## Double penta-ladders to all orders



Lance Dixon
with S. Caron-Huot, M. von Hippel, A. McLeod, G. Papathanasiou

## Higgs Centre Edinburgh 13 April 2017

## Hexagon (heptagon) function bootstrap

LD, Drummond, Henn, 1108.4461, 1111.1704;<br>Caron-Huot, LD, Drummond, Duhr, von Hippel, McLeod, Pennington, 1308.2276, 1402.3300, 1408.1505, 1509.08127; 1609.00669;<br>Drummond, Papathanasiou, Spradlin, 1412.3763;<br>LD, Drummond, Harrington, McLeod, Papathanasiou,, Spradlin, 1612.08976

Use analytical properties of perturbative amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$ to determine them directly, without ever peeking inside the loops.


Works to at least 6 loops (MHV) at 6 points, 4 loops (MHV) at 7 points.

First step toward doing this nonperturbatively (no loops to peek inside) for general kinematics

## Orienting the space of functions

- We don't need to know which functions correspond to which integrals, but it does help organize the full space more efficiently.
- The double pentaladders, or $\Omega$ functions, together with their coproducts, define an interesting subspace, which we now understand quite well to all loop orders, as well as at finite coupling.


## Hexagon symbol letters

- Momentum twistors $Z_{i}^{A}, i=1,2, \ldots, 6$ transform simply under dual conformal transformations. Hodges, 0905.1473
- Construct 4-brackets $\varepsilon_{A B C D} Z_{i}^{A} Z_{j}^{B} Z_{k}^{C} Z_{l}^{D} \equiv\langle i j k l\rangle$
- 15 projectively invariant combinations of 4-brackets can be factored into 9 basic ones:

$$
\mathcal{S}=\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

$$
\begin{aligned}
\begin{aligned}
& u= \frac{\langle 6123\rangle\langle 3456\rangle}{\langle 6134\rangle\langle 2356\rangle} \quad 1-u= \\
& \frac{\langle 6135\rangle\langle 2346\rangle}{\langle 6134\rangle\langle 2356\rangle} \quad y_{u}=\frac{\langle 1345\rangle\langle 2456\rangle\langle 1236\rangle}{\langle 1235\rangle\langle 3456\rangle\langle 1246\rangle} \\
&+ \text { Cyclic } \\
& u= \frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \quad v= \\
& \text { L. Dixon } \quad s_{23} s_{56} \\
& s_{234} s_{123}
\end{aligned} \quad w=\frac{s_{34} s_{61}}{s_{345} s_{234}}
\end{aligned} \quad \text { Higgs Centre - 2017.04.13 } \quad 4
$$

## Discrete symmetries

- $y_{i}$ not independent of $u_{i}$ :

$$
y_{u} \equiv \frac{u-z_{+}}{u-z_{-}}, \ldots \quad \text { where }
$$

$$
\begin{aligned}
z_{ \pm} & =\frac{1}{2}[-1+u+v+w \pm \sqrt{\Delta}] \\
\Delta & =(1-u-v-w)^{2}-4 u v w
\end{aligned}
$$

- Function space graded by parity:

$$
\begin{aligned}
& i \sqrt{\triangle} \leftrightarrow \\
&-i \sqrt{\triangle} \\
& z_{+} \leftrightarrow z_{-} \\
& y_{i} \leftrightarrow 1 / y_{i} \\
& u_{i} \leftrightarrow u_{i}
\end{aligned}
$$

- Also a (dihedral) $S_{3}$ symmetry permuting $u, v, w$
- Broken for $\Omega$ system to $Z_{2}$ flip: $u \nrightarrow \mathcal{V}$


## Hexagon functions include:

1. HPLs [Remiddi, Vermaseren (1999)]: One variable, symbol letters $\{u, 1-u\}$. Near-collinear limit, lines $(u, u, 1),(u, 1,1)$
2. Cyclotomic Polylogarithms [Ablinger, Blumlein, Schneider, 1105.6063]: One variable, letters $\left\{y_{u}, 1+y_{u}, 1+y_{u}+y_{u}{ }^{2}\right\}$. Line $(u, u, u)$.
3. SVHPLS [F. Brown, 2004]: Two variables, letters $\{z, 1-z, \bar{z}, 1-\bar{z}\}$. First entry/single-valuedness constraint. Multi-Regge limit.
4. $\Omega$ functions. All three variables, all symbol letters,

$$
\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\}
$$

branch-cut condition(s),...

