A Lagrangian for Factorization Violation and Forward Scattering

Iain Stewart MIT

with Ira Rothstein (arXiv:1601.04695) + ongoing work

Workshop on Iterated integrals and the Regge limit Higgs Center, Edinburgh, April 2017

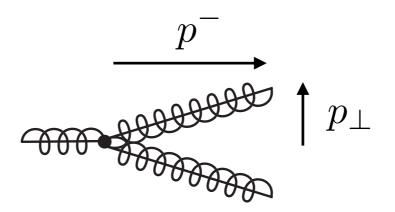
Outline

- Introduction to Factorization and Soft-Collinear Effective Theory (SCET)
- Fact. Violation: Glauber Operators & Forward Scattering
 Complete Leading Power Glauber Interaction Lagrangian
- Fwd. Scattering: Regge and BFKL (Rapidity RGE)
 Exponentiation & Eikonalization
- Fact. Violation: Wilson Line Directions & "Cheshire Glauber"
 Glauber Effects with "Spectator" Partons
- Work in progress: quark Reggeization, small-x DIS

Introduction

Relevant Momentum Regions:

Collinear Splittings

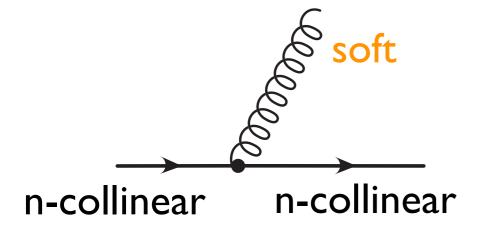


"n-collinear"

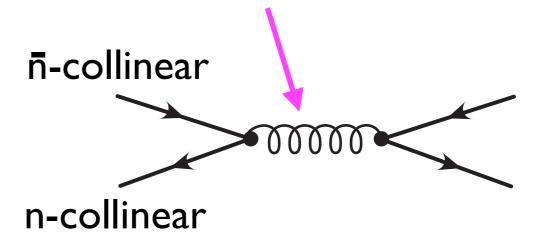
$$p^- \gg p_\perp \gg p^+$$

onshell: $p^+p^- = \vec{p}_\perp^2$

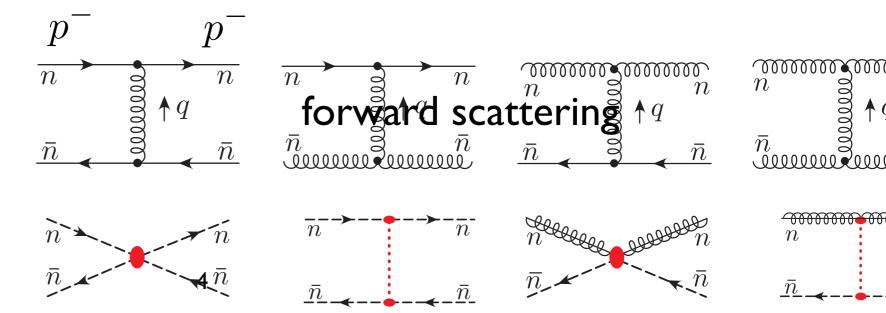
Soft Emission

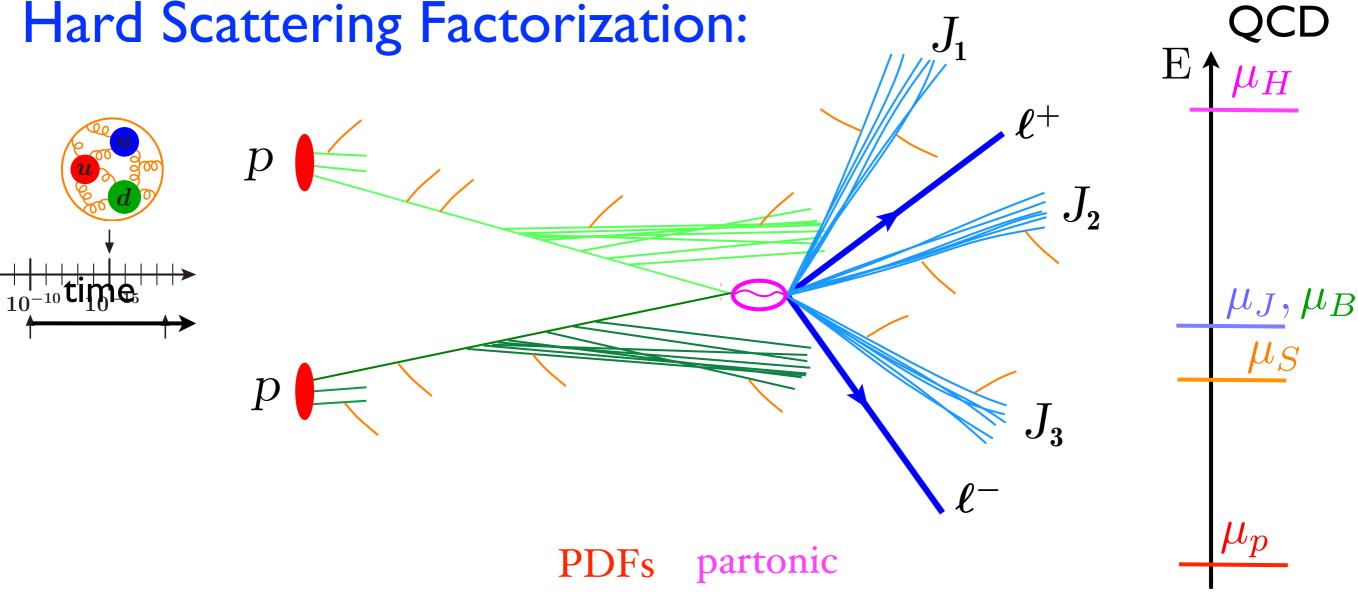


Hard Propagators (short dist.)



Glauber Exchange





Nonperturbative:
$$d\sigma=f_af_b\otimes\hat{\sigma}\otimes F_{ullet}$$

 $\mu_p \simeq \Lambda_{\rm QCD}$

hadronization

(In some cases by Operators, or is power suppressed)

eg. Perturbative:
$$\hat{\sigma}_{\mathrm{fact}} = \mathcal{I}_a \mathcal{I}_b \otimes H \otimes \prod_i J_i \otimes S$$

Used to Sum Logs

Examples of Factorization:

Inclusive Higgs production $pp \rightarrow \text{Higgs} + \text{anything}$

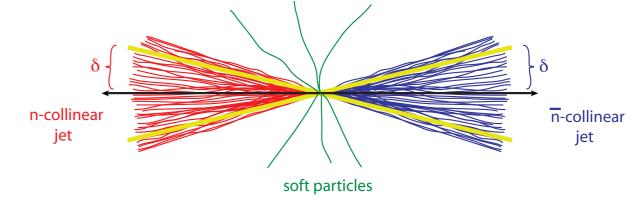
$$pp \rightarrow \text{Higgs} + \text{anything}$$

$$d\sigma = \int dY \sum_{i,j} \int \frac{d\xi_a}{\xi_a} \frac{d\xi_b}{\xi_b} f_i(\xi_a, \mu) f_j(\xi_b, \mu) H_{ij}^{incl} \left(\frac{m_H e^Y}{E_{cm} \xi_a}, \frac{m_H e^{-Y}}{E_{cm} \xi_b}, m_H, \mu \right)$$

(CSS = Collins, Soper, Sterman)

(PDFs contribute, No Glaubers, No Softs)

Dijet production $e^+e^- \rightarrow 2 \text{ jets}$ thrust $\tau \ll 1$



$$\frac{d\sigma}{d\tau} = \sigma_0 H(Q,\mu) \, Q \! \int \! d\ell \, d\ell' \, J_T \big(Q^2 \tau - Q\ell, \mu \big) S_T(\ell - \ell',\mu) F(\ell')$$
 hard jet functions perturbative non-perturbative soft function soft function

(No PDFs, No Glaubers, Softs contribute)

Hard Amplitude Factorization (Quarks)

$$\langle X_{1} \cdots X_{N}; X_{s} | i \rangle \cong \mathcal{C}(P_{i}) \frac{\langle X_{1} | \overline{\psi} W_{1} | 0 \rangle}{\operatorname{tr} \langle 0 | Y_{1}^{\dagger} W_{1} | 0 \rangle} \cdots \frac{\langle X_{N} | W_{N}^{\dagger} \psi | 0 \rangle}{\operatorname{tr} \langle 0 | W_{N}^{\dagger} Y_{N} | 0 \rangle} \langle X_{s} | Y_{1}^{\dagger} \cdots Y_{N} | 0 \rangle$$

Direct Proof with well separated Final State Collinear Particles

(Feige, Schwartz)

Simple to prove in SCET if we assume Glaubers are absent

Exclusive Factorization

$$\langle D\pi | (\bar{c}b)(\bar{u}d) | B \rangle = N \, \xi(v \cdot v') \int_0^1 dx \, T(x,\mu) \, \phi_{\pi}(x,\mu)$$

soft
$$\langle D^{(*)}|O_s|B \rangle = \xi(v\cdot v')$$
 n-collinear $\langle \pi|O_n(x)|0 \rangle = f_\pi\phi_\pi(x)$

$$\langle \pi | O_n(x) | 0 \rangle = f_\pi \phi_\pi(x)$$

ullet Higgs with a Jet Veto $p_T^{
m jet} \leq p_T^{
m cut} \ll m_H$ (anti-kT jets, radius R) $\Lambda_{
m QCD} \ll p_T^{
m cut}$

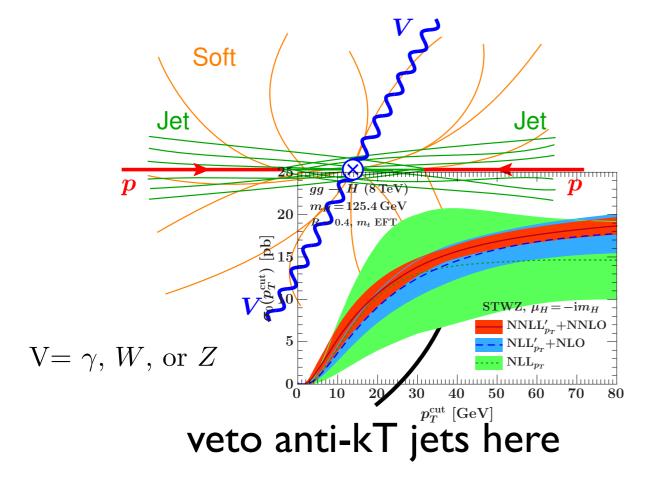
$$\sigma_0(p_T^{\text{cut}}) = H_{gg}(m_H) \times [B_g(m_H, p_T^{\text{cut}}, R)]^2$$

$$\times S_{gg}(p_T^{\text{cut}}, R)$$

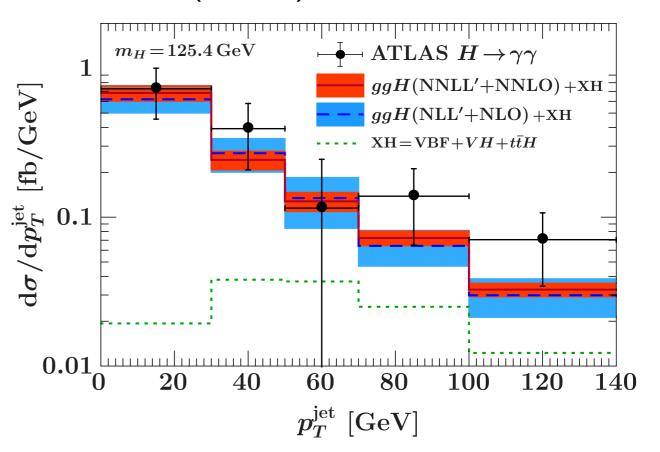
$$B_g = \mathcal{I}_{gj}(m_H, p_T^{\text{cut}}, R) \otimes f_j$$

8

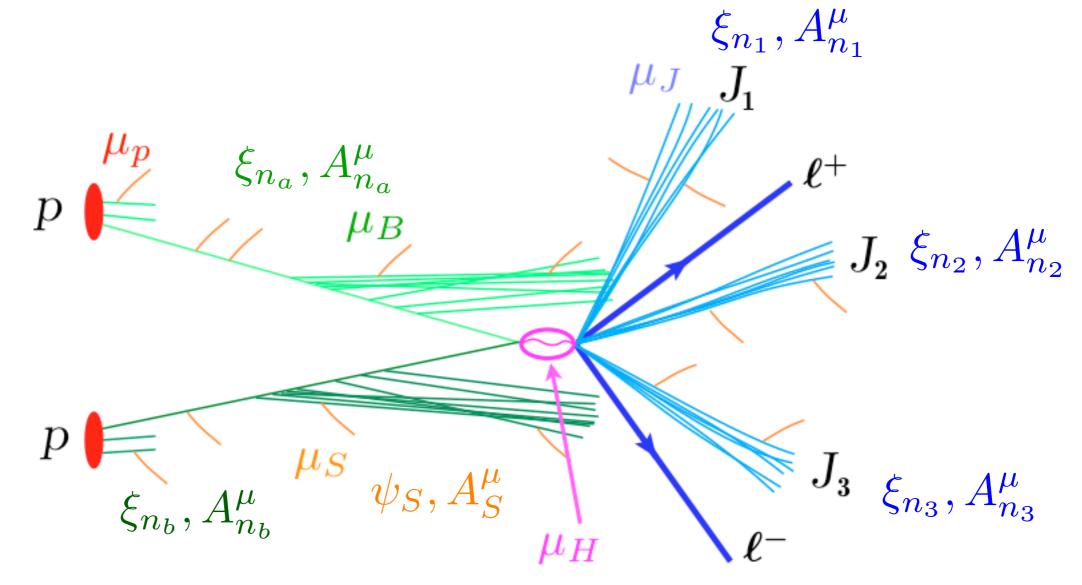
(PDFs and Softs contribute, Glaubers?)

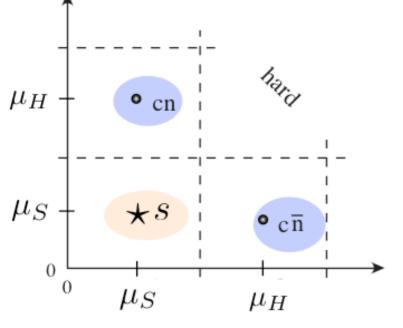


data (run-1)



SCET Fields for various Modes





- dominant contributions from isolated regions of momentum space
- use subtractions rather than sharp boundaries to preserve symmetry

Relevant Modes

 $\lambda \ll 1$ large Q

Infrared Structure of Amplitudes (Landau eqtns, CSS, ...)
Method of Regions (Beneke & Smirnov)

mode	fields	p^{μ} momentum scaling	physical objects
n_a -collinear	$\xi_{n_a}, A^{\mu}_{n_a}$	$(n_a \cdot p, \bar{n}_a \cdot p, p_{\perp a}) \sim Q(\lambda^2, 1, \lambda)$	collinear initial state jet a
n_b -collinear	$\xi_{n_b},A_{n_b}^{\mu^a}$	$(n_b \cdot p, \bar{n}_b \cdot p, p_{\perp b}) \sim Q(\lambda^2, 1, \lambda)$	collinear initial state jet b
n_j -collinear	$\xi_{n_j},A_{n_j}^{\mu^\circ}$	$(n_j \cdot p, \bar{n}_j \cdot p, p_{\perp j}) \sim Q(\lambda^2, 1, \lambda)$	collinear final state jet in \hat{n}_j
soft	$\psi_{ m S},A_{ m S}^{\mu^{\prime}}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation
ultrasoft	$\psi_{ m us}, A_{ m us}^{\widetilde{\mu}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b>2$	forward scattering potential
hard		$p^2 \gtrsim Q^2$	hard scattering

$$p^{\mu} = \bar{n}_i \cdot p \frac{n_i^{\mu}}{2} + n_i \cdot p \frac{\bar{n}_i^{\mu}}{2} + p_{\perp}^{\mu}$$

$$n_i^2 = 0$$

$$\bar{n}_i^2 = 0$$

$$n_i \cdot \bar{n}_i = 2$$



Relevant Modes

Infrared Structure of Amplitudes (Landau eqtns, CSS, ...)
Method of Regions (Beneke & Smirnov)

 $\lambda \ll 1$ large Q

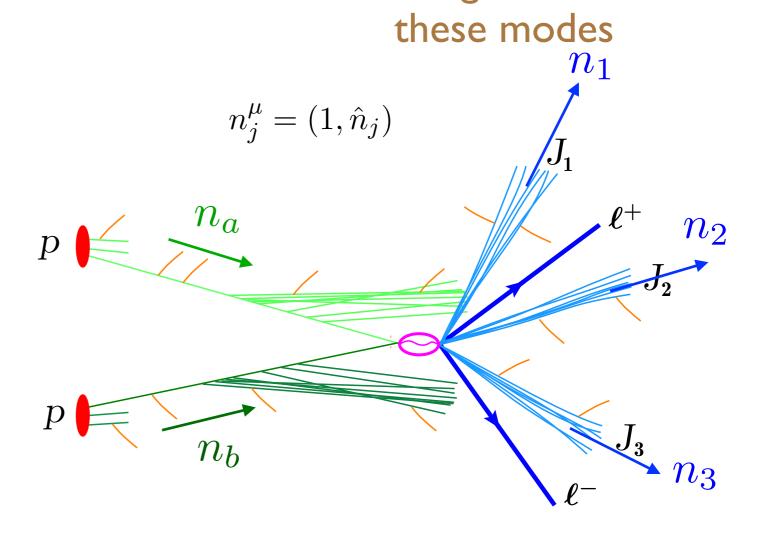
mode	fields	p^{μ} momentum scaling	physical objects	type
n_a -collinear	$\xi_{n_a}, A^{\mu}_{n_a}$	$(n_a \cdot p, \bar{n}_a \cdot p, p_{\perp a}) \sim Q(\lambda^2, 1, \lambda)$	collinear initial state jet a	onshell
n_b -collinear	$\xi_{n_b},A_{n_b}^{\mu^a}$	$(n_b \cdot p, \bar{n}_b \cdot p, p_{\perp b}) \sim Q(\lambda^2, 1, \lambda)$	collinear initial state jet b	onshell
n_j -collinear	$\xi_{n_j},A_{n_j}^\mu$	$(n_j \cdot p, \bar{n}_j \cdot p, p_{\perp j}) \sim Q(\lambda^2, 1, \lambda)$	collinear final state jet in \hat{n}_j	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu'}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us}, A_{ m us}^{\widetilde{\mu}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber		$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b>2$	forward scattering potential	offshell
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell
			Integrate out	

$$p^{\mu} = \bar{n}_i \cdot p \frac{n_i^{\mu}}{2} + n_i \cdot p \frac{\bar{n}_i^{\mu}}{2} + p_{\perp}^{\mu}$$

