{\Gamma_{L}} \right) + \Re \left(\bar{A}(0) A(0)^{*} \right) \left(\frac{1}{\Gamma_{L}} - \frac{1}{\Gamma_{H}} \right)$$

Acceptance

- Adaptively-binned 4D histogram \rightarrow bins of equal content
- Denominator: Unbiased generator-level events
- Numerator: Fully-selected simulation

Fully-selected phase space Monte Carlo sample

Fully-selected p-wave Monte Carlo sample

Fully-selected p-wave Monte Carlo sample

Parameter	Fit result and error	σ from input
$ A_{\perp} ^2$	0.367 ± 0.004	0.7
$ A_0 ^2$	0.354 ± 0.004	1.5
δ_{\parallel}	2.71 ± 0.03	0.02

Fit to data in $|m(KK) - m(\phi)| < 15$ MeV

Fit to data

Note: probably a normalisation error in the plotting

Fit to data

Resonance	Parameter	Result
f ₀ (980)	δ_0	-0.60 ± 0.13
	$ A_{\perp} ^{2}$	0.31 ± 0.01
<i>φ</i> (1020)	$ A_0 ^2$	0.346 ± 0.009
	δ_{\parallel}	$\textbf{2.49} \pm \textbf{0.04}$
	$ A_{\perp} ^2$	0.04 ± 0.02
f ₂ '(1525)	$ A_0 ^2$	0.79 ± 0.04
	δ_{\perp}	1.82 ± 0.25
	δ_0	0.52 ± 0.18
	δ_{\parallel}	-1.61 ± 0.26

- Improved measurement of ${\cal B}({\cal B}^0_s o \phi\phi)$
- Improved upper limit on $\mathcal{B}(B^0 o \phi \phi)$
- Angular analysis of $B_s^0 \rightarrow \phi K^+ K^-$ in progress
 - First observation of $B^0_s o \phi f_2'$
 - Measure branching fraction and polarisation

Backup

- $\langle P_0 \rangle$ The s-weighted event distribution.
- $\langle P_1 \rangle \,$ The interference of the sum of S & P-wave and P & D-wave amplitudes.
- $\langle P_2 \rangle~$ The sum of the P-wave, D-wave and the interference of S & D-wave amplitudes.
- $\langle P_3 \rangle$ The interference between P & D-wave amplitudes.
- $\langle P_4 \rangle$ The D-wave amplitude.
- $\langle P_5 \rangle$ The F-wave amplitude.

Legendre moments: $m(K^+K^-) < 1.08$ GeV

Backup

Backup

Legendre moments: $1.08 < m(K^+K^-) < 1.80 \text{ GeV}$

36