## Coproduct notation

Chen; Goncharov; Brown

- Generalized polylogarithms, or $n$-fold iterated integrals, or weight $n$ transcendental functions $f$.
- Define by derivatives:

$$
d f=\sum_{s_{k} \in \mathcal{S}} f^{s_{k}} d \ln s_{k}
$$

$S=$ finite set of rational expressions, "symbol letters", and

$$
f^{s_{k}} \equiv\{n-1,1\} \text { coproduct component }
$$ are also pure functions, weight $n-1$

- Iterate: $d f^{s_{k}} \Rightarrow f^{s_{j}}, s_{k} \equiv\{n-2,1,1\}$ component

Goncharov, Spradlin, Vergu, Volovich, 1006.5703

- Symbol $=\{1,1, \ldots, 1\}$ component (maximally iterated)
L. Dixon


# Single-valued multiple polylogarithms (SVMPLs or SVHPLs) 

Brown, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 527

- Controls hexagon functions in multi-Regge limit
- Symbol letters: $\mathcal{S}=\{z, 1-z, \bar{z}, 1-\bar{z}\}$
- Also require function to be real analytic in

$$
(z, \bar{z}) \in \mathbb{C}-\{0,1\}
$$

- Constrains first entry of the symbol to be

$$
z \bar{z} \leftrightarrow \ln |z|^{2} \text { or } \quad(1-z)(1-\bar{z}) \leftrightarrow \ln |1-z|^{2}
$$

- One SVMPL for each MPL
- Powerful constraint: $4^{n} \rightarrow 2^{n}$ functions at wt. $n$

$$
\mathcal{L}_{\vec{w}}, w_{i} \in\{0,1\}
$$

## A well-known ladder lies in this space

Usyukina, Davydychev, Phys. Lett. B305 (1993) 136; Broadhurst, Phys. Lett. B307 (1993) 132;
Broadhurst, Davydychev, arXiv:1007.0237 [hep-th]


$$
\begin{aligned}
u & =\frac{k_{1}^{2} k_{3}^{2}}{s t}=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}} \\
u & =\frac{1}{(1-z)(1-\bar{z})}
\end{aligned}
$$

L. Dixon Double penta-ladders

$$
v=\frac{k_{2}^{2} k_{4}^{2}}{s t}=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

$$
v=\frac{z \bar{z}}{(1-z)(1-\bar{z})}
$$

Higgs Centre - 2017.04.13

## Ladder in terms of SVMPLs

$$
\begin{aligned}
\frac{(z-\bar{z}) \Phi^{(L)}(z, \bar{z})}{(1-z)(1-\bar{z})}= & \sum_{j=L}^{2 L} \frac{j!}{L!(j-L)!(2 L-j)!} \\
& \times \ln ^{2 L-j}\left(\frac{1}{|z|^{2}}\right)\left[\operatorname{Li}_{j}(z)-\operatorname{Li}_{j}(\bar{z})\right] \\
= & (-1)^{L}[\underbrace{\mathcal{L}_{0, \ldots, 0,1,0,0, \ldots, 0}^{0}}_{L}-\underbrace{\mathcal{L}_{0}, \ldots, 0,0,1,0, \ldots, 0}_{L}] \underbrace{}_{L}]
\end{aligned}
$$

- Taking $z$ derivative gives factor of $1 / z$, clips 0 from left
- Taking $\bar{z}$ derivative gives factor of $1 / \bar{z}$, clips 0 from right
- Until " 1 " is on left [or right], then get $1 /(1-z)^{*} \mathcal{L}_{0, \ldots, 0}$