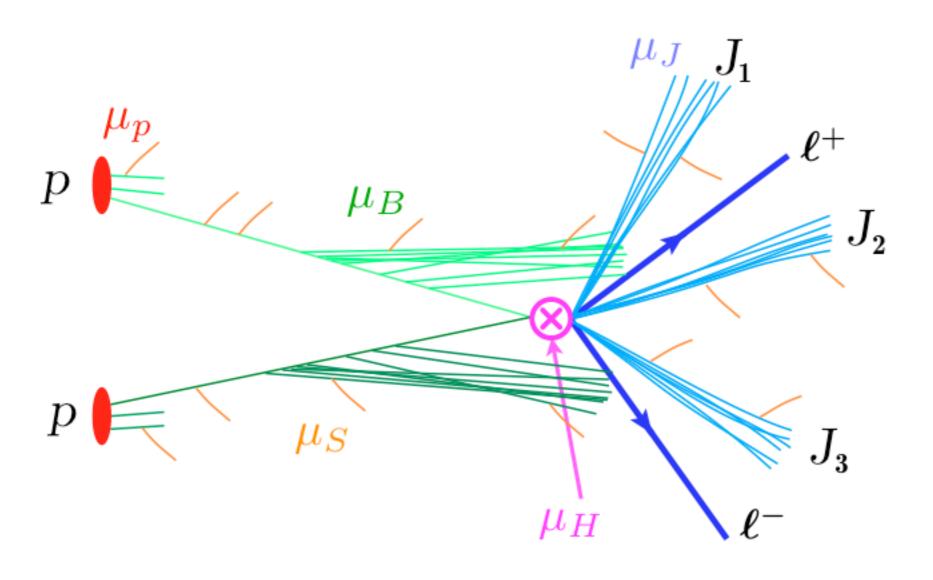
$$n_i^2 = 0$$

$$\bar{n}_i^2 = 0$$

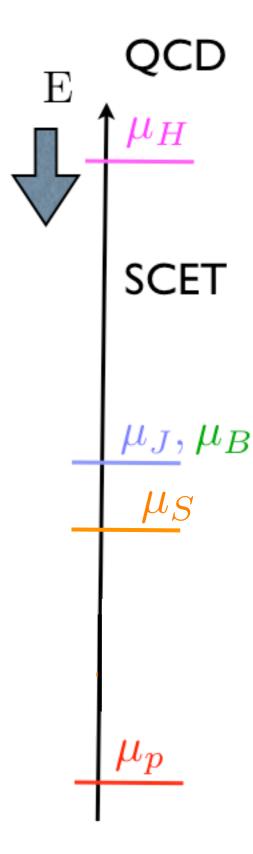
$$n_i \cdot \bar{n}_i = 2$$



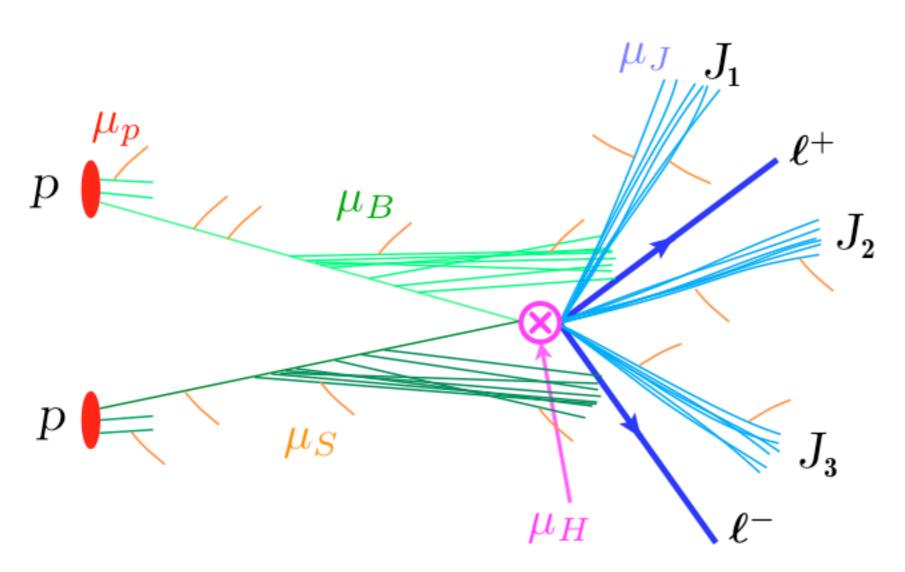
Hard-collinear factorization

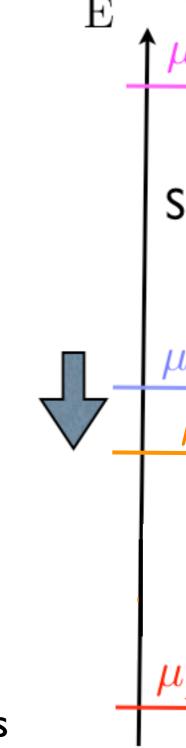


 μ_H : Wilson coefficients for SCET Hard Scattering Operators



Hard-collinear factorization





Operators are built of building block fields:

$$\mathcal{O} = (\mathcal{B}_{n_a \perp})(\mathcal{B}_{n_b \perp})(\mathcal{B}_{n_1 \perp})(\bar{\chi}_{n_2})(\chi_{n_3})$$

$$\chi_n = (W_n^{\dagger} \xi_n)$$

$$\mathcal{B}_{n\perp}^{\mu} = [W_n^{\dagger} i D_{\perp}^{\mu} W_n]$$

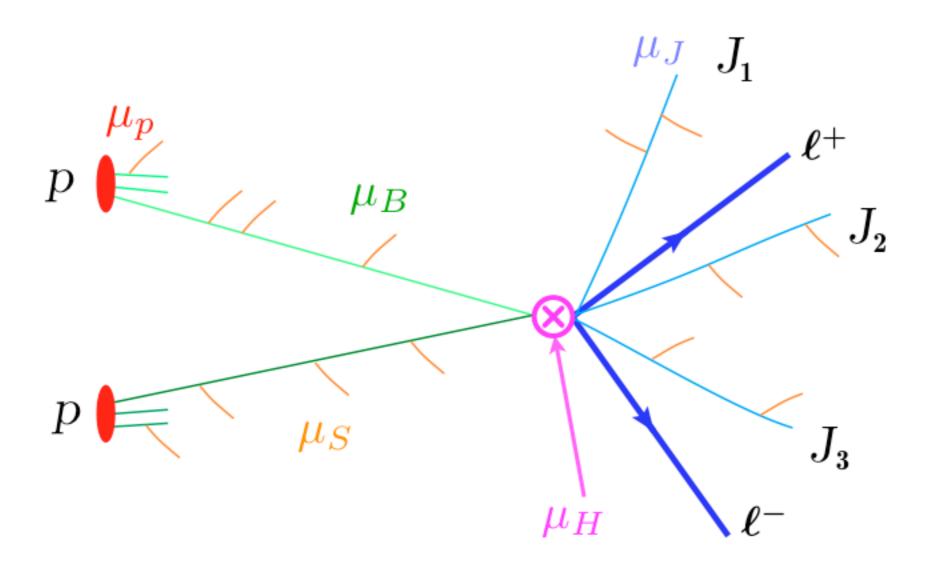
"quark jet"

"gluon jet"

Wilson lines

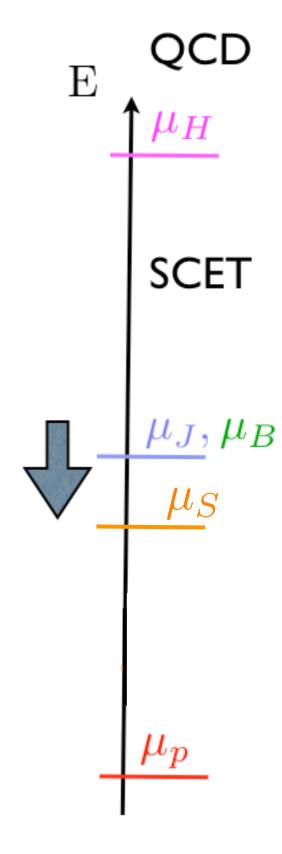
$$W_n = P \exp\left(ig \int_{-\infty}^0 ds \,\bar{n} \cdot A_n(x + \bar{n}s)\right)$$

Soft-collinear factorization



Soft radiation knows only about bulk properties of radiation in the jets

$$\left(\mathcal{S}_{n_a}\mathcal{S}_{n_b}\mathcal{S}_{n_1}S_{n_2}S_{n_3}\right)$$



Soft Wilson Lines

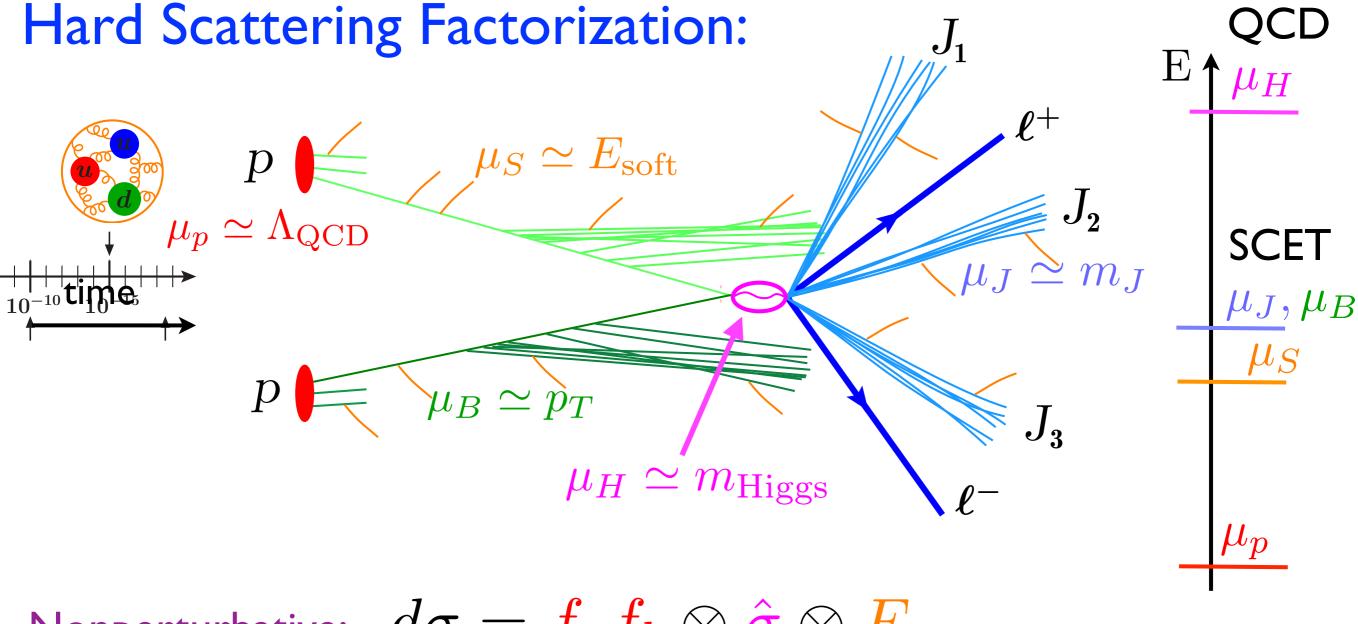


Idea of how factorization arises in SCET:

factorized Lagrangian: $\mathcal{L}_{\text{SCET}_{\text{II}},\text{S},\{\text{n}_i\}}^{(0)} = \mathcal{L}_{S}^{(0)}(\psi_S,A_S) + \sum_{n_i} \mathcal{L}_{n_i}^{(0)}(\xi_{n_i},A_{n_i})$

factorized Hard Ops: $C \otimes (\mathcal{B}_{n_a\perp})(\mathcal{B}_{n_b\perp})(\mathcal{B}_{n_1\perp})(\bar{\chi}_{n_2})(\chi_{n_3})(\mathcal{S}_{n_a}\mathcal{S}_{n_b}\mathcal{S}_{n_1}\mathcal{S}_{n_2}\mathcal{S}_{n_3})$

factorized squared matrix elements defining jet, soft, ... functions



Nonperturbative:
$$d\sigma=f_af_b\otimes\hat{\sigma}\otimes F_{\rm hadronization}$$
 $\mu_p\simeq\Lambda_{\rm QCD}$

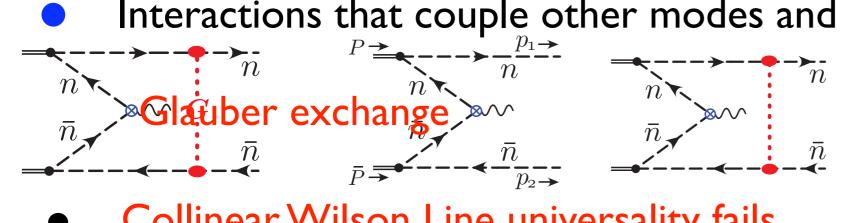
eg. Perturbative:
$$\hat{\sigma}_{\mathrm{fact}} = \mathcal{I}_a \mathcal{I}_b \otimes H \otimes \prod_i J_i \otimes S$$
 Used to Sum Logs Universal Functions: beam hard jet pert. soft

"Factorization Violation"

My Definition: The expected form for a factorization formula is invalid.

Reasons Factorization can fail:

- Measurement doesn't factor: no simple factorization with universal functions. (eg. Jade jet algorithm)
- Divergent convolutions, not controlled by ones regulation procedures. (Requires more careful construction.) $\int_0^1 \frac{dx}{x^2} \, \phi_{\pi}(x,\mu)$
- Interactions that couple other modes and spoil factorization.



Collinear Wilson Line universality fails.

examples studied by Collins, Qiu, Aybat, Rogers, ... $H_1 + H_2 \rightarrow H_3 + H_4 + X$

$$H_3, H_4 \simeq$$
 back-to-back $H_1 + H_2
ightarrow H_3 + H_4 + X$ pT dependent

Determine Glauber Lagrangian

$$\mathcal{L}_{\text{SCET}_{\text{II}}}^{(0)} = \mathcal{L}_{\text{SCET}_{\text{II}},S,\{n_i\}}^{(0)} + \mathcal{L}_G^{(0)}(\psi_S, A_S, \xi_{n_i}, A_{n_i})$$

- Complete description of factorization violation (any α_s , any power)
- ullet If $\mathcal{L}_G^{(0)}$ does not contribute ullet can derive usual types of

Factorization Formulae

Power suppressed $\mathcal{L}^{(k\geq 1)}(S,n_i)$ do not spoil factorization

Determine Glauber Lagrangian

$$\mathcal{L}_{\text{SCET}_{\text{II}}}^{(0)} = \mathcal{L}_{\text{SCET}_{\text{II}},S,\{n_i\}}^{(0)} + \mathcal{L}_G^{(0)}(\psi_S, A_S, \xi_{n_i}, A_{n_i})$$

Key Technical ingredients:

- No double counting (0-bin Subtractions)
- Contributions separately well defined (Rapidity Regulator)

Note: SCET Glauber not simply related to CSS Glauber (expand first then integrate) vs. (study integrals then expand)

$$\lambda \ll 1$$

 $\lambda \ll 1$ large Q

will do calculations with back-to-back collinear particles for simplicity

$\overline{\text{mode}}$	fields	p^{μ} momentum scaling	physical objects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	<i>n</i> -collinear "jet"	onshell
\bar{n} -collinear	$\xi_{ar{n}},A^{\mu}_{ar{n}}$	$(\bar{n} \cdot p, n \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A^{\mu}_{ m S}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us}, ilde{A_{ m us}^{\mu}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b>2$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell

Integrate out these modes

Glaubers are offshell and must be integrated out (despite having $p^2 \sim \lambda^2$) Otherwise one has problems with simultaneously having gauge invariant operators and homogeneous power counting

 $\lambda \ll 1$ large Q

will do calculations with back-to-back collinear particles for simplicity

$\overline{\text{mode}}$	fields	p^{μ} mome	ntum scaling	physical o	bjects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$\overline{(n\cdot p,ar{n}\cdot p,p_{\perp})}$ ($\sim Q(\lambda^2, 1, \lambda)$	<i>n</i> -collinear	: "jet"	onshell
\bar{n} -collinear	$\xi_{\bar{n}},A^{\mu}_{\bar{n}}$	$(ar{n}\cdot p, n\cdot p, p_\perp)$ \sim	$\sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear	: "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	p^{μ}	$\sim Q(\lambda, \lambda, \lambda)$	soft virtua	al/real radiation	onshell
ultrasoft	$\psi_{ m us}, A_{ m us}^{\widetilde{\mu}}$	$p^{\mu} \sim 0$	$Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft v	rirtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda^a)$	(a + b), a + b > 2	forward sc	eattering potential	offshell
$\frac{n}{\text{hard}} \rightarrow \frac{1}{8}$	$\frac{1}{\sqrt{q}}$	$\frac{n^{\text{(hore } \{a,b\} \rightarrow \{2,2\})}}{n}$	$np^2 \gtrsim np^2 $	m m hard statt	$\frac{1}{\operatorname{ering}} \frac{1}{q}$	offshell
$N_{\text{eed}}^{\bar{n}}$	types \bar{n}	\bar{n} \bar{n} \bar{n}	enta: $\stackrel{\bar{n}}{\longleftarrow}$	$ar{n}$ $ar{n}$	Integrate	out
	- <i>Ā</i> ≁⁄n catt e r∮ng	$2 \overline{n} \rightarrow - \overline{n}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \mathbf{r} = \bar{n} \cdot p \bar{s}$	forwa	
⅓ ₩ C. S	cattering	$1 \bar{n} \leftarrow \bar{n}$	$4 \frac{1}{2} $	$\mathbf{w} \in \mathcal{W} \cdot \mathcal{W}_{4}$		OHS
n	n	n	n property	p_3 n	n	
fwd.sc	attering	\bar{n}	\bar{n}	$\sim n$	\bar{n}	
	0– S	$\overline{n} \longrightarrow \overline{n}$	$n \cdot p_2 = \bar{n} \cdot p_1 =$	_		

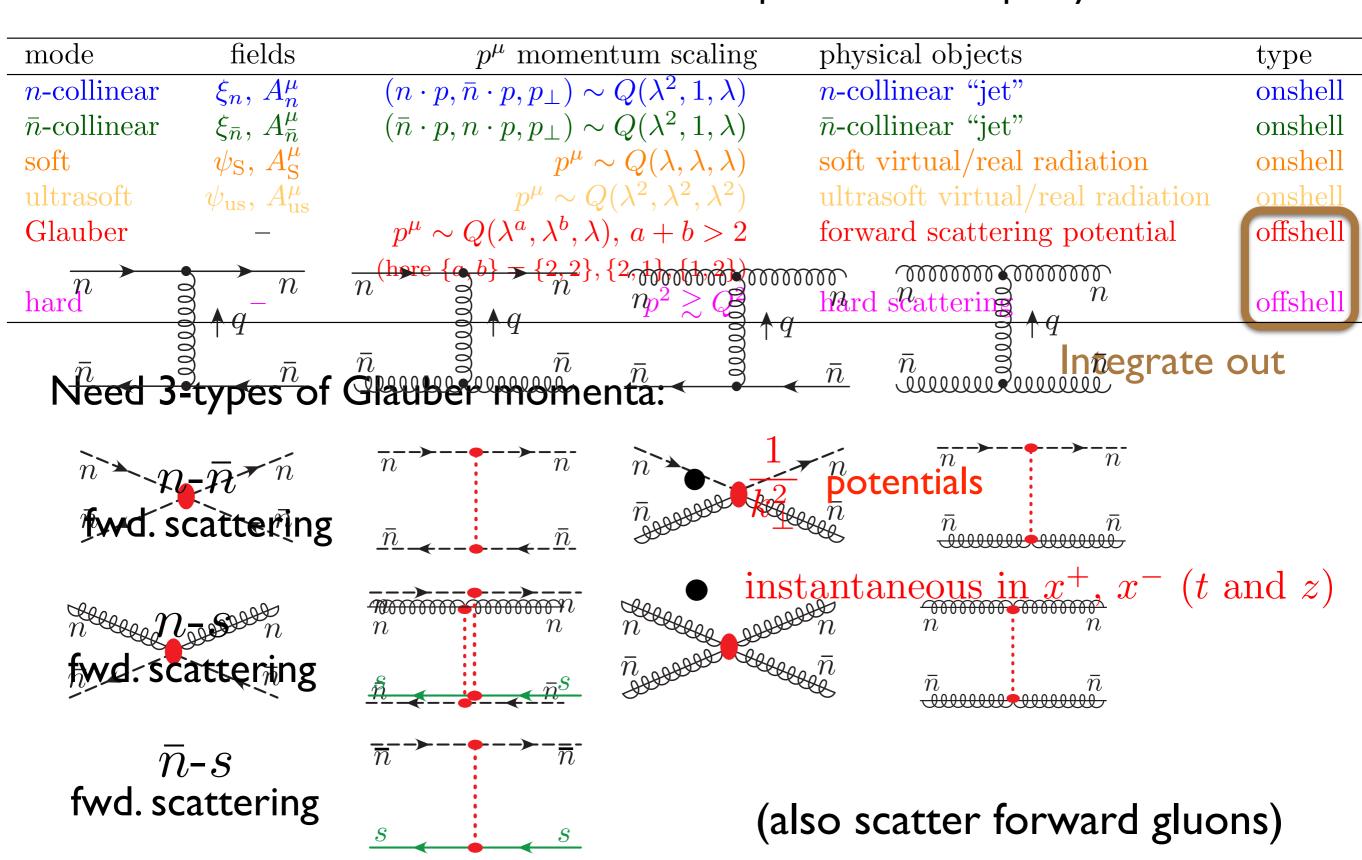
 $\lambda \ll 1$ large Q

will do calculations with back-to-back collinear particles for simplicity

mode	fields	p^{μ} momentum scaling physical of	ojects	type
n-collinear	ξ_n,A_n^μ	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$ n-collinear	"jet"	onshell
\bar{n} -collinear	$\xi_{ar{n}},A^{\mu}_{ar{n}}$	$(\bar{n} \cdot p, n \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$ \bar{n} -collinear	"jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$ soft virtual	l/real radiation	onshell
ultrasoft	$\psi_{ m us}, ilde{A_{ m us}^{\mu}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$ ultrasoft v	irtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b>2$ forward sca	attering potential	offshell
$\frac{n}{\text{hard}} \rightarrow \frac{1}{8}$	n	$\frac{n^{\text{(here }\{a,b\}} \rightarrow \{2,2\},\{2,1\}$	ering n	offshell
$N_{eed}^{\bar{n}}$	types \bar{n}	Glauber momenta: $(+,-,\perp)^{\bar{n}}$	Integrate o	ut
n → n ••••••••••••••••••••••••••••••••••••	<u>-</u> Ā√ń cattering	\bar{n}	\bar{n}	
fwd:sc	attering	n n n n n n n n n n	$\frac{\bar{n}}{n}$	
	D-S cattering	$\overline{n} \longrightarrow \overline{n}$ $p^{\mu} \sim Q(\lambda, \lambda^2, \lambda)$ \underline{s} 22		

 $\lambda \ll 1$ large Q

will do calculations with back-to-back collinear particles for simplicity



Full Leading Power Glauber Lagrangian:

$$\mathcal{L}_{G}^{\mathrm{II}(0)} = \sum_{n,\bar{n}} \sum_{i,j=q,g} \mathcal{O}_{n}^{iB} \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{BC} \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{\bar{n}}^{jC} + \sum_{n} \sum_{i,j=q,g} \mathcal{O}_{n}^{iB} \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{j_{n}B}$$

$$\uparrow \qquad \text{(3 rapidity sectors)} \qquad \uparrow \qquad \text{(2 rapidity sectors)}$$

$$\text{sum pairwise} \qquad \text{sum on all collinears}$$

- Interactions with more sectors is given by T-products
- No Wilson coefficients ie. no new structures at loop level.