## The $\Phi$ space

- Dimension of the space of iterated $\{n, 1, \ldots, 1\}$ coproducts from weight $n$ from 0 to $2 L$ at fixed loop order $L$ :

$$
1,2,3, \ldots, L, L+1, L, \ldots, 3,2,1
$$

- Completion ( $L \rightarrow \infty$ limit) has dimension $n+1$ at weight $n$ :

$$
1,2,3,4,5, \ldots
$$

- This is just the subspace of depth $\leq 1$ SVMPLs:

$$
\mathcal{L}_{0, \ldots, 0} \quad \mathcal{L}_{1,0 \ldots, 0}, \quad \mathcal{L}_{0,1,0, \ldots, 0}, \ldots, \mathcal{L}_{0, \ldots, 0,1}
$$

- Obviously closed under taking coproducts
- Next, describe the analog for the $\Omega$ functions


## $\Omega$ definition



Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot, Trnka, 1008.2958
$\Omega^{(2)}=\int \frac{d^{4} x_{A B}}{\pi^{2}} \frac{d^{4} x_{C D}}{\pi^{2}} \frac{\langle A B 13\rangle\langle C D 46\rangle\langle 5612\rangle\langle 2345\rangle\langle 6134\rangle}{(\langle A B 61\rangle\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle)\langle A B C D\rangle(\langle C D 34\rangle\langle C D 45\rangle\langle C D 56\rangle\langle C D 61\rangle)}$

- For $\Omega^{(\mathrm{L})}$, insert $\int \frac{d^{4} x_{E F}}{\pi^{2}} \frac{\langle A B C D\rangle\langle 6134\rangle}{\langle A B E F\rangle\langle E F 61\rangle\langle E F 34\rangle\langle E F C D\rangle}$, etc.


## A differential equation

Drummond, Henn, Trnka, 1010.3679

- Appropriate $2^{\text {nd }}$ order differential operator removes a rung:

$\frac{\langle 2345\rangle\langle 3456\rangle}{\langle 1245\rangle} Z_{2} \cdot \frac{\partial}{\partial Z_{3}}\left(\frac{1}{\langle 3456\rangle} Z_{1} \cdot \frac{\partial}{\partial Z_{2}} \Omega^{(L)}(u, v, w)\right)=\Omega^{(L-1)}(u, v, w)$
- In terms of projectively invariant variables:

$$
y_{w} \partial_{y_{w}}\left[\sqrt{\Delta} \partial_{w} \Omega^{(L)}\right]=\Omega^{(L-1)}
$$

## $1^{\text {st }}$ order differential equations

- Split $y_{w} \partial_{y_{w}}\left[\sqrt{\Delta} \partial_{w} \Omega^{(L)}\right]=\Omega^{(L-1)} \quad$ into two $1^{\text {st }}$ order differential eqs. by defining an "odd ladder integral":

$$
\sqrt{\Delta} \partial_{w} \Omega^{(L)}=\mathcal{O}^{(L-1)}, \quad y_{w} \partial_{y_{w}} \mathcal{O}^{(L)}=\Omega^{(L)}
$$

- $\Omega^{(L)}$ has weight $2 L$, is parity even, flip even $(u \leftrightarrow \rightarrow v)$
- $\mathcal{O}^{(L)}$ has weight $2 L+1$, is parity odd, flip even
- We have a basis of all (Steinmann satisfying) hexagon functions through weight 10.
- Easy to solve differential equations within this relatively small function space, through 5 or 6 loops, and examine the functions' coproducts.