Defining SCET building blocks:

$$\chi_n = W_n^{\dagger} \xi_n \qquad \qquad \psi_s^n = S_n^{\dagger} \psi_s$$

$$\mathcal{B}_{n\perp}^{\mu} = \frac{1}{g} \left[W_n^{\dagger} i D_{n\perp}^{\mu} W_n \right] \qquad \mathcal{B}_{S\perp}^{n\mu} = \frac{1}{g} \left[S_n^{\dagger} i D_{S\perp}^{\mu} S_n \right] \qquad \qquad \widetilde{\mathcal{B}}_{S\perp}^{nAB} = -i f^{ABC} \mathcal{B}_{S\perp}^{nC}$$

$$\widetilde{G}_s^{\mu\nu AB} = -i f^{ABC} G_s^{\mu\nu A}$$

Full Leading Power Glauber Lagrangian:

- Interactions with more sectors is given by T-products
- No Wilson coefficient ie. no new structures at loop level.

$$\mathcal{O}_{n}^{qB} = \overline{\chi}_{n} T^{B} \frac{\overline{\not{h}}}{2} \chi_{n} \qquad \qquad \mathcal{O}_{n}^{gB} = \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^{C} \frac{\overline{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu}$$

$$\mathcal{O}_{n}^{qB} = \overline{\chi}_{n} T^{B} \frac{\cancel{\not{h}}}{2} \chi_{n} \qquad \qquad \mathcal{O}_{n}^{gB} = \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^{C} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu}$$

$$\mathcal{O}_{n}^{gB} = \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^{C} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu}$$

$$\mathcal{O}_{s}^{gB} = 8\pi \alpha_{s} \left\{ \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{n} \mathcal{P}_{\perp\mu} - \mathcal{P}_{\mu}^{\perp} g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{n} g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{P}_{\mu}^{\perp} - g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{n} g \widetilde{\mathcal{B}}_{S\perp\mu}^{n} - \frac{n_{\mu} \overline{n}_{\nu}}{2} \mathcal{S}_{n}^{T} i g \widetilde{\mathcal{G}}_{s}^{\mu\nu} \mathcal{S}_{n} \right\}^{BC}$$

$$\mathcal{O}_{s}^{q_{n}B} = 8\pi \alpha_{s} \left(\overline{\psi}_{s}^{n} T^{B} \frac{\cancel{\not{h}}}{2} \psi_{s}^{n} \right) \qquad \mathcal{O}_{s}^{g_{n}B} = 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{nC} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{nD\mu} \right)$$

$$\mathcal{O}_{s}^{q_{n}B} = 8\pi \alpha_{s} \left(\overline{\psi}_{s}^{n} T^{B} \frac{\cancel{\not{h}}}{2} \psi_{s}^{n} \right) \qquad \mathcal{O}_{s}^{g_{n}B} = 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{nC} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{nD\mu} \right)$$

1	//	1
Λ	\ll	1

large	O
raisc	8

mode	fields	p^{μ} momentum scaling	physical objects	type
n-collinear	ξ_n,A_n^μ	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	n-collinear "jet"	onshell
\bar{n} -collinear	$\xi_{\bar{n}},A^{\mu}_{\bar{n}}$	$(\bar{n} \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us},A_{ m us}^{\mu}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), \ a+b>2$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell

enumerate # of vertices from gauge invariant operators of order $\sim \lambda^k$

 V_k^n vertices with only n-collinear fields,

 $V_k^{\bar{n}}$ vertices with only \bar{n} -collinear fields,

 V_k^S vertices with only soft fields,

 V_k^{nS} vertices that have both n-collinear and soft fields but do not have \bar{n} fields,

 $V_k^{\bar{n}S}$ vertices with both \bar{n} -collinear and soft fields but not n fields,

 $V_k^{n\bar{n}}$ vertices with both n and \bar{n} -collinear fields (with or without soft fields).

$$\lambda \ll 1$$

$$\lambda \ll 1$$
 large Q

mode	fields	p^{μ} momentum scaling	physical objects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	<i>n</i> -collinear "jet"	onshell
\bar{n} -collinear	$\xi_{ar{n}},~A^{\mu}_{ar{n}}$	$(\bar{n} \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us}, ilde{A_{ m us}^{ ilde{\mu}}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b>2$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell

Power Counting formula for graph (any loop order, any power):

$$\sim \lambda^{\delta}$$
 topological factors
$$\delta = 6 - N^n - N^{\bar{n}} - N^{nS} - N^{\bar{n}S} + 2u$$
 operator insertions
$$+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}}$$
 need $\sim \lambda^3 \sim \lambda^2$ standard SCET

operators at leading power

Glauber

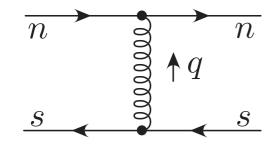
1	//	1
Λ	\ll	1

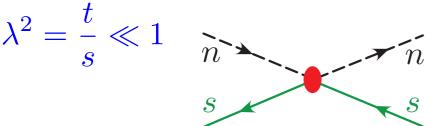
large Q

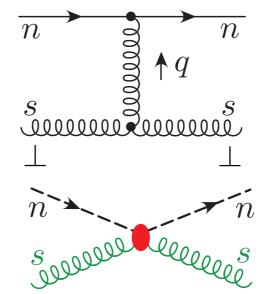
mode	fields	p^{μ} momentum scaling	physical objects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	<i>n</i> -collinear "jet"	onshell
\bar{n} -collinear	$\xi_{ar{n}},A^{\mu}_{ar{n}}$	$(\bar{n} \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us},A_{ m us}^{\mu}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), a+b > 2$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell

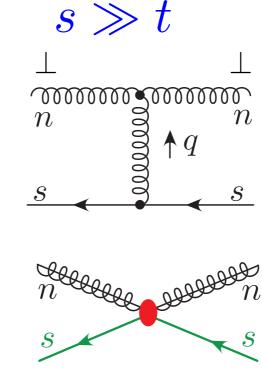
n-s fwd. scattering (2 rapidity sectors)

calculate

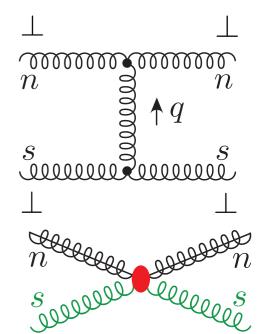








integrated out



large Q

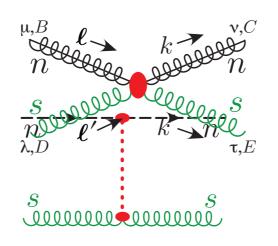
mode	fields	p^{μ} momentum sealing $^{\prime t}$	physical objects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$(n \cdot p, \overline{n} \cdot p, ps)$	<i>n</i> -collinear "jet"	onshell
\bar{n} -collinear	$\xi_{\bar{n}},A^{\mu}_{\bar{n}}$	$(\bar{n} \cdot p, \bar{n} \cdot p, p_{\mu,B}) \sim Q(\lambda^2, \hat{1}, \lambda) \sim Q(\lambda^2, \lambda$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda,\lambda,\lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us},A_{ m us}^{\mu}$	$p^{\mu}_{\lambda,B_{\lambda}}Q(\lambda^2,\lambda^2,\lambda^2)$ v,C	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda_n, \lambda_{\alpha}) + b^k$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$s p^2 \gtrsim Q^2 S$	hard scattering	offshell

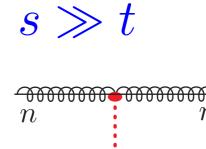
n-s fwd. scattering

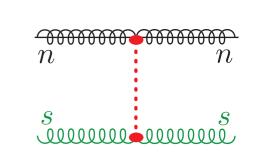
$$\lambda^2 = \frac{t}{s} \ll 1$$

$$\frac{n}{s} \longrightarrow \frac{s}{n}$$

$$\frac{s}{n} \longrightarrow \frac{s}{n}$$







 $\psi^n_s = S_n^\dagger \psi_s$

integrated out

determine

$$\mathcal{O}(\lambda^3)$$
 :

$$\mathcal{O}(\lambda^3): \sum_{i,j=q,g} \mathcal{O}_n^{iB} rac{1}{\mathcal{P}_\perp^2} \mathcal{O}_s^{j_n B} \ rac{\lambda^2}{\lambda^2} rac{\lambda^{-2}}{\lambda^3}$$

(2 rapidity sectors)

with bilinear octet operators

$$\mathcal{O}(\lambda^2): \quad \mathcal{O}_n^{qB} = \overline{\chi}_n T^B \frac{\overline{n}}{2} \chi_n ,$$

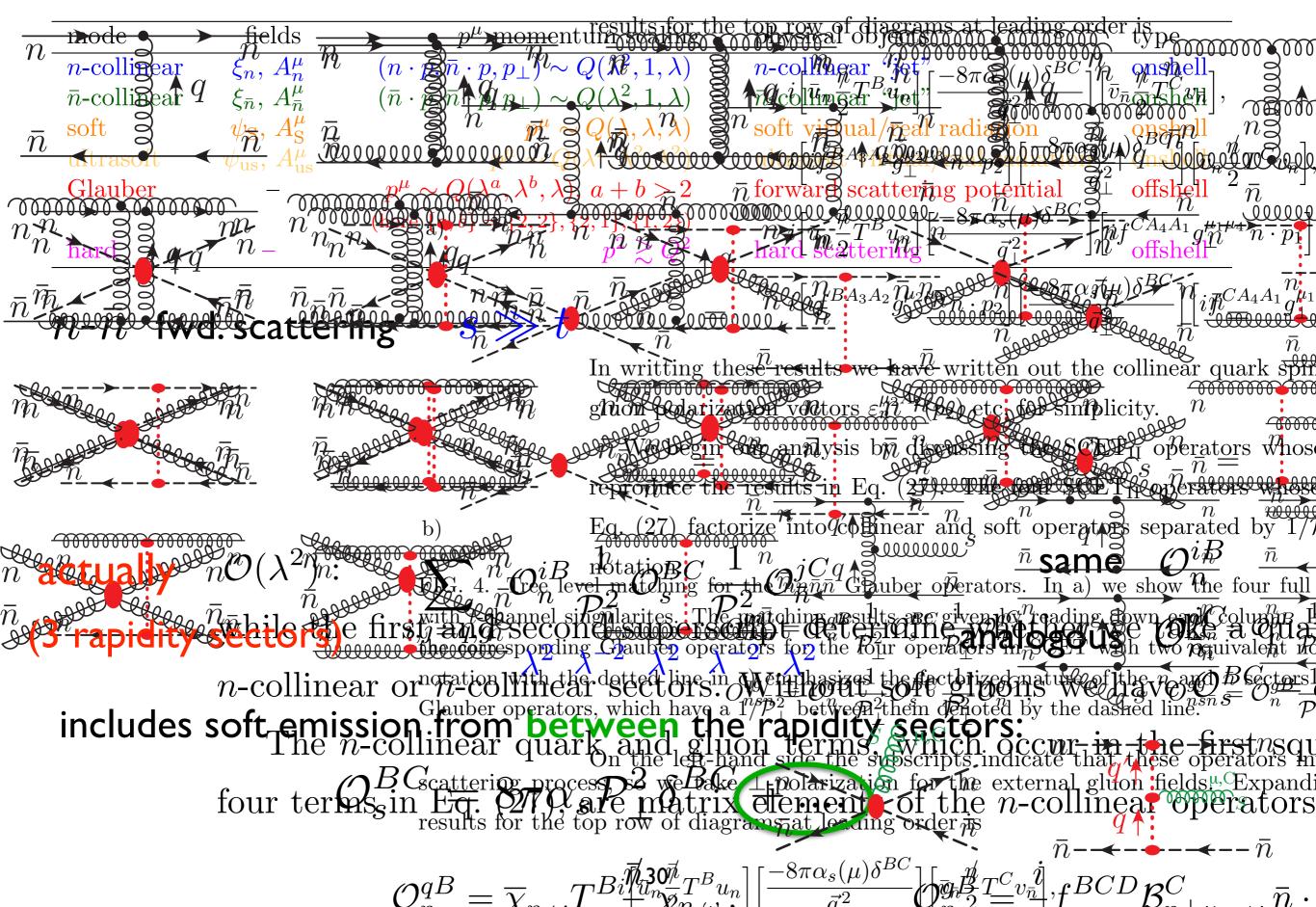
$$\mathcal{O}_n^{gB} = \frac{i}{2} f^{BCD} \mathcal{B}_{n\perp\mu}^C \frac{\overline{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n\perp}^{D\mu}$$

$$\mathcal{O}(\lambda^3)$$
:

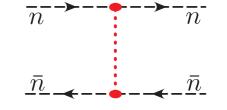
$$\mathcal{O}(\lambda^3): \quad \mathcal{O}_s^{q_n B} = 8\pi \alpha_s \left(\bar{\psi}_S^n T^B \frac{\eta}{2} \psi_S^n\right),$$

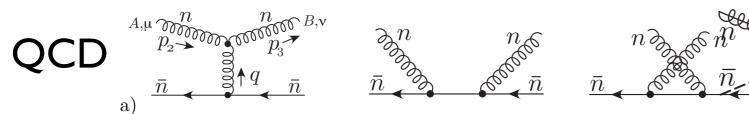
$$\mathcal{O}_s^{g_n B} = 8\pi \alpha_s \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S\perp\mu}^{nC} \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S\perp}^{nD\mu} \right)$$

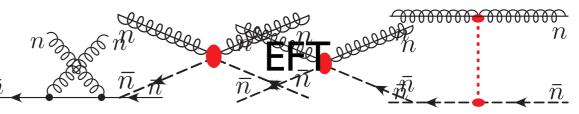
 $\lambda \ll 1$ large Q scattering process, so we take \perp -polarization for the external gluon

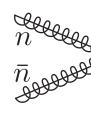


Matching with arbitrary polarizations: \bar{n}









remove

QCD calculation

$$0 = p^{\mu} A_{\mu}(p) = \frac{1}{2} \bar{n} \cdot p \, n \cdot A(p) + \frac{1}{2} n \cdot p \, \bar{n} \cdot A(p) + p_{\perp} \cdot A_{\perp}(p)$$

 $= \frac{g^2 f^{ABC}}{q^2} \left[\bar{v}_{\bar{n}} \frac{n}{2} \bar{T}^C v_{\bar{n}} \right] \left\{ 2 \, \bar{n} \cdot p_2 \, g_{\perp}^{\mu\nu} - 2 \bar{n}^{\mu} p_{2\perp}^{\nu} - 2 p_{3\perp}^{\mu} \bar{n}^{\nu} - n \cdot (p_2 + p_3) \bar{n}^{\mu} \bar{n}^{\nu} \right\}$

$$\frac{1}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{n}{\bar{n}} \frac{g^2 f^{ABC}}{q^2} \left[\bar{v}_{\bar{n}} \frac{n}{2} \bar{T}^C v_{\bar{n}} \right] \left\{ -\frac{q^2}{\bar{n} \cdot p_2} \right\} \bar{n}^{\mu} \bar{n}^{\nu}$$

sum & use equations of motion: $q^2 + \bar{n} \cdot p_2 \, n \cdot (p_2 + p_3) = -2p_{2\perp} \cdot p_{3\perp}$

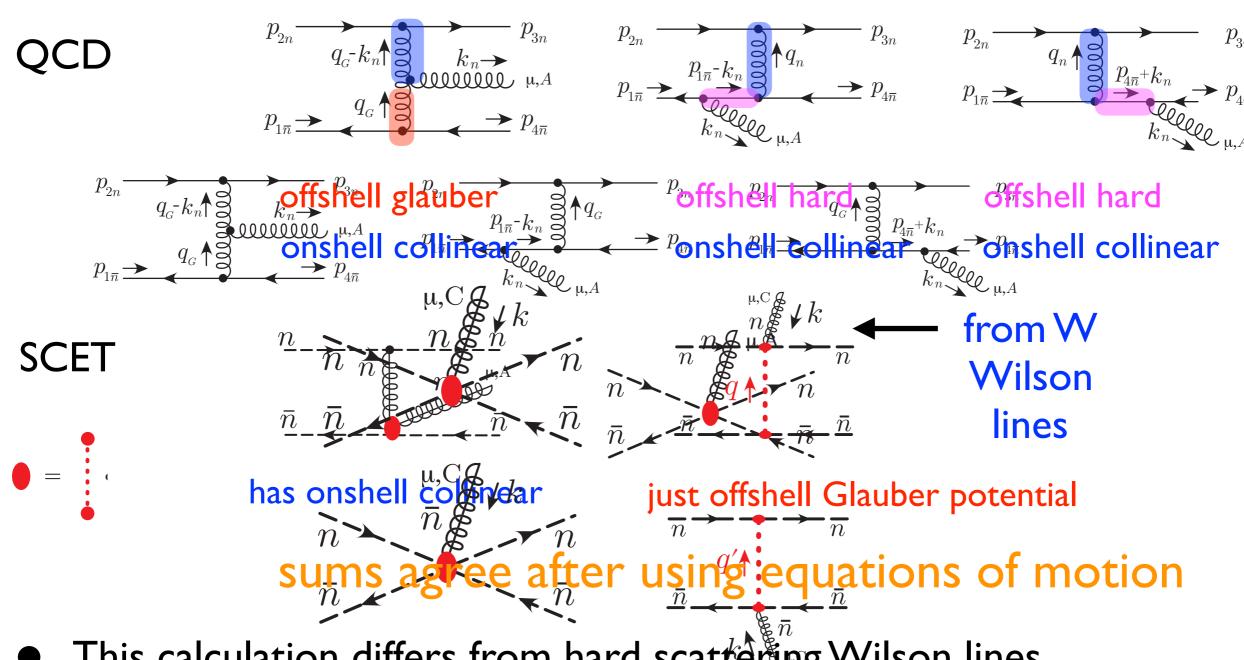
$$\frac{2g^{2}f^{ABC}}{q^{2}}\left[\bar{v}_{\bar{n}}\frac{n}{2}\bar{T}^{C}v_{\bar{n}}\right]\left\{\bar{n}\cdot p_{2}\,g_{\perp}^{\mu\nu}-\bar{n}^{\mu}p_{2\perp}^{\nu}-p_{3\perp}^{\mu}\bar{n}^{\nu}+\frac{p_{2\perp}\cdot p_{3\perp}}{\bar{n}\cdot p_{2}}\bar{n}^{\mu}\bar{n}^{\nu}\right\}$$

same as Glauber operator

Gluon Operators include Compton graphs in fwd.limit

Wilson Lines in the operators are obtained from Matching:

eg. W_n^{\dagger} in χ_n



- This calculation differs from hard scattering Wilson lines due to onshell term on EFT side --- n
- Similar for other operators \bar{n} \bar{n} \bar{n} $q \uparrow$ $q \uparrow$ q

Soft \mathcal{O}_{s}^{BC} Operator

$$\mathcal{O}_s^{BC} = 8\pi\alpha_s \sum_i C_i O_i^{BC}$$

basis of $\mathcal{O}(\lambda^2)$ operators allowed by symmetries:

$$O_1 = \mathcal{P}_{\perp}^{\mu} \mathcal{S}_n^T \mathcal{S}_{\bar{n}} \mathcal{P}_{\perp \mu},$$

$$\mathcal{P}_{\perp} \cdot (a\widetilde{\mathcal{B}}_{\alpha}^{n})(\mathcal{S}^{T}\mathcal{S}_{\bar{\alpha}}) + (\mathcal{S}^{T}\mathcal{S}_{\bar{\alpha}})(a\widetilde{\mathcal{B}}_{\alpha}^{\bar{n}})\cdot \mathcal{P}_{\perp}$$

$$O_5 = \mathcal{P}_{\mu}^{\perp}(\mathcal{S}_n^T \mathcal{S}_{\bar{n}})(g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu}) + (g\widetilde{\mathcal{B}}_{S\perp}^{n\mu})(\mathcal{S}_n^T \mathcal{S}_{\bar{n}})\mathcal{P}_{\mu}^{\perp}$$

$$O_7 = (g\widetilde{\mathcal{B}}_{S\perp}^{n\mu})\mathcal{S}_n^T \mathcal{S}_{\bar{n}}(g\widetilde{\mathcal{B}}_{S\perp\mu}^{\bar{n}}),$$

$$O_9 = \mathcal{S}_n^T n_\mu \bar{n}_\nu (ig\widetilde{G}_s^{\mu\nu}) \mathcal{S}_{\bar{n}},$$

$$O_2 = \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{\bar{n}}^T \mathcal{S}_n \mathcal{P}_{\perp \mu},$$

$$O_3 = \mathcal{P}_{\perp} \cdot (g\widetilde{\mathcal{B}}_{S\perp}^n)(\mathcal{S}_n^T \mathcal{S}_{\bar{n}}) + (\mathcal{S}_n^T \mathcal{S}_{\bar{n}})(g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}}) \cdot \mathcal{P}_{\perp}, \quad O_4 = \mathcal{P}_{\perp} \cdot (g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}})(\mathcal{S}_{\bar{n}}^T \mathcal{S}_n) + (\mathcal{S}_{\bar{n}}^T \mathcal{S}_n)(g\widetilde{\mathcal{B}}_{S\perp}^n) \cdot \mathcal{P}_{\perp},$$

$$O_5 = \mathcal{P}_{\mu}^{\perp}(\mathcal{S}_n^T \mathcal{S}_{\bar{n}})(g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu}) + (g\widetilde{\mathcal{B}}_{S\perp}^{n\mu})(\mathcal{S}_n^T \mathcal{S}_{\bar{n}})\mathcal{P}_{\mu}^{\perp}, \qquad O_6 = \mathcal{P}_{\mu}^{\perp}(\mathcal{S}_{\bar{n}}^T \mathcal{S}_n)(g\widetilde{\mathcal{B}}_{S\perp}^{n\mu}) + (g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu})(\mathcal{S}_{\bar{n}}^T \mathcal{S}_n)\mathcal{P}_{\mu}^{\perp},$$

$$O_8 = (g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu}) \mathcal{S}_{\bar{n}}^T \mathcal{S}_n (g\widetilde{\mathcal{B}}_{S\perp\mu}^n),$$

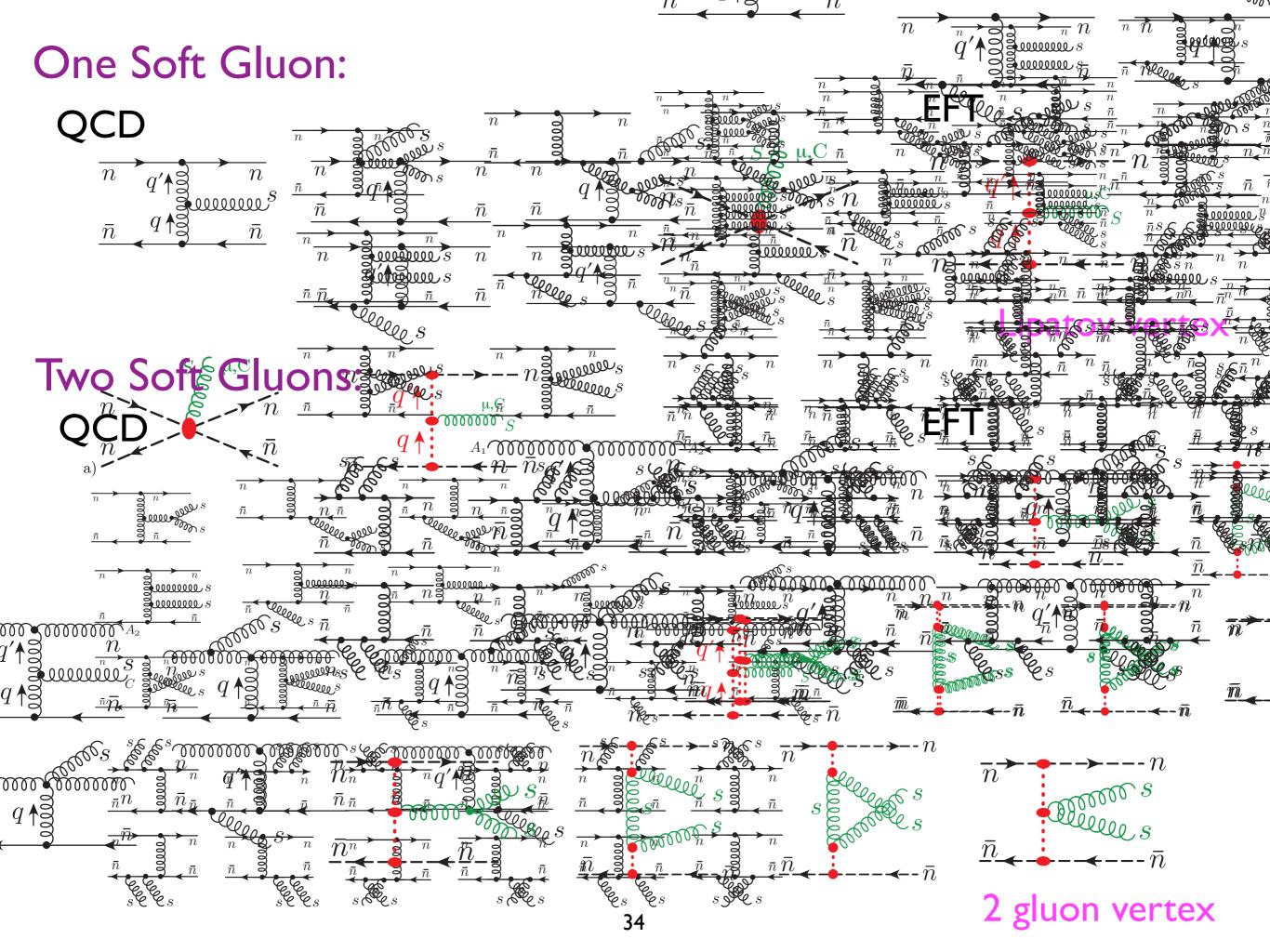
$$O_{10} = \mathcal{S}_{\bar{n}}^T n_{\mu} \bar{n}_{\nu} (ig \widetilde{G}_s^{\mu\nu}) \mathcal{S}_n,$$

octet Wilson line

Restricted by: Hermiticity $O_i^{\dagger}|_{n \leftrightarrow \bar{n}} = O_i$, one S_n , one $S_{\bar{n}}$

operator identities: eg. $\left[\mathcal{P}_{\perp}^{\mu}(\mathcal{S}_{n}^{T}\mathcal{S}_{\bar{n}})\right] = -g\widetilde{\mathcal{B}}_{S\perp}^{n\mu}(\mathcal{S}_{n}^{T}\mathcal{S}_{\bar{n}}) + (\mathcal{S}_{n}^{T}\mathcal{S}_{\bar{n}})g\widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu}$

Matching with up to 2 soft gluons fixes all coefficients



Find:

$$C_2 = C_4 = C_5 = C_6 = C_8 = C_{10} = 0$$

$$C_1 = -C_3 = -C_7 = +1, \qquad C_9 = -\frac{1}{2}$$

$$\mathcal{O}_{s}^{BC} = 8\pi\alpha_{s} \left\{ \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} \mathcal{P}_{\perp\mu} - \mathcal{P}_{\mu}^{\perp} g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} - \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S\perp}^{\bar{n}\mu} \mathcal{P}_{\mu}^{\perp} - g \widetilde{\mathcal{B}}_{S\perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S\perp\mu}^{\bar{n}} - \frac{n_{\mu} \bar{n}_{\nu}}{2} \mathcal{S}_{n}^{T} i g \widetilde{\mathcal{G}}_{s}^{\mu\nu} \mathcal{S}_{\bar{n}} \right\}^{BC}.$$

Form is unique to all loops since there are no hard α_s corrections to this matching (more later)

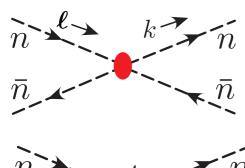
Full Leading Power Glauber Lagrangian:

- Interactions with more sectors is given by T-products
- No Wilson coefficient ie. no new structures at loop level. [more later]

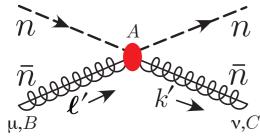
$$\begin{split} \mathcal{O}_{n}^{qB} &= \overline{\chi}_{n} T^{B} \frac{\overline{\not{h}}}{2} \, \chi_{n} & \mathcal{O}_{n}^{gB} &= \frac{i}{2} f^{BCD} \mathcal{B}_{n \perp \mu}^{C} \, \frac{\overline{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{n \perp}^{D\mu} \\ \mathcal{O}_{n}^{qB} &= \overline{\chi}_{n} T^{B} \frac{\cancel{\not{h}}}{2} \, \chi_{\bar{n}} & \mathcal{O}_{\bar{n}}^{gB} &= \frac{i}{2} f^{BCD} \mathcal{B}_{\bar{n} \perp \mu}^{C} \, \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{\bar{n} \perp}^{D\mu} \\ \mathcal{O}_{s}^{BC} &= 8\pi \alpha_{s} \left\{ \mathcal{P}_{\perp}^{\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} \mathcal{P}_{\perp \mu} - \mathcal{P}_{\mu}^{\perp} g \widetilde{\mathcal{B}}_{S \perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} - \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S \perp}^{\bar{n}\mu} \mathcal{P}_{\mu}^{\perp} - g \widetilde{\mathcal{B}}_{S \perp}^{n\mu} \mathcal{S}_{n}^{T} \mathcal{S}_{\bar{n}} g \widetilde{\mathcal{B}}_{S \perp \mu}^{\bar{n}} - \frac{n_{\mu} \bar{n}_{\nu}}{2} \mathcal{S}_{n}^{T} i g \widetilde{\mathcal{G}}_{s}^{\mu\nu} \mathcal{S}_{\bar{n}} \right\}^{BC} \\ \mathcal{O}_{s}^{q_{n}B} &= 8\pi \alpha_{s} \left(\bar{\psi}_{S}^{n} T^{B} \frac{\cancel{\not{h}}}{2} \psi_{S}^{n} \right) & \mathcal{O}_{s}^{g_{\bar{n}}B} &= 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S \perp \mu}^{\bar{n}C} \, \frac{n}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S \perp}^{\bar{n}D\mu} \right) \\ \mathcal{O}_{s}^{q_{\bar{n}}B} &= 8\pi \alpha_{s} \left(\bar{\psi}_{S}^{\bar{n}} T^{B} \frac{\cancel{\not{h}}}{2} \psi_{S}^{\bar{n}} \right) & \mathcal{O}_{s}^{g_{\bar{n}}B} &= 8\pi \alpha_{s} \left(\frac{i}{2} f^{BCD} \mathcal{B}_{S \perp \mu}^{\bar{n}C} \, \frac{\bar{n}}{2} \cdot (\mathcal{P} + \mathcal{P}^{\dagger}) \mathcal{B}_{S \perp}^{\bar{n}D\mu} \right) \end{aligned}$$

eg. Feynman Rules:

shorthand



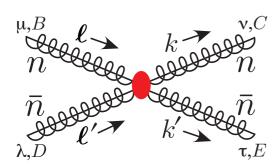
$$\frac{k}{\bar{n}} = \frac{-8\pi i \alpha_s}{(\vec{\ell}_{\perp} - \vec{k}_{\perp})^2} \left[\bar{u}_n \frac{\vec{n}}{2} T^A u_n \right] \left[\bar{v}_{\bar{n}} \frac{\vec{n}}{2} \bar{T}^A v_{\bar{n}} \right]$$



$$= \frac{-8\pi\alpha_s f^{ABC}}{(\vec{\ell}'_{\perp} - \vec{k}'_{\perp})^2} \left[\bar{u}_n \frac{\vec{n}}{2} T^A u_n \right] \left[n \cdot k' g_{\perp}^{\mu\nu} - n^{\mu} \ell'^{\nu}_{\perp} - n^{\nu} k'^{\mu}_{\perp} + \frac{\ell'_{\perp} \cdot k'_{\perp} n^{\mu} n^{\nu}}{n \cdot k'} \right]$$



$$= \frac{-8\pi\alpha_s f^{ABC}}{(\vec{\ell}_{\perp} - \vec{k}_{\perp})^2} \left[\bar{n} \cdot k \, g_{\perp}^{\mu\nu} - \bar{n}^{\mu} \ell_{\perp}^{\nu} - \bar{n}^{\nu} k_{\perp}^{\mu} + \frac{\ell_{\perp} \cdot k_{\perp} \bar{n}^{\mu} \bar{n}^{\nu}}{\bar{n} \cdot k} \right] \left[\bar{v}_{\bar{n}} \frac{n}{2} \bar{T}^A v_{\bar{n}} \right]$$



$$\begin{array}{ll}
&= \frac{8\pi i \alpha_s f^{ABC} f^{ADE}}{(\vec{\ell}_{\perp} - \vec{k}_{\perp})^2} \left[\bar{n} \cdot k \, g_{\perp}^{\mu\nu} - \bar{n}^{\mu} \ell_{\perp}^{\nu} - \bar{n}^{\nu} k_{\perp}^{\mu} + \frac{\ell_{\perp} \cdot k_{\perp} \bar{n}^{\mu} \bar{n}^{\nu}}{\bar{n} \cdot k} \right] \\
&\times \left[n \cdot k' \, g_{\perp}^{\lambda\tau} - n^{\lambda} \ell_{\perp}^{\prime\tau} - n^{\tau} k_{\perp}^{\prime\lambda} + \frac{\ell_{\perp}' \cdot k_{\perp}' n^{\lambda} n^{\tau}}{n \cdot k'} \right]
\end{array}$$

More seymman Rules:

Lipatov vertex

$$=i\left[\bar{u}_{n}\frac{\bar{n}}{2}T^{A}u_{n}\right]\left[\frac{8\pi\alpha_{s}}{\bar{q}_{\perp}^{2}\bar{q}_{\perp}^{\prime2}}igf^{ABC}\left(q_{\perp}^{\mu}+q_{\perp}^{\prime\mu}-n\cdot q\frac{\bar{n}^{\mu}}{2}-\bar{n}\cdot q^{\prime}\frac{n^{\mu}}{2}-\frac{n^{\mu}\bar{q}_{\perp}^{\prime2}}{n\cdot q}-\frac{\bar{n}^{\mu}\bar{q}_{\perp}^{\prime2}}{\bar{n}\cdot q^{\prime}}\right)\right]\left[\bar{v}_{\bar{n}}\frac{\bar{n}}{2}\bar{T}^{B}v_{\bar{n}}\right]$$

$$\begin{array}{ccc}
n & & & & & & & & \\
q' \uparrow & & & & & & & \\
q' \uparrow & & & & & & \\
\hline
q \uparrow & & & & & & \\
\hline
n & & & & \\
n & & & & \\
\hline
n & & & & \\
n & & & & \\
\hline
n & & & & \\
n & & & \\
n & & & & \\$$

$$n - \sum_{q' \uparrow} g^{2} f^{2} \int_{\mathbb{R}^{2}} g^{2} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} g^{\mu_{1} \mu_{2}} \int_{\mathbb{R}^{2}} -g^{\mu_{1} \mu_{2}}_{\perp} - \frac{n^{\mu_{1}} (2q^{\mu_{2}}_{\perp} + k^{\mu_{2}}_{2\perp})}{n \cdot k_{1}} + \frac{(2q'^{\mu_{1}}_{\perp} - k^{\mu_{1}}_{1\perp}) \bar{n}^{\mu_{2}}}{\bar{n} \cdot k_{2}} + \frac{\bar{n}^{\mu_{1}} n^{\mu_{2}} - n^{\mu_{1}} \bar{n}^{\mu_{2}}}{2}$$

$$\frac{q}{\bar{n}} + \frac{1}{n \cdot k_{1}} \frac{1}{\bar{n}} \frac{1}{k_{2}} \frac{1}{\bar{n}} \frac{1}{k_{2}} \frac{1}{\bar{q}} \frac{1}{\bar{q}} + \bar{k}_{1\perp} \cdot \bar{k}_{2\perp} + \bar{k}_{1\perp} \cdot \bar{q}_{\perp}' - \bar{k}_{2\perp} \cdot \bar{q}_{\perp} - \frac{1}{2} n \cdot k_{2} \cdot \bar{n} \cdot k_{2} - \frac{1}{2} n \cdot k_{1} \cdot \bar{n} \cdot k_{1} \right) \\
+ n^{\mu_{1}} n^{\mu_{2}} \left(\frac{\bar{q}_{\perp}'^{2}}{n \cdot q \cdot n \cdot k_{2}} + \frac{\bar{n} \cdot k_{2}}{2n \cdot k_{2}} \right) + \bar{n}^{\mu_{1}} \bar{n}^{\mu_{2}} \left(\frac{-\bar{q}_{\perp}^{2}}{\bar{n} \cdot k_{1} \cdot \bar{n} \cdot q'} + \frac{n \cdot k_{1}}{2\bar{n} \cdot k_{2}} \right) \right]$$

$$+g^2 f^{C_2AE} f^{C_1BE} \bigg[-g_{\perp}^{\mu_1\mu_2} + \frac{\bar{n}^{\mu_1} (2 q_{\perp}'^{\mu_2} - k_{2\perp}^{\mu_2})}{\bar{n} \cdot k_1} - \frac{(2 q_{\perp}^{\mu_1} + k_{1\perp}^{\mu_1}) n^{\mu_2}}{n \cdot k_2} + \frac{n^{\mu_1} \bar{n}^{\mu_2} - \bar{n}^{\mu_1} n^{\mu_2}}{2} \\$$

$$+ \frac{\bar{n}^{\mu_1} n^{\mu_2}}{n \cdot k_2 \; \bar{n} \cdot k_1} \left(\vec{q}_{\perp} \cdot \vec{q}_{\perp}' + \vec{k}_{1 \perp} \cdot \vec{k}_{2 \perp} + \vec{k}_{2 \perp} \cdot \vec{q}_{\perp}' - \vec{k}_{1 \perp} \cdot \vec{q}_{\perp} - \frac{1}{2} n \cdot k_2 \; \bar{n} \cdot k_2 - \frac{1}{2} n \cdot k_1 \; \bar{n} \cdot k_1 \right)$$

$$+n^{\mu_1}n^{\mu_2}\left(\frac{\vec{q}_{\perp}^{\prime 2}}{n\cdot q\ n\cdot k_1}+\frac{\bar{n}\cdot k_1}{2n\cdot k_2}\right)+\bar{n}^{\mu_1}\bar{n}^{\mu_2}\left(\frac{-\vec{q}_{\perp}^{\,2}}{\bar{n}\cdot k_2\ \bar{n}\cdot q^{\prime}}+\frac{n\cdot k_2}{2\bar{n}\cdot k_1}\right)\right]\right\}$$

plus analogs replacing collinear quarks by gluons Are there differences between $n-\bar{n}$ and n-s forward scattering?

Yes. Consider:

$$q^{\prime\mu} = q_{\perp}^{\prime\mu} - \bar{n} \cdot (k_1 + k_2) \frac{n^{\mu}}{2} \uparrow \qquad s \qquad k_1$$

$$q_2^{\mu} = (q_{\perp} - k_{2\perp})^{\mu} + n \cdot k_1 \frac{\bar{n}^{\mu}}{2} - \bar{n} \cdot k_2 \frac{n^{\mu}}{2} \uparrow \qquad s$$

$$q^{\mu} = q_{\perp}^{\mu} + n \cdot (k_1 + k_2) \frac{\bar{n}^{\mu}}{2} \uparrow \qquad s \qquad k_2$$

$$\bar{n} - \longleftarrow \bar{n}$$

Scattering is forward in one light-cone momentum at each soft vertex!

Allowed because:
$$n \cdot k_{1,2} \ll n \cdot p_{\bar{n}}$$
 $\bar{n} \cdot k_{1,2} \ll \bar{n} \cdot p_n$ λ

there is an allowed routing of soft momentum through collinear lines

One Loop EFT graphs

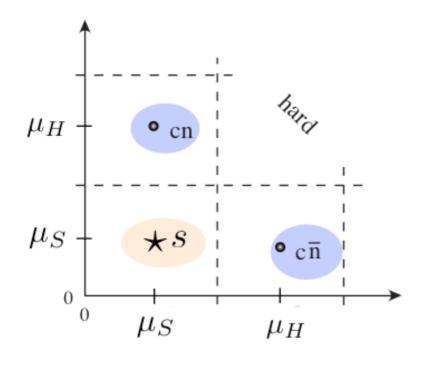
- QCD topologies will appear more than once (soft, collinear, ...)
- Each dominated by <u>one</u> invariant mass scale & <u>one</u> rapidity
- Require invariant mass regulator (dim.reg.)