## Coproduct Relations

- Some empirical, some from structure of differential equations.
$\Omega^{u}+\Omega^{1-u}=\Omega^{v}+\Omega^{1-v}=\Omega^{w}=\Omega^{1-w}=\Omega^{y_{w}}=0$
$\left[\Omega^{(L)}\right]^{y_{u}}=\left[\Omega^{(L)}\right]^{y_{v}}=\frac{1}{2} \mathcal{O}^{(L-1)}$

$$
\begin{array}{ll}
\mathcal{O}^{u}=-\mathcal{O}^{1-u}=-\mathcal{O}^{v}=\mathcal{O}^{1-v}=-\widetilde{\Omega}_{0} \\
\mathcal{O}^{w}=\mathcal{O}^{1-w}=0 \\
\mathcal{O}^{y_{u}}=\mathcal{O}^{y_{v}}=\Omega+\widetilde{\Omega}_{\mathrm{e}}, & \mathcal{O}^{y_{w}}=\Omega
\end{array}
$$

where $\widetilde{\Omega}=\widetilde{\Omega}_{e}+\widetilde{\Omega}_{0}$
has an opposite chirality numerator

L. Dixon Double penta-ladders

## Dimension of $\Omega$ space

| weight | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathcal{O}^{(L)}$ coproducts, $L \rightarrow \infty$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 |
| P even | 1 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | 17 | 18 | 20 | 21 |
| P even, no $y$ | 1 | 3 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| P even, has $y$ | 0 | 0 | 0 | 0 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 |
| P even, has y, flip + | 0 | 0 | 0 | 0 | 2 | 1 | 4 | 2 | 6 | 3 | 8 | 4 | 10 | 5 |
| P even, has $y$, flip - | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 4 | 2 | 6 | 3 | 8 | 4 | 10 |
| P odd | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 |
| P odd, flip + | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 | 6 |
| P odd, flip - | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 3 | 0 | 4 | 0 | 5 | 0 |

- This counting, together with final-entry properties, reveals a canonical solution to the integrability conditions.


## Trivial no-y functions

- 6 for any weight $N$. Just made out of HPL's \& In's

$$
\begin{aligned}
\kappa_{1}^{(N)} & =H_{N}\left(1-\frac{1}{u}\right) \\
\kappa_{2}^{(N)} & =H_{N}\left(1-\frac{1}{v}\right) \\
\kappa_{3}^{(N)} & =\ln \frac{v}{w} H_{N-1}\left(1-\frac{1}{u}\right)+\sum_{i=1}^{N-2} H_{i, N-i}\left(1-\frac{1}{u}\right) \\
\kappa_{4}^{(N)} & =\ln \frac{u}{w} H_{N-1}\left(1-\frac{1}{v}\right)+\sum_{i=1}^{N-2} H_{i, N-i}\left(1-\frac{1}{v}\right) \\
\kappa_{5}^{(N)} & =\sum_{i=0}^{(N / 2\rfloor} \frac{1}{(N-2 i)!} \ln ^{N-2 i} \frac{u}{v} \Omega^{(i)}(1,1, w), \\
\kappa_{6}^{(N)} & =-(1-w) \frac{\partial}{\partial w} \kappa_{5}^{(N+1)} \cdot
\end{aligned}
$$

see below for definition

## P-odd functions

- Change letters from

$$
\begin{aligned}
\mathcal{S} & =\left\{u, v, w, 1-u, 1-v, 1-w, y_{u}, y_{v}, y_{w}\right\} \\
\mathcal{S}^{\prime} & =\left\{a, b, c, m_{u}, m_{v}, m_{w}, y_{u}, y_{v}, y_{w}\right\}
\end{aligned}
$$

to
where $\quad a=\frac{u}{v w}, \quad m_{u}=\frac{1-u}{u}, \quad \&$ cyclic

- New letters much better for exposing Steinmann properties,...
- P-odd functions $\tilde{o}_{i}^{(N)}$ have only 4 final entries:

$$
\frac{m_{u}}{m_{v}}, y_{u}, y_{v}, y_{w}
$$

## P-odd functions (cont.)

- P-odd functions $\tilde{o}_{i}^{(N)}$ have only 4 final entries:

$$
\frac{m_{u}}{m_{v}}, y_{u}, y_{v}, y_{w}
$$

- For $N$ even, the number of P-odd functions is the same as one weight lower. They are connected by the unique P-even, flip-odd letter in the set of final entries: $\underline{m_{u}}$
- So we require:

$$
d \tilde{o}_{i}^{(N)}=\frac{1}{2} d \ln \left(m_{u} / m_{v}\right) \tilde{o}_{i}^{(N-1)}+\ldots
$$