Requires rapidity regulator for Glauber potential $|2k^z|^{-\eta}\nu^{\eta}$ and for Wilson lines

Use Chiu, Jain, Neill, Rothstein regulator, works like \overline{MS} :

$$S_{n} = \sum_{\text{perms}} \exp\left\{\frac{-g}{n \cdot \mathcal{P}} \left[\frac{w|2\mathcal{P}^{z}|^{-\eta/2}}{\nu^{-\eta/2}} n \cdot A_{s}\right]\right\} \qquad \frac{1}{\eta} \qquad \ln(\nu)$$

$$W_{n} = \sum_{\text{perms}} \exp\left\{\frac{-g}{\bar{n} \cdot \mathcal{P}}\right] \frac{w^{2}|\bar{n} \cdot \mathcal{P}|^{-\eta}}{\nu^{-\eta}} \bar{n} \cdot A_{n}\right\} \qquad \frac{1}{\epsilon} \qquad \ln(\mu)$$



use subtractions rather than sharp boundaries to preserve symmetry

Zero-bin subtractions, avoid double counting IR regions

I-loop graphs:
$$S = \tilde{S} - S^{(G)}$$
 naive soft graph

(construction ala Manohar & IS)

Glauber limit of soft graph

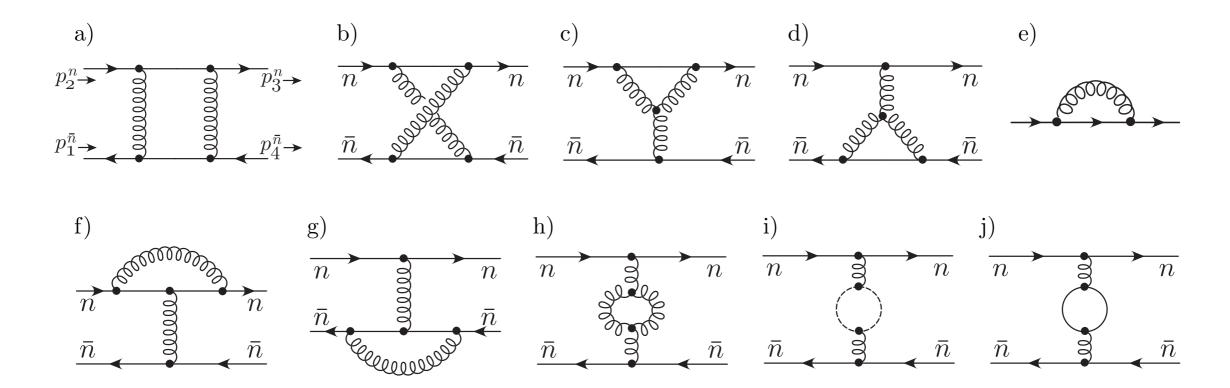
$$C_n = \tilde{C}_n - C_n^{(S)} - C_n^{(G)} + C_n^{(GS)}$$

naive collinear graph

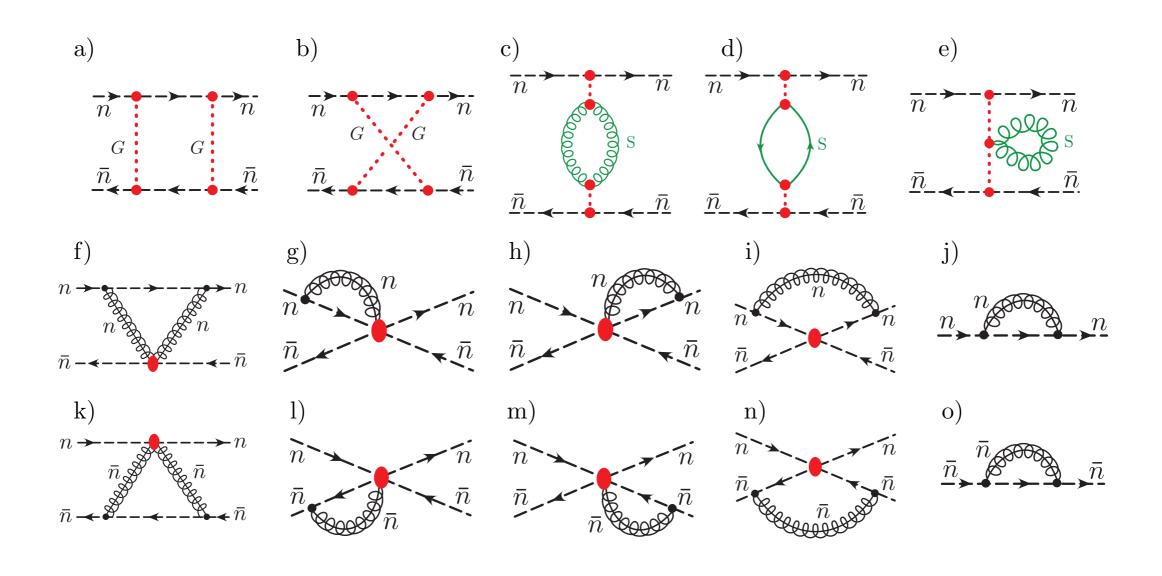
Glauber limit of collinear graph

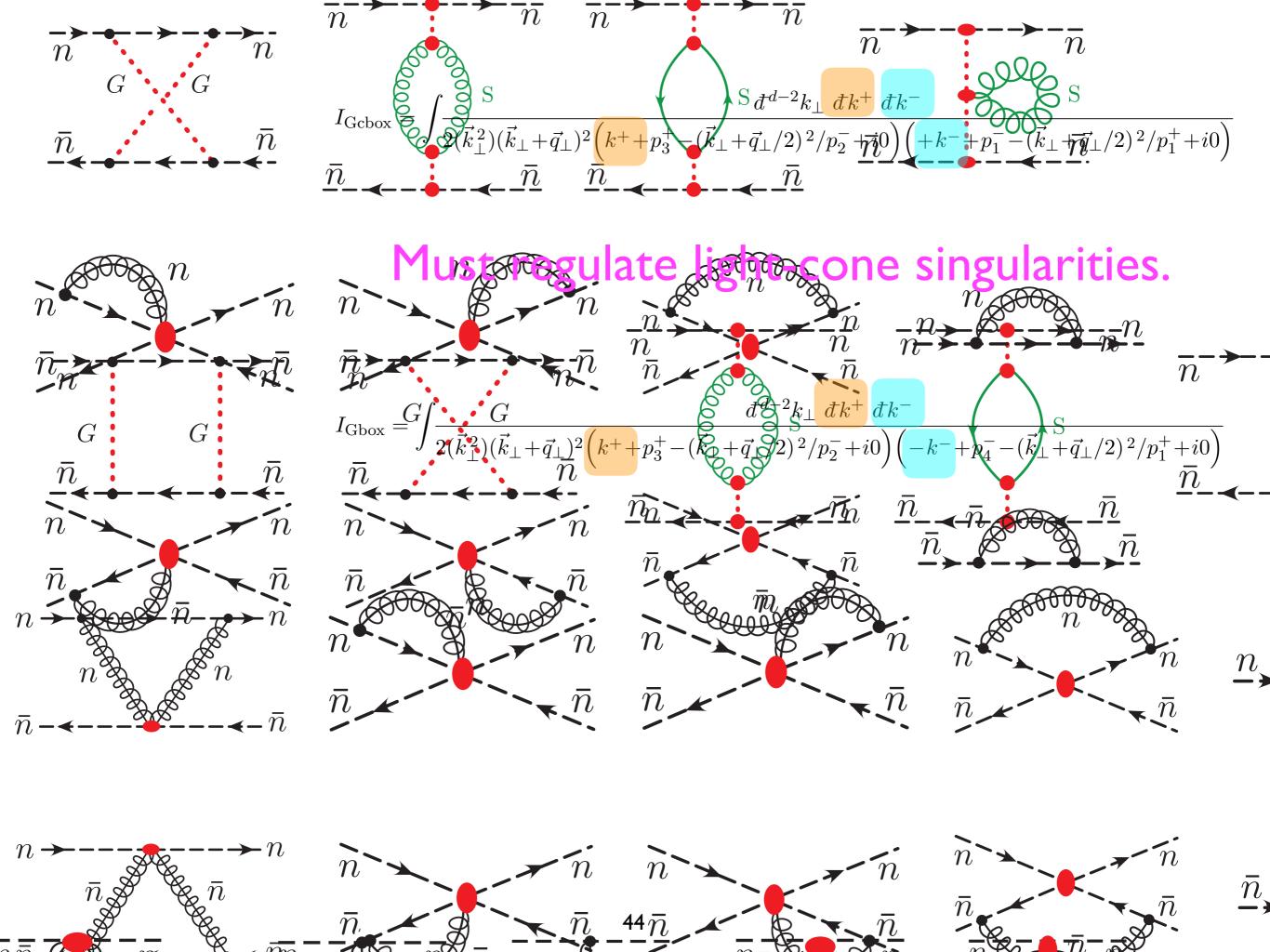
eq. One Loop $q \bar{q}$ scattering

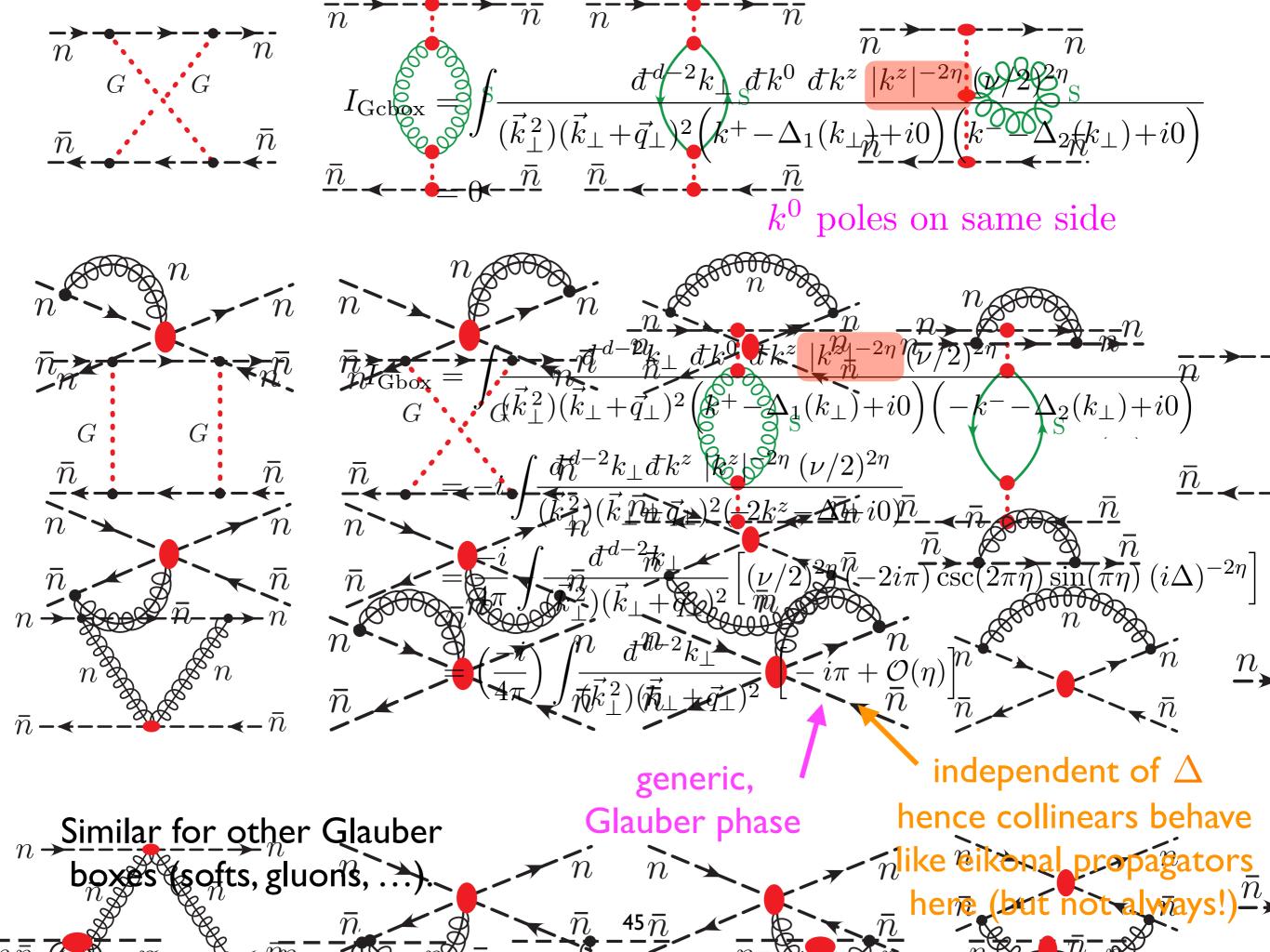
QCD graphs with leading power contributions, $s\gg t$

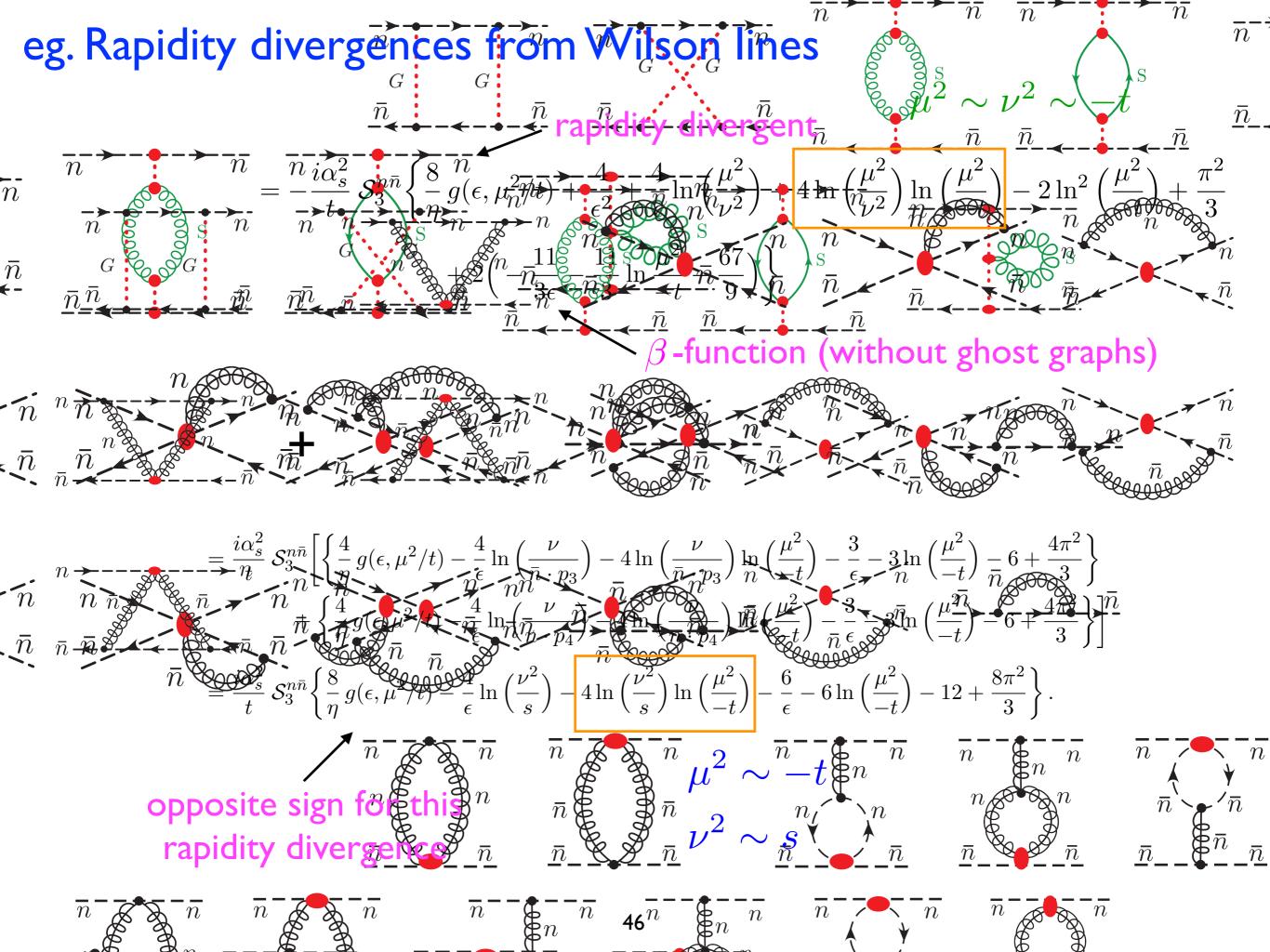


eq. One Loop $q \bar q$ scattering









One Loop Results & Matching

$$\mathcal{S}_{1}^{n\bar{n}} = -\left[\bar{u}_{n}T^{A}T^{B}\frac{\vec{\eta}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}\bar{T}^{A}\bar{T}^{B}\frac{\eta}{2}v_{\bar{n}}\right], \qquad \mathcal{S}_{2}^{n\bar{n}} = C_{F}\left[\bar{u}_{n}T^{A}\frac{\vec{\eta}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}\bar{T}^{A}\frac{\eta}{2}v_{\bar{n}}\right], \\
\mathcal{S}_{3}^{n\bar{n}} = C_{A}\left[\bar{u}_{n}T^{A}\frac{\vec{\eta}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}\bar{T}^{A}\frac{\eta}{2}v_{\bar{n}}\right], \qquad \mathcal{S}_{4}^{n\bar{n}} = T_{F}n_{f}\left[\bar{u}_{n}T^{A}\frac{\vec{\eta}}{2}u_{n}\right]\left[\bar{v}_{\bar{n}}\bar{T}^{A}\frac{\eta}{2}v_{\bar{n}}\right].$$

m = gluon mass IR regulator

Glauber Loops =
$$\frac{i\alpha_s^2}{t} S_1^{n\bar{n}} \left[8i\pi \ln \left(\frac{-t}{m^2} \right) \right]$$

$$\begin{aligned} \text{Soft Loops} &= \frac{i\alpha_s^2}{t}\,\mathcal{S}_3^{n\bar{n}} \bigg\{ -\frac{8}{\eta}h(\epsilon,\mu^2/m^2) - \frac{8}{\eta}\,g(\epsilon,\mu^2/t) - 4\ln\left(\frac{\mu^2}{\nu^2}\right)\ln\left(\frac{m^2}{-t}\right) \\ &- 2\ln^2\left(\frac{\mu^2}{m^2}\right) + 2\ln^2\left(\frac{\mu^2}{-t}\right) - \frac{2\pi^2}{3} + \frac{22}{3}\ln\frac{\mu^2}{-t} + \frac{134}{9} \bigg\} & \longleftarrow \text{no } 1/\epsilon \text{ poles} \\ &+ \frac{i\alpha_s^2}{t}\,\mathcal{S}_4^{n\bar{n}} \bigg[-\frac{8}{3}\ln\left(\frac{\mu^2}{-t}\right) - \frac{40}{9} \bigg]. \end{aligned} \end{aligned}$$

Collinear Loops =
$$\frac{i\alpha_s^2}{t} S_3^{n\bar{n}} \left\{ \frac{8}{\eta} h\left(\epsilon, \frac{\mu^2}{m^2}\right) + \frac{8}{\eta} g\left(\epsilon, \frac{\mu^2}{-t}\right) + 4\ln\left(\frac{\nu^2}{s}\right) \ln\left(\frac{-t}{m^2}\right) + 2\ln^2\left(\frac{m^2}{-t}\right) + 4 + \frac{4\pi^2}{3} \right\}$$
$$+ \frac{i\alpha_s^2}{t} S_2^{n\bar{n}} \left[-4\ln^2\left(\frac{m^2}{-t}\right) - 12\ln\left(\frac{m^2}{-t}\right) - 14 \right]$$

$i\pi$ purely from Glauber loop

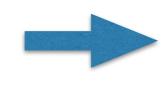
$$\begin{aligned} \text{Total SCET} &= \frac{i\alpha_s^2}{t} \, \mathcal{S}_1^{n\bar{n}} \bigg[8i\pi \ln \left(\frac{-t}{m^2} \right) \bigg] + \frac{i\alpha_s^2}{t} \, \mathcal{S}_2^{n\bar{n}} \bigg[-4\ln^2 \left(\frac{m^2}{-t} \right) - 12\ln \left(\frac{m^2}{-t} \right) - 14 \bigg] \\ &+ \frac{i\alpha_s^2}{t} \, \mathcal{S}_3^{n\bar{n}} \bigg\{ -4\ln \left(\frac{s}{-t} \right) \ln \left(\frac{-t}{m^2} \right) + \frac{22}{3} \ln \frac{\mu^2}{-t} + \frac{170}{9} + \frac{2\pi^2}{3} \bigg\} \\ &+ \frac{i\alpha_s^2}{t} \, \mathcal{S}_4^{n\bar{n}} \bigg[-\frac{8}{3} \ln \left(\frac{\mu^2}{-t} \right) - \frac{40}{9} \bigg] \end{aligned}$$

rapidity divergences cancel leave behind large log

Total SCET = Total QCD
$$(s \gg t)$$

- IR divergences are all reproduced
- ullet no hard matching (no loops with momenta $\sim s$)

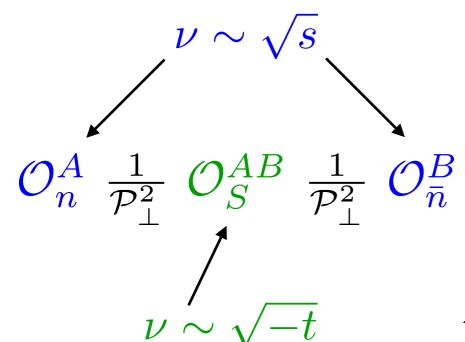
offshell Glauber lines in loop graphs are always sequestered in tree level subcomponents (equal t,z)



No loop corrections to $\mathcal{L}_G^{\mathrm{II}(0)}$

Forward Scattering

Gluon Reggeization



Consider separate rapidity renormalization of soft & collinear component operators

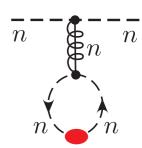
Either run collinear operators from $\nu \sim \sqrt{s}$ to $\nu \sim \sqrt{-t}$, or run soft operator.