- For $N$ odd, we use $y_{u} / y_{v}$ to "line up" one extra function:

$$
\begin{aligned}
& d \tilde{o}_{i}^{(N)}=\frac{1}{2} d \ln \left(m_{u} / m_{v}\right) \tilde{o}_{i}^{(N-1)}+d \ln \left(y_{u} / y_{v}\right) \times 0+\ldots, \quad i=1,2, \ldots, n_{o}-1 \\
& d \tilde{o}_{n_{o}}^{(N)}=d \ln \left(m_{u} / m_{v}\right) \times 0+d \ln \left(y_{u} / y_{v}\right) \kappa_{6}^{(N-1)}+\ldots, \quad N \text { odd }
\end{aligned}
$$

## P-even functions

- Put the 6 no- $y$ functions first: $o_{i}^{(N)}=\kappa_{i}^{(N)}, \quad i=1,2, \ldots, 6$
- Then the "big" set, which numbers: $n_{e}^{b}(N)=2 \times\left\lfloor\frac{N-2}{2}\right\rfloor$
- Finally the "small set", which numbers: $n_{e}^{s}(N)=\left\lfloor\frac{N-3}{2}\right\rfloor$
- The number of "big" P-even functions is twice the number of P -odd ones at 1 weight lower. There are two P -odd letters to connect them: $y_{u} y_{v}$ and $y_{w}$
- Require: ${ }_{d o_{6+i}^{(N)}=d \ln \left(y_{u} y_{c}\right) \tilde{o}_{i}^{(N-1)}+d \ln y_{w} \times 0+\ldots, \quad i=1,2, \ldots, n_{e}^{b} / 2}$

$$
d o_{6+n_{e}^{b} / 2+i}^{(N)}=d \ln \left(y_{u} y_{v}\right) \times 0+d \ln y_{w} \tilde{\sigma}_{i}^{(N-1)}+\ldots, \quad i=1,2, \ldots, n_{e}^{b} / 2
$$

- Plus other conditions to get a unique solution
- "Small" set: $d o_{6+n_{e}^{b}+i}^{(N)}=d \ln c o_{6+i}^{(N-1)}+\sum_{i=1}^{3} d \ln y_{i} \times 0+\ldots, \quad i=1,2, \ldots, n_{e}^{s}$


## The line $(u, v, w)=(1,1, w)$

- On this line, all $\Omega$ functions become an integer multiple of either (weight $=2 k=L$ ):

$$
\begin{aligned}
\Omega^{(L)}(1,1, w)= & (-1)^{L-1} H_{2^{L}}(1-w) \\
& +\sum_{m=1}^{L}(-1)^{L-m}(2-4 m) \zeta_{2 m} H_{2 L-m}(1-w)
\end{aligned}
$$

$$
2^{L} \equiv \underbrace{2,2, \ldots, 2}_{L \text { times }} \equiv \underbrace{0,1,0,1, \ldots, 0,1}_{L \text { times }}
$$

- $\operatorname{Or}($ weight $=2 k+1=L-1):$

$$
(1-w) \frac{d}{d w} \Omega^{(L)}(1,1, w)
$$

## The line $(u, v, w)=(1,1, w)$ (cont.)

- This fact fixes the integration constants at $(1,1,1)$ needed for the P -even functions.
- Also, the integer coefficients of proportionality turn out to describe the "coproduct tables"
- Key formula is for the P-odd, odd-weight case:

$$
\begin{aligned}
\tilde{o}_{i}^{(2 k+1)}(1,1, w) & =\tilde{d}_{k, i} \times(1-w) \frac{d}{d w} \Omega^{(2 k+2)}(1,1, w) \\
\tilde{d}_{k, i} & =(-1)^{k-i} \frac{(2 k)!}{(2 i-1)!(2 k+2-2 i)!} \mathrm{Ge}_{k+1-i}
\end{aligned}
$$