$$\nu \frac{d}{d\nu} (\mathcal{O}_n^{qA} + \mathcal{O}_n^{gA}) = \gamma_{n\nu} (\mathcal{O}_n^{qA} + \mathcal{O}_n^{gA}) \qquad \gamma_{n\nu} = \frac{\alpha_s(\mu)C_A}{2\pi} \ln\left(\frac{-t}{m^2}\right)$$

gives:
$$\left(\frac{s}{-t}\right)^{-\gamma_{n\nu}}$$

virtual anom.dim. is Regge exponent for gluon

Gluon Reggeization

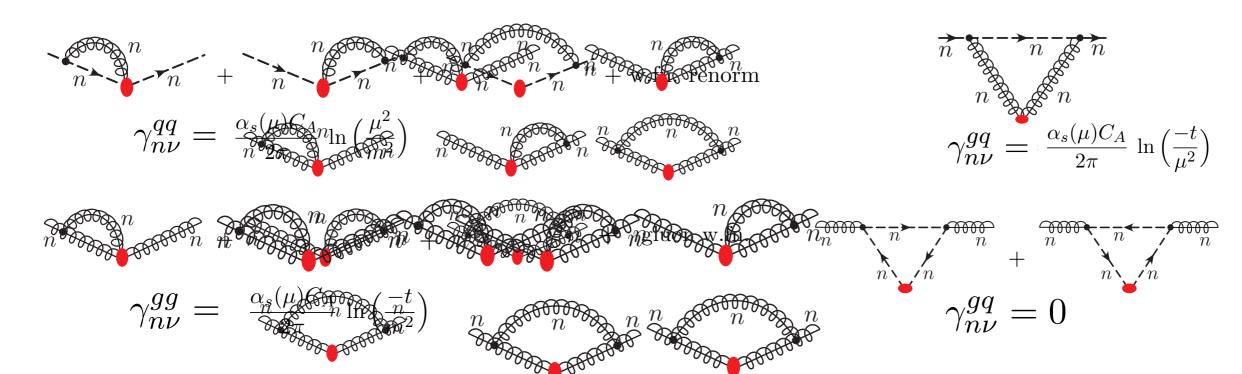


eg.
$$\mathcal{O}_n^{iA}$$

eg.
$$\mathcal{O}_n^{iA}$$
 $\vec{\mathcal{O}}_n^{A\mathrm{bare}} = \hat{V}_{\mathcal{O}_n} \cdot \vec{\mathcal{O}}_n^A(
u,\mu)$

$$\hat{\gamma}_{n\nu} = -\hat{V}_n^{-1} \cdot \nu \frac{\partial}{\partial \nu} \hat{V}_n$$

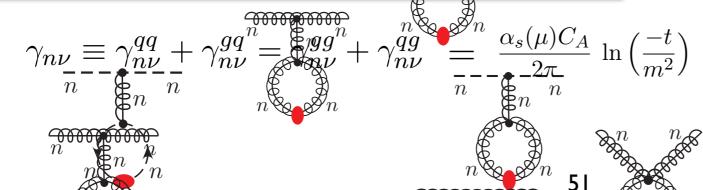
anom.dim.
$$\hat{\gamma}_{n\nu} = -\hat{V}_n^{-1} \cdot \nu \frac{\partial}{\partial \nu} \hat{V}_n$$
 I-loop: $\hat{\gamma}_{n\nu}^{ij} = -(\nu d/d\nu) \delta V_n^{ij}$



$$\nu \frac{d}{d\nu} (\mathcal{O}_n^{qA} + \mathcal{O}_n^{gA}) = \gamma_{n\nu} (\mathcal{O}_n^{qA} \mathcal{O}_n^{qA})$$

combination regarding together under RGE since no loop-level hard matching coefficient

 \mathfrak{D}^n



(IR divergent)

Gluon Reggeization

Standard RGE form: $\mathcal{O}(\nu_1) = U_{n\nu}(\nu_1, \nu_0)\mathcal{O}(\nu_0)$

$$(\mathcal{O}_n^{qA} + \mathcal{O}_n^{gA})(\nu_1) = \left(\frac{\nu_0}{\nu_1}\right)^{-\gamma_{n\nu}} (\mathcal{O}_n^{qA} + \mathcal{O}_n^{gA})(\nu_0)$$

same factor from \bar{n}

soft: no large logs for $\nu = \sqrt{-t}$

$$(\mathcal{O}_{n}^{qA} + \mathcal{O}_{n}^{gA})(\nu = \sqrt{-t}) \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{AB}(\nu = \sqrt{-t}) \frac{1}{\mathcal{P}_{\perp}^{2}} (\mathcal{O}_{\bar{n}}^{qB} + \mathcal{O}_{\bar{n}}^{gB})(\nu = \sqrt{-t})$$

$$= \left(\frac{s}{-t} \right)^{-\gamma_{n\nu}} \mathcal{O}_{n}^{qA} + \mathcal{O}_{n}^{gA})(\nu = \sqrt{s}) \frac{1}{\mathcal{P}_{\perp}^{2}} \mathcal{O}_{s}^{AB}(\nu = \sqrt{-t}) \frac{1}{\mathcal{P}_{\perp}^{2}} (\mathcal{O}_{\bar{n}}^{qB} + \mathcal{O}_{\bar{n}}^{gB})(\nu = \sqrt{s})$$

Gluon Reggeization from running octet ops.

Forward Scattering & BFKL

Expand time evolution, do soft-collinear factorization term by term:

$$T \exp i \int d^4x \, \mathcal{L}_G^{\text{II}(0)}(x) = \left[1 + i \int d^4y_1 \, \mathcal{L}_G^{\text{II}(0)}(y_1) + \frac{i^2}{2!} \int d^4y_1 \, d^4y_2 \, \mathcal{L}_G^{\text{II}(0)}(y_1) \mathcal{L}_G^{\text{II}(0)}(y_2) + \dots \right]$$

$$\sim 1 + T \sum_{k=1}^{\infty} \sum_{k'=1}^{\infty} \left[\mathcal{O}_n^{jA_i}(q_{i\perp}) \right]^k \left[\mathcal{O}_{\bar{n}}^{j'B_{i'}}(q_{i'\perp}) \right]^{k'} \otimes O_{s(k,k')}^{A_1 \cdot A_k, B_1 \cdots B_{k'}}(q_{\perp 1}, \dots, q_{\perp k'})$$

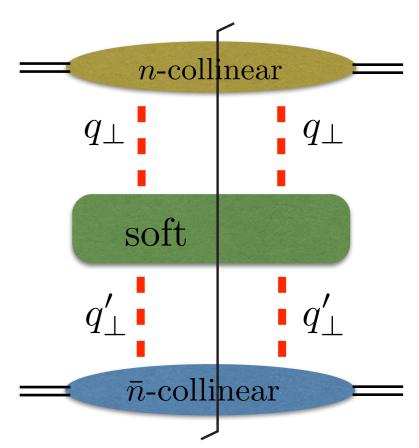
$$\equiv 1 + \sum_{k=1}^{\infty} \sum_{k'=1}^{\infty} U_{(k,k')}$$

Consider forward scattering with one Glauber exchange, but all orders in soft and collinear sectors:

$$T_{(1,1)} = \frac{1}{V_4} \sum_{X} \langle pp' | U_{(1,1)}^{\dagger} | X \rangle \langle X | U_{(1,1)} | pp' \rangle = \dots$$
$$= \int d^2 q_{\perp} d^2 q'_{\perp} C_n(q_{\perp}, p^-) S_G(q_{\perp}, q'_{\perp}) C_{\bar{n}}(q'_{\perp}, p'^+)$$

after rapidity renormalization:

$$T_{(1,1)} = \int d^2q_{\perp} d^2q'_{\perp} C_n(q_{\perp}, p^-, \nu) S_G(q_{\perp}, q'_{\perp}, \nu) C_{\bar{n}}(q'_{\perp}, p'^+, \nu)$$
collinear and soft functions



n-collinear function:

$$\frac{1}{V_1} \sum_{X_n} \left\langle p \middle| \sum_{j=q,g} \int dx''^{+} \mathcal{O}_{n,k'^{-}}^{jA'}(q''_{\perp}) \left(x''^{+} \frac{\bar{n}}{2} \right) \middle| X_n \right\rangle \left\langle X_n \middle| \sum_{i=q,g} \int dx^{+} \mathcal{O}_{n,k^{-}}^{iA}(q_{\perp}) \left(x^{+} \frac{\bar{n}}{2} \right) \middle| p \right\rangle$$

$$= \delta^{AA'} 2 \delta^2(q_{\perp} - q''_{\perp}) \vec{q}_{\perp}^2 C_n(q_{\perp}, p^{-})$$

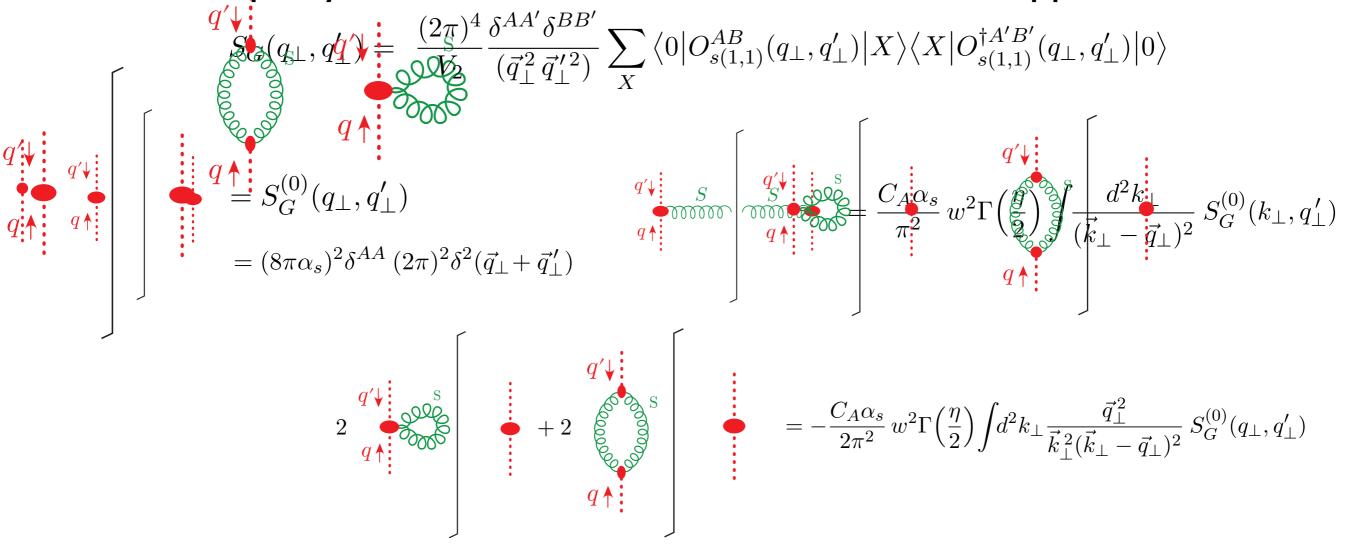
Soft function:

$$S_{G}(q_{\perp}, q'_{\perp}) = \frac{(2\pi)^{4}}{V_{2}} \frac{\delta^{AA'} \delta^{BB'}}{(\vec{q}_{\perp}^{2} \vec{q}_{\perp}^{\prime 2})} \sum_{X} \langle 0 | O_{s(1,1)}^{AB}(q_{\perp}, q'_{\perp}) | X \rangle \langle X | O_{s(1,1)}^{\dagger A'B'}(q_{\perp}, q'_{\perp}) | 0 \rangle$$

where the soft operator contains direct and T-product pieces:

$$\begin{split} O_{s(1,1)}^{AB}(q_{\perp},q_{\perp}') &\equiv \frac{(2\pi)^2}{2} \sum_{k^{\pm}} \int dx'^+ dx^- O_{s(1,1),-k^{\pm}}^{AB}(q_{\perp},q_{\perp}') \Big(x^- \frac{n}{2}, x'^+ \frac{\bar{n}}{2} \Big) \\ &= \sum_{k^{\pm}} \mathcal{O}_{s,-k^{\pm}}^{AB}(q_{\perp},-q_{\perp}') (\tilde{x}=0) \\ &+ \frac{i}{2} (2\pi)^2 \sum_{k^{\pm}} \int \!\! dx'^+ dx^- \, T \sum_{i,j=q,q} \!\! \mathcal{O}_{s,-k^-}^{i_n A}(q_{\perp}) \Big(\frac{n}{2} x^- \Big) \, \mathcal{O}_{s,-k^+}^{j_{\bar{n}} B}(-q_{\perp}') \Big(\frac{\bar{n}}{2} x'^+ \Big) \end{split}$$

Consider rapidity renormalization for soft function that appears here:



$$S_G(\vec{q}_\perp, \vec{q}'_\perp, \nu) = \int d^2k_\perp Z_{S_G}(q_\perp, k_\perp) S_G^{\text{bare}}(k_\perp, q'_\perp)$$

To cancel the $1/\eta$ divergence we require

$$Z(q_{\perp},k_{\perp}) = \delta^{2}(\vec{q}_{\perp} - \vec{k}_{\perp}) - \frac{2C_{A}\alpha_{s}(\mu)w^{2}(\nu)}{\pi^{2}\eta} \left[\frac{1}{(\vec{k}_{\perp} - \vec{q}_{\perp})^{2}} - \delta^{2}(\vec{q}_{\perp} - \vec{k}_{\perp}) \int \frac{d^{2}k_{\perp}\vec{q}_{\perp}^{2}}{2\vec{k}_{\perp}^{2}(\vec{k}_{\perp} - \vec{q}_{\perp})^{2}} \right]$$

$$\nu \frac{d}{d\nu} S_{G}(q_{\perp}, q'_{\perp}, \nu) = \int d^{2}k_{\perp} \gamma_{S_{G}}(q_{\perp}, k_{\parallel}) S_{G}(k_{\perp}, q'_{\perp}, \nu)$$

$$= \frac{2C_{A}\alpha_{s}(\mu)}{\pi^{2}} \int d^{2}k_{\parallel} \left[\frac{G(k_{\perp}, q'_{\perp}, \nu)}{(\vec{k}_{\perp} - \vec{q}_{\perp})^{2}} - \frac{\vec{q}_{\perp}^{2} S_{G}(q_{\perp}, q'_{\perp}, \nu)}{2\vec{k}_{\perp}^{2}(\vec{k}_{\perp} - \vec{q}_{\perp})^{2}} \right]$$
by
$$EFKL equation$$

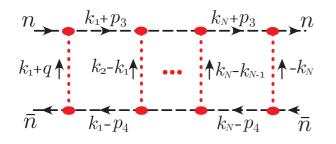
(also work done by S. Fleming)

RGE consistency of linearized amplitude at LL order implies

$$\nu \frac{d}{d\nu} C_n(q_{\perp}, p^-, \nu) = -\frac{C_A \alpha_s}{\pi^2} \int d^2 k_{\perp} \left[\frac{C_n(k_{\perp}, p^-, \nu)}{(\vec{k}_{\perp} - \vec{q}_{\perp})^2} - \frac{\vec{q}_{\perp}^2 C_n(q_{\perp}, p^-, \nu)}{2\vec{k}_{\perp}^2 (\vec{k}_{\perp} - \vec{q}_{\perp})^2} \right] - \frac{1}{2} \left(\text{BFKL} \right)$$

same for $C_{\bar{n}}$

Sum-up Glauber Boxes



$$k_{1}+q \uparrow \qquad k_{2}-k_{1} \uparrow \qquad \uparrow k_{N}-k_{N-1} \uparrow -k_{N} \qquad = i(-2g^{2})^{N+1}\mathcal{S}_{(N+1)}^{n\bar{n}} \, I^{(N)}(q_{\perp}) \int \frac{dk_{1}^{z}\cdots dk_{N}^{z} \left|2k_{1}^{z}(2k_{1}^{z}-2k_{2}^{z})\cdots(2k_{N-1}^{z}-2k_{N}^{z})2k_{N}^{z}\right|^{-\eta}\nu^{N\eta}}{2^{N}(-k_{1}^{z}+\Delta_{1}+i0)\cdots(-k_{N}^{z}+\Delta_{N}+i0)} = i(-2g^{2})^{N+1}\mathcal{S}_{(N+1)}^{n\bar{n}} \, I^{(N)}(q_{\perp}) \int \frac{dk_{1}^{z}\cdots dk_{N}^{z} \left|2k_{1}^{z}(2k_{1}^{z}-2k_{2}^{z})\cdots(2k_{N-1}^{z}-2k_{N}^{z})2k_{N}^{z}\right|^{-\eta}\nu^{N\eta}}{2^{N}(-k_{1}^{z}+\Delta_{1}+i0)\cdots(-k_{N}^{z}+\Delta_{N}+i0)}$$

Fourier transform k_i^z :

$$=2(-ig^2)^{N+1}\mathcal{S}_{(N+1)}^{n\bar{n}}\,I^{(N)}(q_\perp)\Big(\kappa_\eta\frac{\eta}{2}\Big)^{N+1}\int_{-\infty}^{+\infty}\left[\prod_{j=1}^{N+1}dx_j\;|x_j|^{-1+\eta}\right] \quad \theta(x_2-x_1)\theta(x_3-x_2)\cdots\theta(x_{N+1}-x_N)\exp\left[\sum_{m=1}^{N}i\Delta_m(x_{m+1}-x_m)\right]$$

need $x_i \to 0$

$$= -2(ig^2)^{N+1} \mathcal{S}_{(N+1)}^{n\bar{n}} I_{\perp}^{(N)}(q_{\perp}) \frac{1}{(N+1)!} \left[1 + \mathcal{O}(\eta) \right]$$

ordered collapse to equal longitudinal postion

Fourier transform
$$q_{\perp}$$
:
$$\int d^{d-2}q_{\perp} \, e^{i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \sum_{N=0}^{\infty} \operatorname{G.Box}_{N}^{2\to 2}(q_{\perp}) = (\tilde{G}(b_{\perp})-1)2\mathcal{S}^{n\bar{n}}$$

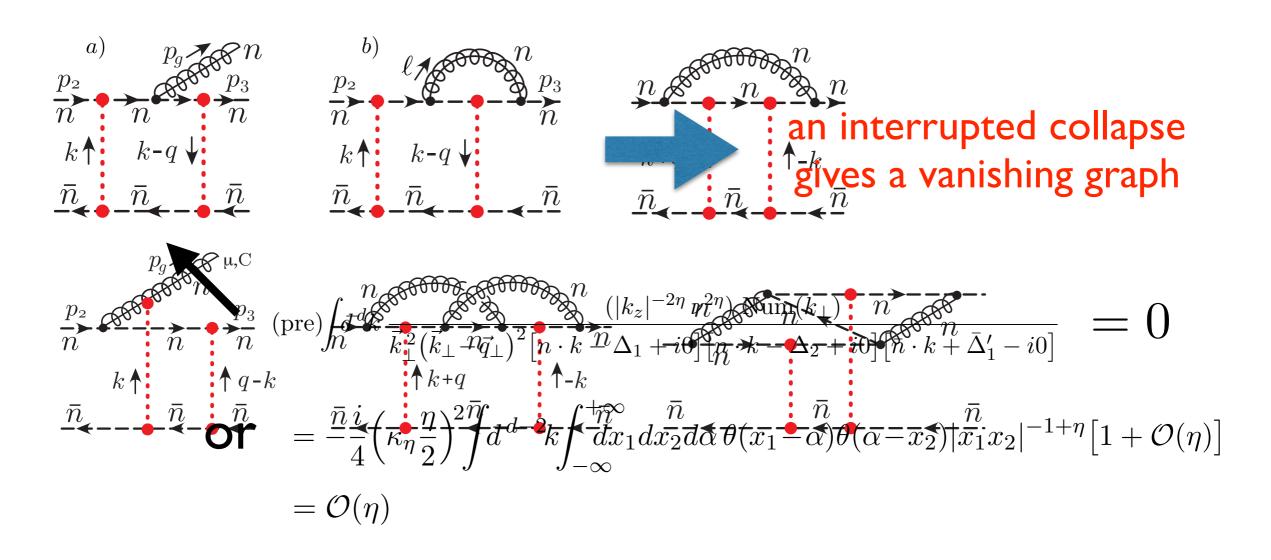
gives classic eikonal scattering result:

$$\tilde{G}(b_{\perp}) = e^{i\phi(b_{\perp})}$$

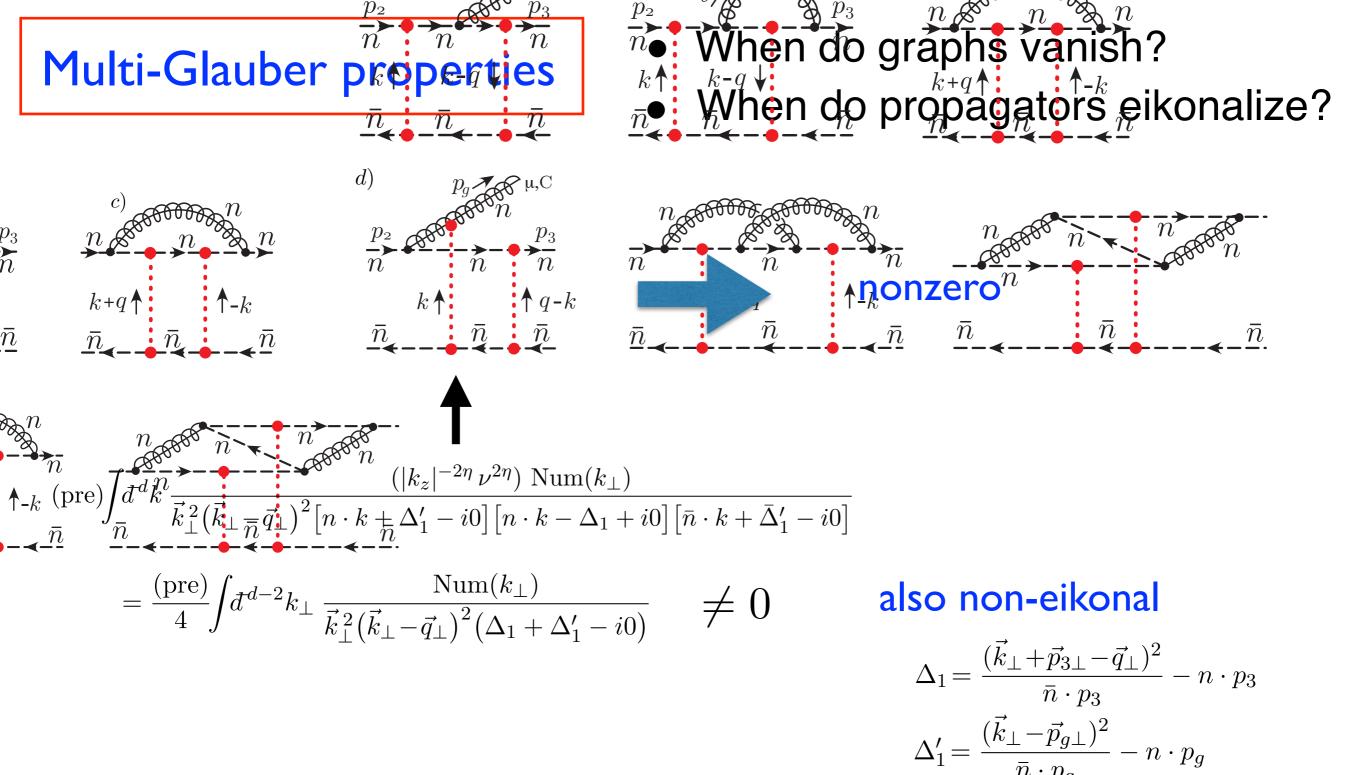
$$\phi(b_{\perp}) = -\mathbf{T}_1^A \otimes \mathbf{T}_2^A g^2(\mu) \int \frac{d^{d-2}q_{\perp} (\iota^{\epsilon} \mu^{2\epsilon})}{\vec{q}_{\perp}^2} e^{i\vec{q}_{\perp} \cdot \vec{b}_{\perp}}$$