## The Genocchi numbers

- Related to the Bernoulli numbers:

$$
\begin{aligned}
\mathrm{Ge}_{n} & =(-1)^{n+1} 2\left(4^{n}-1\right) B_{2 n} \\
& =1,1,3,17,155,2073,38227,929569, \ldots
\end{aligned}
$$

- Generating function:

$$
t \tan (t / 2)=\sum_{n=1}^{\infty} \frac{\mathrm{Ge}_{n}}{(2 n)!} t^{2 n}
$$

- Recursive definition:

$$
\mathrm{Ge}_{n}=-\sum_{j=1}^{\lfloor n / 2\rfloor}(-1)^{j} \frac{n!}{(2 j)!(n-2 j)!} \mathrm{Ge}_{n-j}
$$

## The line $(u, v, w)=(1,1, w)$ (cont.)

- P-odd, even-weight functions all odd under $u \leftrightarrow \rightarrow v$
- So they vanish on $(1,1, w)$ : $\quad \tilde{o}_{i}^{(2 k)}(1,1, w)=0$
- P-even functions can be expressed in terms of $\tilde{d}_{k, i}$
- Even-weight case:

$$
o_{i}^{(2 k)}(1,1, w)=d_{k, i}^{\prime} \times \Omega^{(2 k)}(1,1, w)
$$

$d_{k, i}^{\prime}=\left\{\begin{array}{l}1, \\ 2 \tilde{d}_{k-1, i-6}, \\ -2 \tilde{d}_{k-1, i-k-5}, \\ -2 \tilde{d}_{k-1, k-1}+1, \\ 0,\end{array}\right.$

$$
\left.\begin{array}{r}
i=5 \\
7 \leq i \leq k+5 \\
k+6 \leq i \leq 2 k+3 \\
i=2 k+4 \\
\text { otherwise }
\end{array}\right\}
$$

## Finding the $\Omega$ 's

- Besides the $1^{\text {st }}$ order coproduct relations for $\Omega, \mathcal{O}$, and similar ones for $\widetilde{\Omega}_{e}, \widetilde{\Omega}_{0}$, there are $2^{\text {nd }}$ order coproduct relations:

$$
\begin{aligned}
X[\Omega] & =0 \\
X\left[\widetilde{\Omega}_{\mathrm{e}}^{(L)}\right] & =2 \widetilde{\Omega}_{\mathrm{e}}^{(L-1)} \\
X\left[\widetilde{\Omega}_{\mathrm{O}}^{(L)}\right] & =2 \widetilde{\Omega}_{\mathrm{O}}^{(L-1)} \\
X\left[\mathcal{O}^{(L)}\right] & =2 \mathcal{O}^{(L-1)}
\end{aligned}
$$

## Finding the $\Omega$ 's (cont.)

- Here

$$
\begin{aligned}
X[F]= & F^{a, a}+F^{b, b}+F^{c, c}+F^{a, m_{u}}-F^{m_{u}, a}-F^{b, m_{u}}+F^{m_{u}, b}-F^{c, m_{u}}+F^{m_{u}, c} \\
& +F^{b, m_{v}}-F^{m_{v}, b}-F^{c, m_{v}}+F^{m_{v}, c}-F^{a, m_{v}}+F^{m_{v}, a} \\
& -F^{c, m_{w}}+F^{m_{w}, c}+F^{a, m_{w}}-F^{m_{w}, a}+F^{b, m_{w}}-F^{m_{w}, b} \\
& +F^{y_{u}, y_{u}}+F^{y_{v}, y_{v}}-F^{y_{u}, y_{v}}-F^{y_{v}, y_{u}}+F^{y_{u}, y_{w}}+F^{y_{v}, y_{w}}+F^{y_{w}, y_{u}}+F^{y_{w}, y_{v}} \\
& -3 F^{y_{w}, y_{w}}
\end{aligned}
$$

- Same operator has very nice action on MHV amplitude $\rightarrow$ simple combination of MHV and NMHV amplitudes at one lower loop.