Multi-Glauber properties

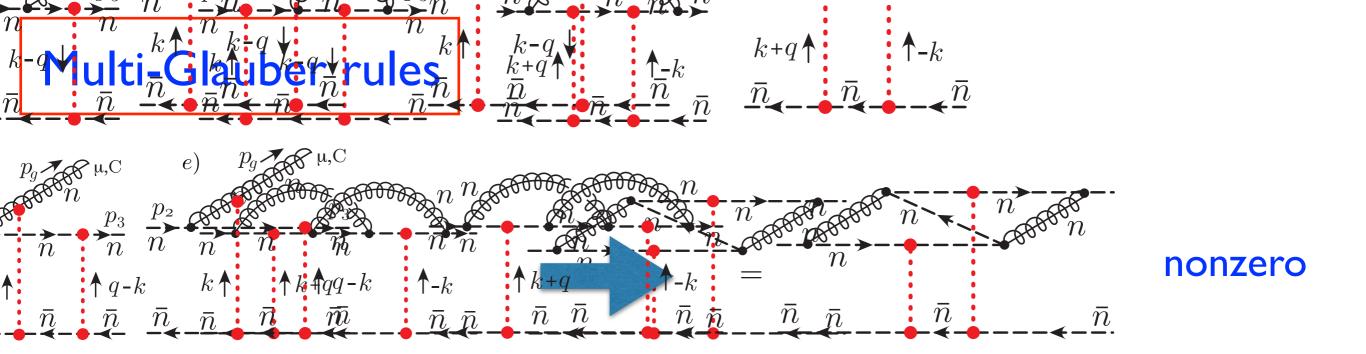
- When do graphs vanish?
- When do propagators eikonalize?

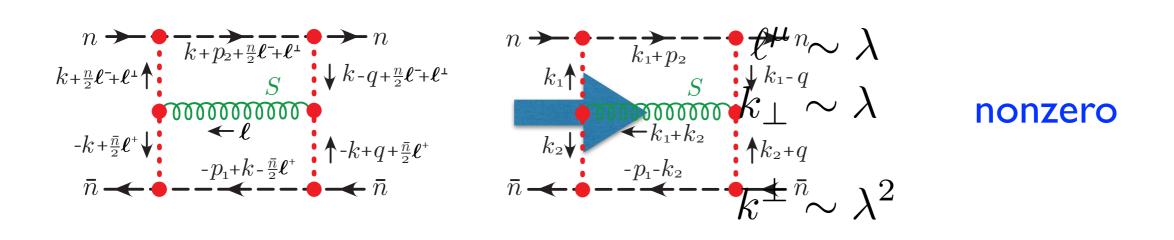


Graphs with more than one Glauber exchange will vanish unless the exchanges can be moved towards each other unimpeded, so that they all occur at the same longitudinal position x_0 for both sources.



Graphs with more than one Glauber exchange will vanish unless the exchanges can be moved towards each other unimpeded, so that they all occur at the same longitudinal position x_0 for both sources.

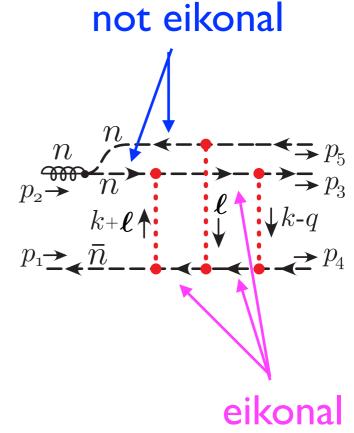




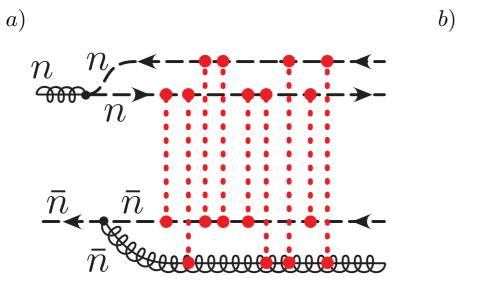
Graphs with more than one Glauber exchange will vanish unless the exchanges can be moved towards each other unimpeded, so that they all occur at the same longitudinal position x_0 for both sources.

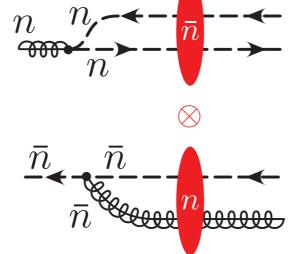
Multi-Glauber rules

Glauber propagators are (effectively) eikonal if and only if they are log-divergent



Together these rules lead to the picture of multiple eikonal Wilson lines crossing a shockwave:





connection to:

Balitsky's Wilson line EFT

Factorization

- I) Wilson Line Directions
- 2) Spectator Interactions

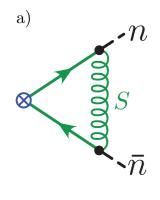
Hard Scattering

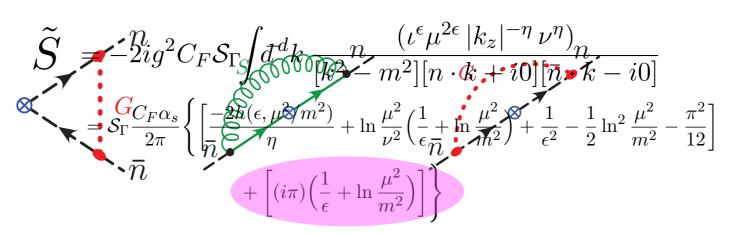
The Cheshire Glauber

e.g.
$$J_{\Gamma}=(ar{\xi}_n W_n)S_n^{\dagger}\Gamma S_{ar{n}}(W_{ar{n}}^{\dagger}\xi_{ar{n}})$$

Active-Active and Soft Overlap

naive soft:



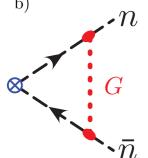


with physical directions for soft Wilson lines in hard scattering

true soft: includes 0-bin subtraction

$$S = \tilde{S} - S^{(G)} \quad \text{has}$$

has no $i\pi$ term



Glauber:
$$ar{n}$$
 $ar{n}$
 $$

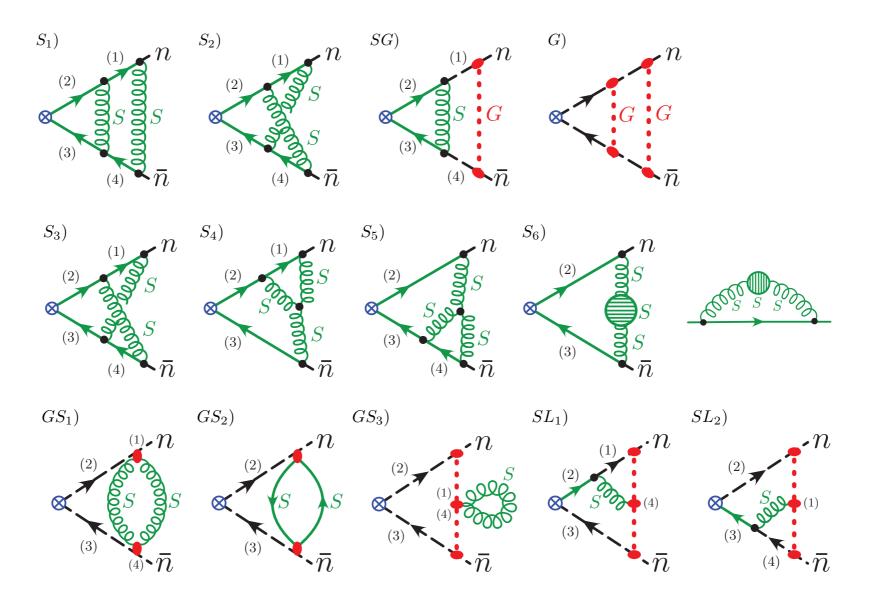
$$\overline{m}_{n} \mathbf{E} \sigma_{\overline{n}} \frac{C_{F} \alpha_{s}}{2\pi} \left[(i\pi) \left(\frac{1}{\epsilon} + \ln \frac{\mu^{2}}{m^{2}} \right) \right]$$

Glaubers give $(i\pi)$ terms

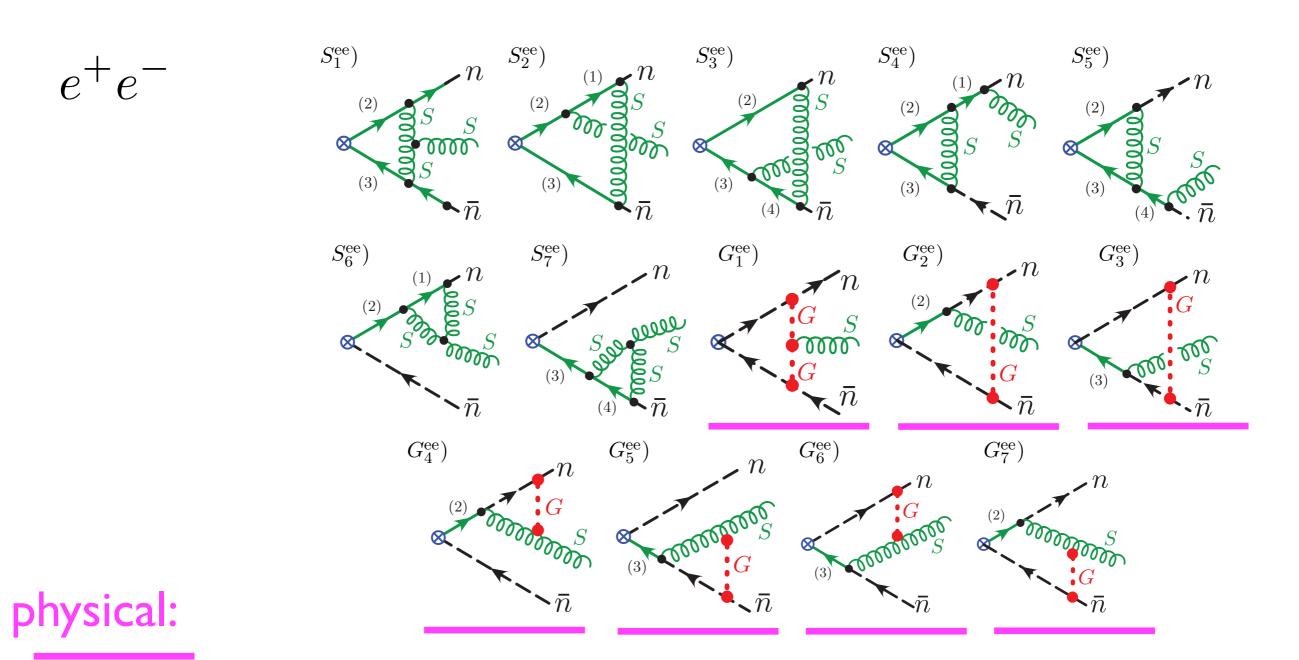
$$\mathrm{BUT} \quad (\tilde{S} - S^{(G)}) + G = \tilde{S}$$

- so we don't see Glauber in Hard Matching
- can absorb this Glauber into Soft Wilson lines if they have proper directions

This continues at higher orders:

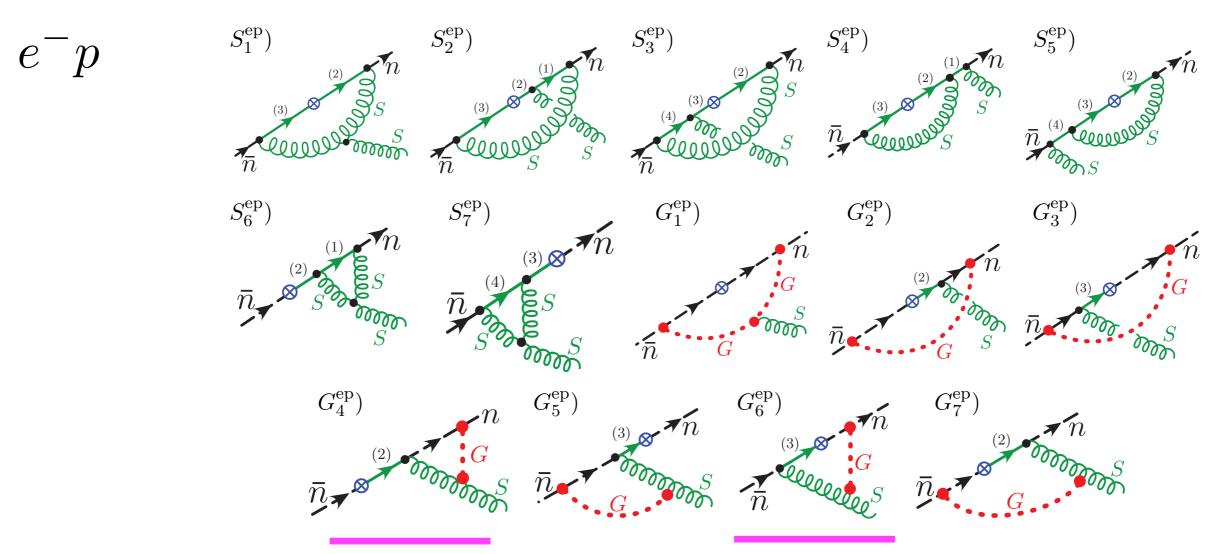


Also true in the presence of additional emissions:



Glauber again gives all $(i\pi)$ terms here.

Also true in the presence of additional emissions:



physical:

Glauber again gives all $(i\pi)$ terms here.

Also true in the presence of additional emissions:



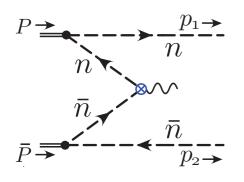
physical:

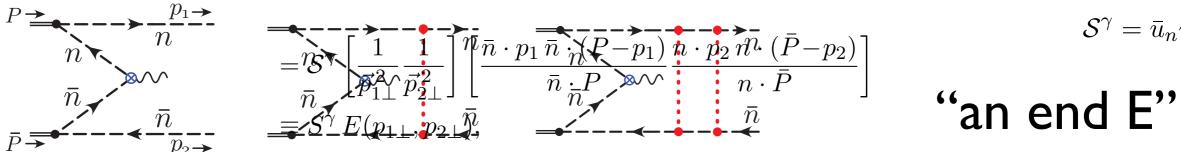
Glauber again gives all $(i\pi)$ terms here.

agrees with soft-current calculation Catani, Grazzini 2000 (~SCET_{II})

Spectator Scattering

Add interpolating fields for initial state hadrons.





$$\mathcal{S}^{\gamma} = \bar{u}_n \gamma_{\perp}^{\mu} v_{\bar{n}}^*$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} G(k_{\perp}) E(p_{1\perp} + k_{\perp}, p_{2\perp} - k_{\perp})$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} G(k_{\perp}) E(p_{1\perp} + k_{\perp}, p_{2\perp} - k_{\perp})$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} G(k_{\perp}) E(k_{\perp} - \Delta p_{\perp} - \frac{q_{\perp}}{2}, \Delta p_{\perp} - k_{\perp} - \frac{q_{\perp}}{2})$$

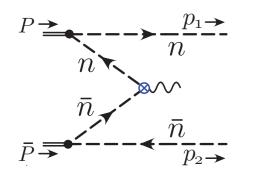
$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} G(k_{\perp}) E(k_{\perp} - \Delta p_{\perp} - \frac{q_{\perp}}{2}, \Delta p_{\perp} - k_{\perp} - \frac{q_{\perp}}{2})$$

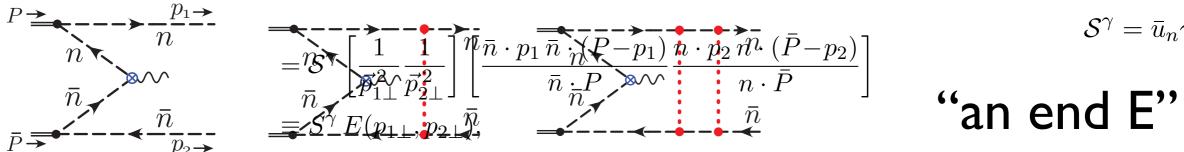
$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} G(k_{\perp}) E'(\Delta p_{\perp} - k_{\perp}, q_{\perp})$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} \int d^{d-2}k_{\perp} e^{-i\vec{k}_{\perp} \cdot \vec{b}_{\perp}} \tilde{G}(k_{\perp}) \int d^{d-2}k_{\perp} e^{-i(\Delta \vec{p}_{\perp} - \vec{k}_{\perp}) \cdot \vec{b}_{\perp}'} \tilde{E}'(k_{\perp}', q_{\perp})$$

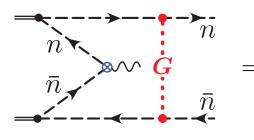
$$= -\mathcal{S}^{\gamma} \int d^{d-2}k_{\perp} e^{-i\Delta \vec{p}_{\perp} \cdot \vec{b}_{\perp}} \tilde{E}'(k_{\perp}, q_{\perp}) e^{i\phi(k_{\perp})} \equiv \mathcal{A}_{SS}(\Delta p_{\perp}, q_{\perp})$$

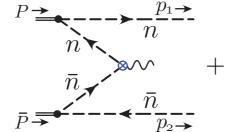
Spectator Scattering | Add interpolating fields for initial state hadrons.

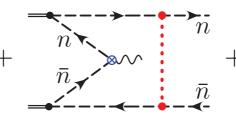


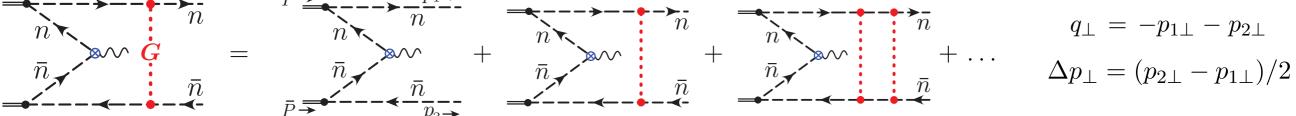


$$\mathcal{S}^{\gamma} = \bar{u}_n \gamma_{\perp}^{\mu} v_{\bar{n}}^*$$









$$q_{\perp} = -p_{1\perp} - p_{2\perp}$$
$$\Delta p_{\perp} = (p_{2\perp} - p_{1\perp})/2$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}b_{\perp} e^{-i\Delta\vec{p}_{\perp}\cdot\vec{b}_{\perp}} \tilde{E}'(b_{\perp},q_{\perp}) e^{i\phi(b_{\perp})} \equiv \mathcal{A}_{SS}(\Delta p_{\perp},q_{\perp})$$

phase cancels IF we integrate over Δp_{\perp}

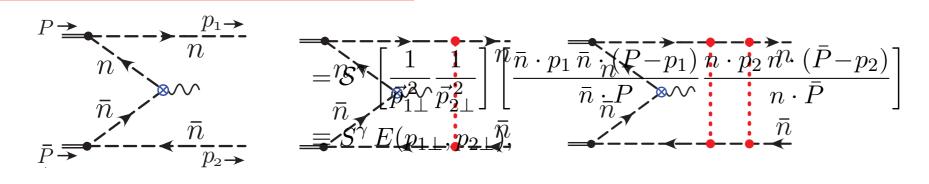
$$\int d^{d-2} \Delta p_{\perp} \left| \mathcal{A}_{SS}(\Delta p_{\perp}, q_{\perp}) \right|^{2}$$

$$= \left| \mathcal{S}^{\gamma} \right|^{2} \int d^{d-2} \Delta p_{\perp} \int d^{d-2} b_{\perp} d^{d-2} b'_{\perp} e^{i\Delta \vec{p}_{\perp} \cdot (\vec{b}'_{\perp} - \vec{b}_{\perp})} \tilde{E}'(b_{\perp}, q_{\perp}) \tilde{E}'^{\dagger}(b'_{\perp}, q_{\perp}) e^{i\phi(b_{\perp}) - i\phi(b'_{\perp})}$$

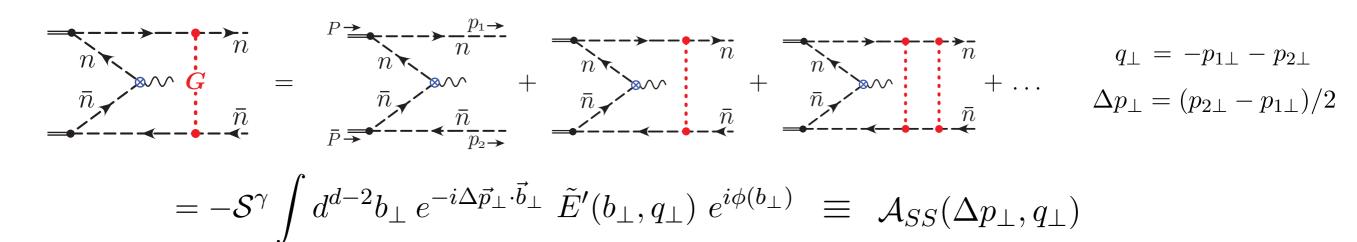
$$= \left| \mathcal{S}^{\gamma} \right|^{2} \int d^{d-2} b_{\perp} \left| \tilde{E}'(b_{\perp}, q_{\perp}) \right|^{2}$$

$$= \left| \mathcal{S}^{\gamma} \right|^{2} \int d^{d-2} \Delta p_{\perp} \left| E'(\Delta p_{\perp}, q_{\perp}) \right|^{2}$$

Spectator Scattering | Add interpolating fields for initial state hadrons.



$$\mathcal{S}^{\gamma} = \bar{u}_n \gamma_{\perp}^{\mu} v_{\bar{n}}^*$$



phase cancels IF we integrate over Δp_{\perp}

Measurements (like beam thrust & transverse thrust) that disrupt this integration can cause a non-cancellation.

(cf. Gaunt; Zeng)

Underlying Event

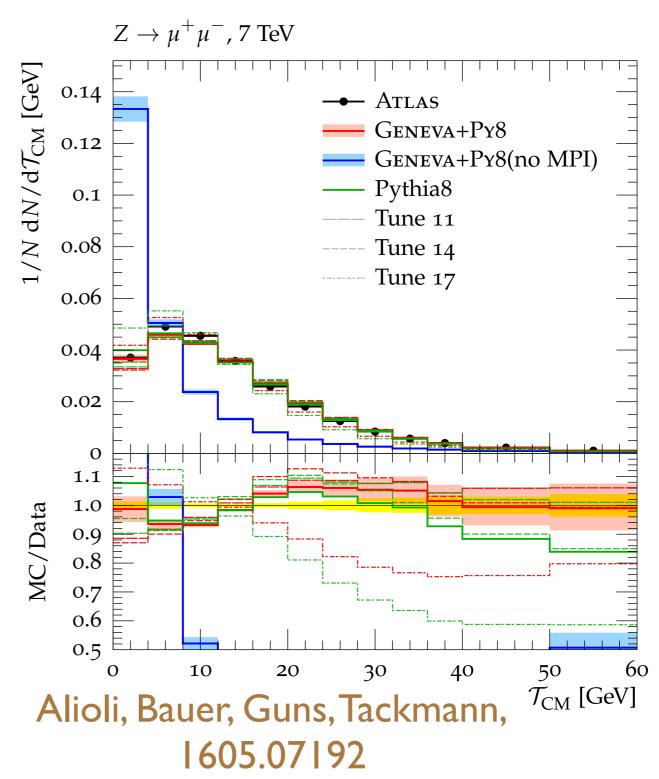
- Radiation not described by primary hard scattering.
- Modeled by Multiple Particle Interactions (MPI) in Monte Carlos

Some observables are sensitive:

beam thrust,
$$\mathcal{T}_{\mathrm{CM}} = \sum_{i} p_{T,i} \; e^{-|\eta_i|}$$

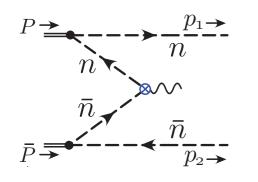
transverse thrust, ...

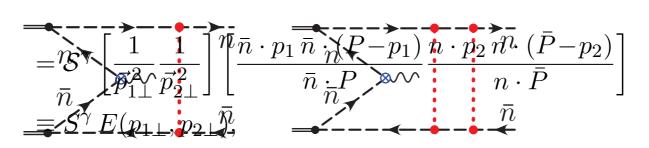
Connection between fact. violation, and small-x dynamics may allow us to directly calculate these effects.



Spectator Scattering

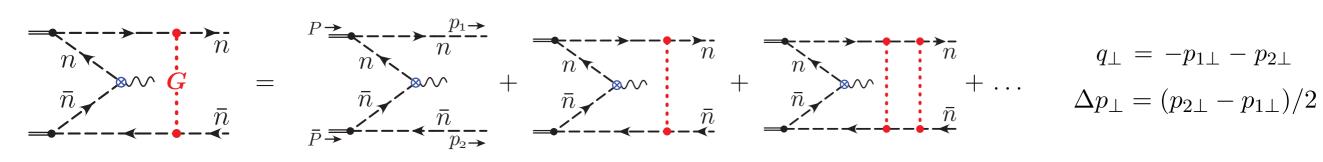
Add interpolating fields for initial state hadrons.





$$\mathcal{S}^{\gamma} = \bar{u}_n \gamma_{\perp}^{\mu} v_{\bar{n}}^*$$

"an end E"



$$q_{\perp} = -p_{1\perp} - p_{2\perp}$$
$$\Delta p_{\perp} = (p_{2\perp} - p_{1\perp})/2$$

$$= -\mathcal{S}^{\gamma} \int d^{d-2}b_{\perp} e^{-i\Delta\vec{p}_{\perp}\cdot\vec{b}_{\perp}} \tilde{E}'(b_{\perp},q_{\perp}) e^{i\phi(b_{\perp})} \equiv \mathcal{A}_{SS}(\Delta p_{\perp},q_{\perp})$$

phase cancels IF we integrate over Δp_{\perp}

Single scale SCET:

$$\Delta p_{\perp} \sim \Lambda_{\rm QCD} \ll \mathcal{T}$$

$$\Delta p_{\perp} \sim \mathcal{T}, \sqrt{QT}$$

(cf. Gaunt; Zeng)

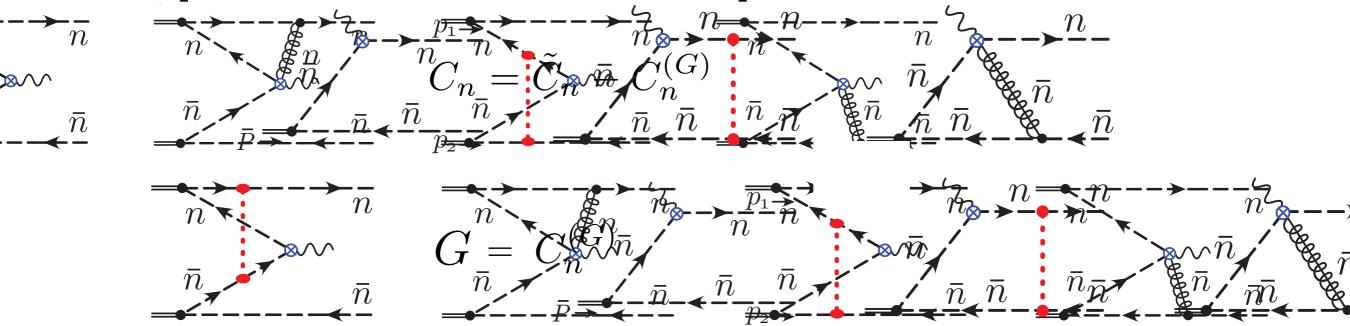
cancel as in inclusive DY, up to power corrections

$$\frac{\Lambda_{\rm QCD}}{T} \ll 1$$
 (cf. Aybat & Sterman)

starts at $\mathcal{O}(\alpha_s^4)$, calculable factorization violation

$$(\mathcal{I}\mathcal{I})\otimes f\otimes f$$

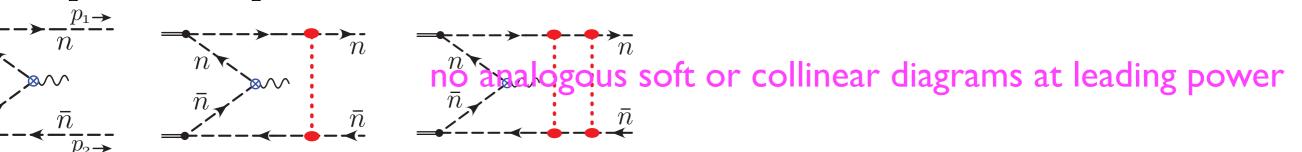
Active-Spectator and the Collinear Overlap



- can absorb this Glauber into the Collinear Wilson line with proper (physical) directions (note: connection to eikonalization)
- cancel? $=\frac{1}{2}S^{\gamma}\int d^dk_{\perp} G^0(k_{\perp})E(p_{1\perp}+k_{\perp},p_{2\perp})$ now need to integrate over $p_{i\perp}$

Active-Active cancel or absorb Glauber into Soft Wilson lines

Spectator-Spectator



Glauber Related Examples of Factorization Violation

- Violation of Cross Section factorization, for example PDFs entangled $|pp\rangle,~ {\rm not}~|p\rangle|p\rangle$ (Collins, Soper, Sterman; Bodwin; Bodwin, Brodsky, Lepage)
- Violation of Collinear Amplitude Factorization (Catani, de Florian, Rodrigo)
 (Forshaw, Seymour, Siodmok)

$$|\mathcal{M}^{(1)}(p_1, p_2, \dots, p_n)\rangle \simeq \mathbf{S} \boldsymbol{p}^{(1)}(p_1, p_2; \widetilde{P}; p_3, \dots, p_n) |\mathcal{M}^{(0)}(\widetilde{P}, \dots, p_n)\rangle + \mathbf{S} \boldsymbol{p}^{(0)}(p_1, p_2; \widetilde{P}) |\mathcal{M}^{(1)}(\widetilde{P}, \dots, p_n)\rangle.$$

for space-like collinear limits (collinear incoming/outgoing particles)

Reproduced w SCET Globar Ops $\frac{\alpha_{j}}{4\epsilon^{2}} \sum_{j=4}^{n} i f_{abc} \mathbf{T}_{2}^{a} \mathbf{T}_{3}^{b} \mathbf{T}_{j}^{c} \mathbf{Sp}^{0} \mathbf{M}^{0}$ $= \pm \frac{\alpha_{s}}{2\pi} (4\pi e^{-\eta_{E}})^{c} (i\pi) \left(\frac{1}{\epsilon} + \ln \frac{\mu^{2}}{p_{2,1}^{2}} + \mathcal{O}(\epsilon)\right) (\mathbf{T}_{2}, \mathbf{T}_{3}, \mathbf{N}^{0}) \cdot \mathbf{M}^{0}$

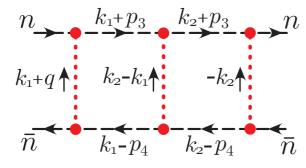
Regge Amplitude Factorization at NLL

$$s \gg |t|$$

$$\mathcal{M}_{rs}^{[8]}\left(\frac{s}{\mu^2}, \frac{t}{\mu^2}, \alpha_s\right) = 2\pi\alpha_s H_{rs}^{(0),[8]} C_r\left(\frac{t}{\mu^2}, \alpha_s\right) \left[A_+\left(\frac{s}{t}, \alpha_s\right) + \kappa_{rs} A_-\left(\frac{s}{t}, \alpha_s\right)\right] C_s\left(\frac{t}{\mu^2}, \alpha_s\right)$$

$$A_{\pm}\left(\frac{s}{t},\alpha_{s}\right) = \left(\frac{-s}{-t}\right)^{\alpha(t)} \pm \left(\frac{s}{-t}\right)^{\alpha(t)}$$

corrected at NNLL by $\frac{(i\pi)^2 \, \alpha_s^2}{\epsilon^2}$



(Del Duca, Glover; Del Duca, Falcioni, Magnea, Vernazza)

Board

Appendix / Backup

enumerate vertices from gauge invariant operators of order $\sim \lambda^k$

 V_k^n vertices with only n-collinear fields,

 $V_k^{\bar{n}}$ vertices with only \bar{n} -collinear fields,

 V_k^S vertices with only soft fields,

 V_k^{nS} vertices that have both n-collinear and soft fields but do not have \bar{n} fields,

 $V_k^{\bar{n}S}$ vertices with both \bar{n} -collinear and soft fields but not n fields,

 $V_k^{n\bar{n}}$ vertices with both n and \bar{n} -collinear fields (with or without soft fields).

(includes scaling for external fields)

count # Loops of various types, and # Internal Propagators

 L^n : n-collinear loops with $k^{\mu} \sim Q(\lambda^2, 1, \lambda)$ loop momenta,

 $L^{\bar{n}}$: \bar{n} -collinear loops with $k^{\mu} \sim Q(1, \lambda^2, \lambda)$ loop momenta,

 L^S : soft loops with $k^{\mu} \sim Q(\lambda, \lambda, \lambda)$ loop momenta,

 L^{nS} : soft-collinear Glauber loops with $k^{\mu} \sim Q(\lambda^2, \lambda, \lambda)$ loop momenta,

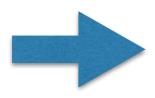
 $L^{\bar{n}S}$: soft-collinear Glauber loops with $k^{\mu} \sim Q(\lambda, \lambda^2, \lambda)$ loop momenta,

 $L^{n\bar{n}}$: $n-\bar{n}$ Glauber loops with $k^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda)$ loop momenta,

 I^n : internal n-collinear propagators,

 $I^{\bar{n}}$: internal \bar{n} -collinear propagators,

 I^S : internal soft propagators.



$$\delta = \sum_{k} k \left(V_{k}^{n} + V_{k}^{\bar{n}} + V_{k}^{S} + V_{k}^{nS} + V_{k}^{\bar{n}S} + V_{k}^{n\bar{n}} \right)$$

$$+4L^{n}+4L^{\bar{n}}+4L^{S}+5L^{nS}+5L^{\bar{n}S}+6L^{n\bar{n}}-4I^{n}-4I^{\bar{n}}-4I^{S}$$

Simplify with topological identities:

overall Euler:
$$1 = \sum_{k} (V_k^n + V_k^{\bar{n}} + V_k^S + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}})$$

$$+L^{n}+L^{\bar{n}}+L^{S}+L^{nS}+L^{\bar{n}S}+L^{n\bar{n}}-I^{n}-I^{\bar{n}}-I^{S}$$

count disconnected components when we erase modes:

$$\overline{n}$$

$$N^{nS} = \sum_{k} (V_k^n + V_k^S + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}}) + L^n + L^S + L^{nS} - I^n - I^S,$$

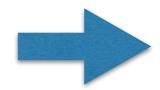
$$\mathcal{N}^{\bar{n}S} = \sum_{k} \left(V_k^{\bar{n}} + V_k^S + V_k^{\bar{n}S} + V_k^{\bar{n}S} + V_k^{\bar{n}\bar{n}} \right) + L^{\bar{n}} + L^S + L^{\bar{n}S} - I^{\bar{n}} - I^S,$$

$$S \qquad N^{n\bar{n}} = \sum_{k} \left(V_k^n + V_k^{\bar{n}} + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}} \right) + L^n + L^{\bar{n}} + L^{n\bar{n}} - I^n - I^{\bar{n}} \,.$$

$${m n}\,,\,{ar n}\,$$
 $N^S = \sum_k \left(V_k^S + V_k^{nS} + V_k^{ar nS} + V_k^{nar n}
ight) + L^S - I^S\,,$

$$S, \bar{n}$$
 $N^n = \sum_k (V_k^n + V_k^{nS} + V_k^{n\bar{n}}) + L^n - I^n,$

$$S, \mathcal{N}$$
 $N^{\bar{n}} = \sum_{n} (V_k^{\bar{n}} + V_k^{\bar{n}S} + V_k^{n\bar{n}}) + L^{\bar{n}} - I^{\bar{n}},$



final result:

$$\delta = 6 - N^n - N^{\bar{n}} - N^{nS} - N^{\bar{n}S} + \sum_k (k - 4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k - 3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k - 2) V_k^{n\bar{n}}$$

Simplify with topological identities:

overall Euler:
$$1 = \sum_{k} (V_k^n + V_k^{\bar{n}} + V_k^S + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}})$$

$$+L^{n}+L^{\bar{n}}+L^{S}+L^{nS}+L^{\bar{n}S}+L^{n\bar{n}}-I^{n}-I^{\bar{n}}-I^{S}$$

count disconnected components when we erase modes:

$$\overline{n}$$

$$N^{nS} = \sum_{k} (V_k^n + V_k^S + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}}) + L^n + L^S + L^{nS} - I^n - I^S,$$

$$\mathcal{N}^{\bar{n}S} = \sum_k \left(V_k^{\bar{n}} + V_k^S + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}} \right) + L^{\bar{n}} + L^S + L^{\bar{n}S} - I^{\bar{n}} - I^S \,,$$

$$S \qquad N^{n\bar{n}} = \sum_{k} \left(V_k^n + V_k^{\bar{n}} + V_k^{nS} + V_k^{\bar{n}S} + V_k^{n\bar{n}} \right) + L^n + L^{\bar{n}} + L^{n\bar{n}} - I^n - I^{\bar{n}} \,.$$

$${m n}\,,\,{ar {m n}}\,$$
 $N^S = \sum_k \left(V_k^S + V_k^{nS} + V_k^{ar nS} + V_k^{nar n}
ight) + L^S - I^S\,,$

$$S, \overline{n}$$
 $N^n = \sum_k \left(V_k^n + V_k^{nS} + V_k^{n\overline{n}}\right) + L^n - I^n,$

$$S, \mathcal{N}$$
 $N^{\bar{n}} = \sum_{r} (V_k^{\bar{n}} + V_k^{\bar{n}S} + V_k^{n\bar{n}}) + L^{\bar{n}} - I^{\bar{n}},$

final result for SCET_I and SCET_{II}:

$$\delta = 6 - N^n - N^{\bar{n}} - N^{nS} - N^{\bar{n}S} + 2u$$

$$+\sum_{k}(k-8)V_{k}^{us}+(k-4)\left(V_{k}^{n}+V_{k}^{\bar{n}}+V_{k}^{S}\right)+(k-3)\left(V_{k}^{nS}+V_{k}^{\bar{n}S}\right)+(k-2)V_{k}^{n\bar{n}}$$

Construction:

$$\lambda \ll 1$$

$$\lambda \ll 1$$
 large Q

mode	fields	p^{μ} momentum scaling	physical objects	type
<i>n</i> -collinear	ξ_n, A_n^{μ}	$(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	n-collinear "jet"	onshell
\bar{n} -collinear	$\xi_{\bar{n}},A^{\mu}_{\bar{n}}$	$(\bar{n} \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda)$	\bar{n} -collinear "jet"	onshell
soft	$\psi_{ m S},A_{ m S}^{\mu}$	$p^{\mu} \sim Q(\lambda, \lambda, \lambda)$	soft virtual/real radiation	onshell
ultrasoft	$\psi_{ m us}, A_{ m us}^{\widetilde{\mu}}$	$p^{\mu} \sim Q(\lambda^2, \lambda^2, \lambda^2)$	ultrasoft virtual/real radiation	onshell
Glauber	_	$p^{\mu} \sim Q(\lambda^a, \lambda^b, \lambda), \ a+b>2$	forward scattering potential	offshell
		(here $\{a,b\} = \{2,2\}, \{2,1\}, \{1,2\}$)		
hard	_	$p^2 \gtrsim Q^2$	hard scattering	offshell

Power Counting formula for graph (any loop order, any power):

$$\sim \lambda^{\delta}$$

(gauge invariant)

$$\begin{split} \delta &= 6 - N^n - N^{\bar{n}} - N^{nS} - N^{\bar{n}S} + 2u \,, \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^S \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^{\bar{n}S} \right) + (k-3) \left(V_k^{nS} + V_k^{\bar{n}S} \right) + (k-2) V_k^{n\bar{n}} \\ &+ \sum_k (k-8) V_k^{us} + (k-4) \left(V_k^n + V_k^{\bar{n}} + V_k^{\bar{n}S} \right) + (k-3) \left(V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-3) \left(V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-3) \left(V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}S} \right) + (k-2) V_k^{\bar{n}\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}\bar{n}\bar{n}} \right) + (k-2) V_k^{\bar{n}\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}S} + V_k^{\bar{n}\bar{n}\bar{n}} \right) + (k-2) V_k^{\bar{n}\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_k^n + V_k^{\bar{n}\bar{n}\bar{n}} \right) + (k-2) V_k^{\bar{n}\bar{n}\bar{n}} \\ &+ \sum_k (k-4) \left(V_$$