LD, von Hippel, 1408.1505
Caron-Huot, LD, von Hippel, McLeod,1609.00669

## Finding the $\Omega$ 's (cont.)

- First and second order coproduct relations suffice to uniquely determine all four integrals, loop order by loop order.
- Use coproduct tables to compute limits onto lines $(1, u, u),(1, u, 1)$, check vs. alternative evaluations to high orders.


## Results for Integrals

- Let $c_{L, i}=\frac{(-1)^{L+1}(2 i-1)[2(L-i)]!}{L!(L-2 i+1)!}$

$$
\begin{aligned}
\Omega^{(L)} & =-c_{L, 1}\left(o_{1}^{(2 L)}+o_{2}^{(2 L)}\right)+\frac{1}{2} \sum_{i=1}^{\lfloor L / 2\rfloor} c_{L-1, i} o_{6+i}^{(2 L)} \\
\mathcal{O}^{(L)} & =\sum_{i=1}^{\lfloor(L+1) / 2\rfloor} c_{L, i} \tilde{o}_{i}^{(2 L+1)}
\end{aligned}
$$

- Similar formulae for $\widetilde{\Omega}_{\mathrm{e}}^{(L)}, \widetilde{\Omega}_{\mathrm{o}}^{(L)}$


## Finite coupling

- An isometry of the $\Omega$ integral allows the differential equation to be solved at finite coupling in terms of hypergeomtric functions
- Let $\Omega\left(u, v, w, g^{2}\right) \propto r^{i \nu / 2} F\left(x, y, g^{2}\right)$
where

$$
\begin{aligned}
x & =\sqrt{\frac{(1-u)(1-v)}{u v y_{u} y_{v}}}=1+\frac{1-u-v-w+\sqrt{\triangle}}{2 u v} \\
y & =\sqrt{\frac{y_{u} y_{v}(1-u)(1-v)}{u v}}=1+\frac{1-u-v-w-\sqrt{\triangle}}{2 u v} \\
r & =\frac{u(1-v)}{v(1-u)}
\end{aligned}
$$

$\rightarrow \quad \begin{aligned} & {\left[(1-x)\left(x \partial_{x}\right)^{2}+\frac{1}{4}(1-x) \nu^{2}-x g^{2}\right] F\left(x, y, g^{2}\right)=0} \\ & {\left[(1-y)\left(y \partial_{y}\right)^{2}+\frac{1}{4}(1-y) \nu^{2}-y g^{2}\right] F\left(x, y, g^{2}\right)=0}\end{aligned}$

## Finite coupling (cont.)

$$
\rightarrow \quad \Omega\left(u, v, w, g^{2}\right)=\int_{-\infty}^{\infty} \frac{d \nu}{2 i}\left(\frac{u(1-v)}{(1-u) v}\right)^{i \nu / 2} \frac{F_{+\nu}^{j}(x) F_{+\nu}^{j}(y)-F_{-\nu}^{j}(x) F_{-\nu}^{j}(y)}{\sinh (\pi \nu)}
$$

$$
\begin{aligned}
F_{\nu}^{j}(x) & =\frac{\Gamma\left(1+\frac{i \nu+j}{2}\right) \Gamma\left(1+\frac{i \nu-j}{2}\right)}{\Gamma(1+i \nu)} x^{i \nu / 2}{ }_{2} F_{1}\left(\frac{i \nu+j}{2}, \frac{i \nu-j}{2}, 1+i \nu, x\right) \\
j\left(\nu^{2}\right) & \equiv i \sqrt{\nu^{2}+4 g^{2}}
\end{aligned}
$$

## Zhukowsky variable

- Straightforward to expand around $(1,1,1)$
- Or sum up in terms of 2dHPLs on $(1, v, w)$ or limits thereof, to compare with the all orders perturbative results


## Summary \& Outlook

- The double pentaladders, or $\Omega$ functions, together with their coproducts, define an interesting subspace of hexagon functions, which we now understand well to all loop orders, as well as at finite coupling.
- Look for more subspaces between $\Omega$ and full (Steinmann) hexagon function space (Simon).
- Try to extend to similar 7 \& 8 point integrals.

